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Abstract

An edge-locating coloring of a simple connected graph G is a partition of its edge set into match-
ings such that the vertices of G are distinguished by the distance to the matchings. The minimum
number of the matchings of G that admits an edge-locating coloring is the edge-locating chromatic
number of G, and denoted by χ′L(G). This paper introduces and studies the concept of edge-
locating coloring. Graphs G with χ′L(G) ∈ {2,m} are characterized, where m is the size of G.
We investigate the relationship between order, diameter and edge-locating chromatic number. We
obtain the exact values of χ′L(Kn) and χ′L(Kn −M), where M is a maximum matching; indeed
this result is also extended for any graph. We determine the edge-locating chromatic number of
the join graphs of some well-known graphs. In particular, for any graph G, we show a relationship
between χ′L(G + K1) and ∆(G). We investigate the edge-locating chromatic number of trees and
present a characterization bound for any tree in terms of maximum degree, number of leaves, and
the support vertices of trees. Finally, we prove that any edge-locating coloring of a graph is an
edge distinguishing coloring.
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1. Introduction

One of the structural and applied topics in graph theory is distinguishing graph vertices and
edges by means of different tools. This approach has a relatively old history in graph theory and
has used various tools such as distance and automorphism in graphs. In the following, we describe
the history of some known concepts that follow such an approach.

In 1977, Babai proposed a concept that today inspires many methods for distinguishing ele-
ments of graphs by automorphism [2]. After Albertson and Collins [1] studied this concept in
detail and proposed its application, it was widely considered in the name of asymmetric coloring
(or distinguishing labelling). Among the parameters defined along this concept, we can mention
distinguishing coloring (or proper distinguishing coloring), distinguishing index, distinguishing
arc-coloring and distinguishing threshold [12, 18, 19, 26].

The other index related to automorphism is determining set, in which the goal is to identify
the automorphism by a subset of graph vertices. This concept were introduced independently by
Boutin [6] and Erwin & Harary [14]. The determining numbers of Kneser graphs and Cartesian
product of graphs are provided in [6, 8, 7].

One of the most important and well-known concepts that distinguishes the vertices of a graph
with respect to distance is the metric dimension. In 1975-76, Slater [28] and Harary & Melter
[16] independently introduced and studied this concept for connected graphs. This introduction
was a turning point for a branch of research that occupied many researchers, so that after about 50
years this concept is still the foundation of many research projects and applications, even in other
sciences such as chemistry and computer science. Due to its many applications in different sciences
and other versions of the metric dimension, it has been introduced. In recent years, this concept has
received more attention than in the past. We recommend the reader who needs more information
about this concept refer to two recently raised surveys that discuss in detail the different versions
of the metric dimension and its applications [22, 29].

The edge metric dimension is one of these concepts derived from the metric dimension, where
the goal is to distinguish the edges from a set of graph vertices [20]. Of course, in the metric
dimension literature, we know the two concepts as edge metric dimension. The second case,
which is also discussed in this article, means the least number of edges that resolve the vertices of
a graph with respect to the distance [24].

In 2002, Chartrand et. al. introduced a coloring that we know as locating coloring [11]. In this
coloring, the goal is to distinguish the vertices of a graph by their distance from a partition of the
vertex set. The locating coloring has been the subject of many researchers; for more details, see
[3, 4, 10, 17, 23, 27].

In this paper, our goal is to distinguish the vertices of a connected graph by the distance of the
matchings that partition the edge set. The exact definition of edge-locating coloring is given below.

Let G be a simple connected graph. Let c : E(G) −→ N be a proper edge coloring of G,
in which adjacent edges of G have different colors. Let π = (C1, C2, . . . , Ck) denote the ordered
partition of E(G), that is the color classes admitted of c. For a vertex v of G, the edge color code
cπ(v) is the ordered k-tuple (d(v, C1), d(v, C2), . . . , d(v, Ck)), where d(v, Ci) = min{d(v, e)|e ∈
Ci} for 1 ≤ i ≤ k, and d(v, e) = min{d(v, x), d(v, y)|e = xy}.

The coloring c is called an edge-locating coloring of G if distinct vertices of G have different
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edge color codes. The edge-locating chromatic number χ′L(G) is the minimum number of colors
needed for an edge-locating coloring of G. The rest of the notations used without definition in this
paper are from reference [5].

In this paper, we generally seek to investigate the behavior of the edge-locating coloring in
some family graphs. Specifically, in Section 2, we compute the edge-locating coloring for paths,
cycles, and complete bipartite graphs. Also, we characterize all graphs G of size m with the
property that χ′L(G) = k, where k ∈ {2,m}. Moreover, we present some bounds for the edge-
locating chromatic number. In Section 3, we derive the edge-locating coloring of complete graphs
and the complete graphs minus some matchings. Moreover, in this section, we derive a sharp upper
bound for the edge-locating chromatic number of a graph having a perfect matching and we extend
it for a maximum matching. In Section 4, we will determine the edge-locating chromatic number of
join graph G+H , where G and H are some well known graphs. In Section 5, we will examine the
edge-locating chromatic number of trees. In particular, we compute the edge-locating chromatic
number of the double star graphs and generalize it. Moreover, we present a characterization bound
for any tree in terms of maximum degree, number of leaves and number of support vertices of
trees.

We saw that there are several automorphism bases and distance bases coloring and index in
graph theory. In general, these two concepts travel their research paths without paying attention
to each other. However, some relationships between some of these parameters have been proven.
It has been shown that any resolving set of a graph is a determining set. Determining sets and
resolving sets were jointly studied in [9, 15, 25]. Also, Korivand, Erfanian, and Baskoro recently
showed that any locating coloring is a distinguishing coloring [21]. In Section 6, we prove that
any edge-locating coloring of a graph is an edge distinguishing coloring. Also, we bound the
edge-locating chromatic number to edge metric dimension and chromatic index.

2. General results

The edge-locating chromatic number is defined for graphs with more than two vertices. Since
graphs are simple if all edges assign distinct colors then clearly the edge color codes of vertices
are different. For any simple connected graph G with size m > 2,

2 ≤ χ′L(G) ≤ m.

Another natural bound for edge-locating chromatic number is χ′(G) ≤ χ′L(G). Since χ′(Pn) =
2, χ′L(Pn) ≥ 2, for n ≥ 3. Clearly χ′L(P3) = 2. Assume that n > 3. If we consider an edge 2-
coloring of Pn then any two vertices of Pn that are not pendant vertices have the same edge color
code. Thus χ′L(Pn) ≥ 3. Now, for an edge-locating 3-coloring of Pn, n ≥ 4, it is enough to assign
color 3 to an edge with a pendant end vertex, and other edges of Pn coloring by color 1 and 2,
alternately. Therefore, χ′L(Pn) = 3. Now, we can present the next proposition.

Proposition 2.1. For positive integer n, χ′L(Pn) =

{
2, if n = 3,

3, if n ≥ 4.

The distance between two edges e1 and e2 is defined by min{d(ai, bj) | 1 ≤ i, j ≤ 2, e1 =
a1a2, e2 = b1b2}.
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Theorem 2.1. For any integer n ≥ 3, χ′L(Cn) =

{
3, if n = 3,

4, if n ≥ 4.

Proof. For n = 3, χ′(Cn) = χ′L(Cn) = 3. Now, we claim that χ′L(Cn) > 3, for n ≥ 4. For a
contradiction, assume that the edges of Cn are colored by three colors. Without loss of generality,
we may suppose that the color 3 is the least used color in Cn. Let e = v1v2 denote the only edge
colored by 3. Since n ≥ 4, for n odd, the vertices v3, vn have the same edge color code. For n even,
the vertices v1, v2 have the same edge color code. Hence, color 3 is assigned to at least two edges.
Assume that e and f are two edges with color 3, such that d(e, f) = min{d(e1, e2)|e1, e2 ∈ C3}.
If the distance between e and f are at least two, then cπ(a) = cπ(b), where a ∼ v ∼ u ∼ b and
e = vu. Let {e1, e2, . . . , em} be a maximal alternative matching such that d(ei, ei+1) = 1 and
ei ∈ C3, for 1 ≤ i ≤ m. Since the color 3 is the least color used in Cn, the vertices a and b with the
property that d(a, e1) = d(b, em) = 1 and a, b are not end points of ei, 1 ≤ i ≤ m, have the same
edge color code (0, 0, 1). Therefore, in all cases we have two vertices with the same edge color
code, a contradiction.

Finally, we present an edge-locating 4-coloring of Cn in such a way that assigns to two incident
edges colors 3 and 4, and other edges coloring by 1 and 2, alternately.

Proposition 2.2. Let G be a graph. Then χ′L(G) = 2 if and only if G ∼= P3.

Proof. Only one implication requires proof. Assume that χ′L(G) = 2. Hence ∆(G) = 2. This
implies that G is a cycle or a path. On the other hand, by Proposition 2.1 and Theorem 2.1, we
know that all cycles and paths except P3 need at least three colors for an edge-locating coloring.
So the result is immediate.

Theorem 2.2. For distinct integers p, q ≥ 2, χ′L(Kp,q) = max{p, q}+ 1 and χ′L(Kp,p) = p+ 2.

Proof. For the comfort of calculation, we consider matrix p×q, A = [abicj ], where {b1, b2, . . . , bp}
and {c1, c2, . . . , cq} are the partite sets of Kp,q, and abicj is the color of edge bicj . Thus, for any
fixed integer i, (1 ≤ i ≤ p), row (abicj)

q
j=1 is the assigned colors of the incidence edges of bi.

Similarly, for any fixed integer j, (1 ≤ j ≤ q), column (abicj)
p
i=1 is the assigned colors of the

incidence edges of cj . An edge-locating coloring of Kp,q gives the following conditions on A.

(i) All elements in each row (column) are distinct.

(ii) For i and j, (1 ≤ i, j ≤ p), {abick}
q
k=1 6= {abjck}

q
k=1.

(iii) For i and j, (1 ≤ i, j ≤ q), {abkci}
p
k=1 6= {abkcj}

p
k=1.

Let p > q. To satisfy conditions (i) and (ii) we need more than p colors. We claim that with
p + 1 colors matrix A with conditions (i), (ii) and (iii) is constructed. For this, let S be (p + 1) ×
(p + 1) matrix consisting of all column matrices of colors [1, 2, . . . , p, p + 1]t, [p + 1, 1, . . . , p −
1, p]t, . . . , [2, 3, . . . , p+ 1, 1]t. Now, assume that A is the sub-matrix of S consisting of first p rows
and q columns, where (abic1)

p
i=1 = [1, 2, . . . , p]t, (abic2)

p
i=1 = [p+1, 1, . . . , p−1]t, . . . , (abicq)

p
i=1 =

[p+ 3− q, p+ 4− q, . . . , p+ q + 1− q, 1, 2, . . . , p+ 1− q]t. Then, we can see that all conditions
(i), (ii), and (iii) satisfy on A, and the result is available.

For the other implication, let q = p. In this case, to construct matrix A, we need condition (iv)
in addition to conditions (i), (ii), and (iii).
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(iv) For i and j, (1 ≤ i, j ≤ p), {abick}
p
k=1 6= {abkcj}

p
k=1.

According to the additional condition (iv), all 2p vertices should have distinct edge color sets that
are incident to them. First, show that we cannot edge-locating color of Kp,p with p + 1 colors.
On the contradiction, assume that we can do it. Let the first column be colored with p colors, and
don’t use color p+ 1. Hence, all rows use p+ 1 as a color for a vertex. This shows that every row
does not have one of the colors i for 1 ≤ i ≤ p. On the other hand, since the first column does
not use color p+ 1, at least one column has p+ 1 as a color and does not take one of the colors in
1 ≤ i ≤ p say j and thus, this column and the row, which has no j as a color, have the same edge
color code. That is a contradiction. Therefore, χ′L(Kp,p) ≥ p+ 2.

In the following, we give a way of edge-locating coloring Kp,p, by presentation p× p matrix

A =



1 2 3 . . . p− 1 p
2 3 4 . . . p p+ 1
3 4 5 . . . p+ 1 p+ 2
4 5 6 . . . p+ 2 1
...

...
...

...
...

p− 1 p p+ 1 . . . p− 5 p− 4
p+ 1 p+ 2 1 . . . p− 3 p− 2


.

All colors are on module p. Also, abp,ci = abp−1,ci + 2, for 1 ≤ i ≤ p. One can check that matrix A
satisfies conditions (i) - (iv).

In Figure 1, we give an illustration of Theorem 2.2, when p = 3 and q = 2. In this case, the

edge-locating chromatic number is 4, and the matrix A is

1 4
2 1
3 2

.

1

4

2

1

3

2

Figure 1. An edge-locating coloring for K3,2.

For an integer p, the graph K1,p is called a star graph and is shown by Sp.

59



www.ejgta.org

Edge-locating coloring of graphs | M. Korivand et al.

Theorem 2.3. Let G be a graph with size m ≥ 2. Then χ′L(G) = m if and only if G ∈
{P4, C3, C4, Sm}.

Proof. If G ∈ {P4, C3, C4, Sm}, then we have nothing to prove. For the other, assume first that
∆(G) = 2. So, Proposition 2.1 and Theorem 2.1 conclude that G ∈ {P4, C3, C4, S2}. Let ∆(G) =
k, for k ≥ 3. For a contradiction, suppose thatG � Sm, for anym ≥ 3. Let v be a vertex ofGwith
deg(v) = k ≤ m − 1. Thus, there exists at least a vertex u 6= v of G such that 1 < deg(u) ≤ k.
Hence, there exists edge e = uw in G, where w 6= v. Since k ≥ 3, we have edges e′ = vz and
e′′ = vx such that at least one of z or x is not in {u,w}. Now, we assign color 1 to edges e and e′,
and color the other edges with distinct colors 2, 3, . . . ,m− 1 such that, without loss of generality,
it is assigned color 2 to edge vu and color 3 to edge e′′ = vx. We will show that this coloring
is an edge-locating coloring of G. For this, we have cπ(v) = (0, 0, 0, . . .), cπ(u) = (0, 0, 1, . . .),
cπ(z) = (0, 1, 1, . . .), cπ(w) = (0, 1, 2, . . .) if w is not adjacent to x, and if w is adjacent to x the
color of wx is 4, then d(w,C4) = 0 and d(z, C4) ≤ 1. Therefore, these five vertices have distinct
edge color codes. For a vertex y /∈ {v, u, w, z, x}, it is incident to at least one new edge with a new
color. Hence cπ(y) 6= cπ(t) for t 6= y. This is a contradiction, and then G = Sm.

In the following, we present some bounds for edge-locating coloring of a graph.

Theorem 2.4. Let G be a graph with order n and diam(G) = d ≥ 3. Then,

logd n+ 2 ≤ χ′L(G).

Proof. The edge color code of any vertex ofG has χ′L(G) coordinates. Since each vertex is incident
to at least one edge, at least one coordinate is 0. Let v be a vertex, and e = vu. There exists an
edge e′ = uw that w 6= v. The color of e′ is different from e, and the coordinate of the edge color
code of v according to color e′ is 1. So, the two coordinates of any vertex of G are determined,
and other coordinates can be filled by k, 0 ≤ k ≤ d− 1. Since in any edge-locating coloring, each
vertex must have a unique edge color code, n ≤ d(χ

′
L(G)−2), and the result is obtained.

Theorem 2.5. Let G be a graph with diam(G) = d ≥ 3 and χ′L(G) = k. Then,

log(d−1)[
ni(
k
i

) ] + i ≤ k, for 1 ≤ i ≤ ∆.

Where, ni is the number of vertices of degree i.

Proof. We can color the incident edges of a vertex of G of degree i with
(
k
i

)
ways. Thus, [

ni(
k
i

) ]

numbers of vertices of degree i have the same colored incident edges. So, the other coordinates
of this vertices can be filled by `, 1 ≤ ` ≤ d − 1. Therefore, [

ni(
k
i

) ] ≤ (d − 1)(χ
′
L(G)−i), for any

1 ≤ i ≤ ∆, and the result is immediate.

3. Complete graphs and matchings

In this section, we determine the edge-locating coloring of complete graphs and the complete
graphs minus some matchings. Then we generalize this subject to arbitrary graphs.
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3.1. Complete graphs
A matchingM of a graph is a set of independent edges. A vertex isM -saturated if it is incident

with an edge of M , and M -unsaturated otherwise. A matching is said to be maximum if for any
other matching M∗, |M | ≥ |M∗|. A matching M is perfect if it saturates all vertices of G. Let
Kn − e denote the complete graph Kn minus one edge.

Theorem 3.1. For any even n ≥ 4, χ′L(Kn) = n+ 1.

Proof. First, we show that χ′L(Kn) ≥ n + 1. Let n be an even integer with n ≥ 4. Let
V (Kn) = {v1, v2, . . . , vn}. Then χ′L(Kn) ≥ n. However, we will show that χL(Kn) 6= n for
any even n ≥ 4. Let c be any proper edge locating coloring of Kn with n colors. Then, each of
at least n/2 colors will appear exactly n/2 times each, and each of at most n/2 colors will appear
at most n/2− 1 times each. A simple verification shows that, precisely, n/2 different colors (say,
colors 1, 2, . . . , n

2
) appear n/2 times each, and other colors (namely, colors n

2
+ 1, n

2
+ 2, . . . , n)

will appear exactly n/2 − 1 times each. Therefore, every vertex is incident to all colors except
color k for some k ∈ {n

2
+ 1, n

2
+ 2, · · · , n}. This means that there are only n

2
different edge color

codes for all n vertices of Kn with respect to coloring c. Thus, c is not an edge-locating coloring
of Kn, and so χ′L(Kn) ≥ n+ 1 for any even n ≥ 4.

Now we provide an edge-locating coloring of Kn with n + 1 colors. As it is well known, the
edge color code of any vertex v is formed by n+ 1 coordinates, in which two of its coordinates are
1 and the others are 0. Let eij be an edge of Kn with two end vertices vi, and vj where i < j.
For defining n+ 1-edge-locating coloring function α on Kn, we consider two cases.
If 3 - n+ 1, then we define α on Kn as follows.

α(eij) = j + i− 2 (mod n+ 1) for 1 ≤ i < j ≤ n.

In this case, for any vertex vi two coordinates 2i − 2 and i − 2 of the edge color code of vi are 1
and the others are 0. Since 2i − 2 = j − 2 and i − 2 = 2j − 2, 3i = 0(modn + 1). If i 6= j, then
{2i− 2, i− 2} 6= {2j− 2, j− 2}. If 3 | n+ 1 and n+ 1 = 3k, then we define α on Kn as follows.
If eij /∈ {e(lk−1), e(lk) : 1 ≤ l ≤ k − 2}

α(eij) = j + i− 2 (mod n+ 1) for 1 ≤ i < j ≤ n.

For eij ∈ {e(l(k−1)), e(lk) : 1 ≤ l ≤ k − 2}, we define

α(el(k−1)) = k + l − 2 (l < k − 2); α(elk) = k + l − 3 (mod n+ 1).

In this case, for any vertex vi, (i 6= k − 1), the two coordinates 2i − 2 and i − 2 of the edge color
code of vi are 1 and the others are 0. For vk−1 the two coordinates k − 2 and k − 3 of the edge
color code of vk−1 are 1 and the others are 0. Similar to the above method, one can show that, for
k−1 /∈ {i, j}, {2i−2, i−2} 6= {2j−2, j−2} and for j 6= k−1, {2j−2, j−2} 6= {k−2, k−3}.

For instance, consider the edge-locating colorings of K8 and K10 represented by the two ma-
trices (8 × 8)-matrices and (10 × 10)-matrices below, where 8 + 1 = 9 = 3 × 3 and 3 - 10 + 1.
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The entries ij are the colors of the edge eij with two end-vertices vi and vj , where i < j. In the
matrix, we only wrote the color of eij with i < j. For instance, in K8, the vertex v3 is incident to
the colors
{c(e13) = 3, c(e23) = 4, c(e34) = 5, c(e35) = 6, c(e36) = 7, c(e37) = 8, c(e38) = 9}
or in K10, the vertex v4 is incident to the colors
{c(e14) = 3, c(e24) = 4, c(e34) = 5, c(e45) = 7, c(e46) = 8, c(e47) = 9, c(e48) = 10, c(e49) =
11, c(e4 10) = 1}.

K8 :



− 1 3 2 4 5 6 7
− − 4 3 5 6 7 8
− − − 5 6 7 8 9
− − − − 7 8 9 1
− − − − − 9 1 2
− − − − − − 2 3
− − − − − − − 4
− − − − − − − −


3 | 8 + 1 = 9

K10 :



− 1 2 3 4 5 6 7 8 9
− − 3 4 5 6 7 8 9 10
− − − 5 6 7 8 9 10 11
− − − − 7 8 9 10 11 1
− − − − − 9 10 11 1 2
− − − − − − 11 1 2 3
− − − − − − − 2 3 4
− − − − − − − − 4 5
− − − − − − − − − 6
− − − − − − − − − −


3 - 10 + 1 = 11

Theorem 3.2. For any odd n ≥ 3, χ′L(Kn) = n.

Proof. Let n be an odd integer with n ≥ 3. Let V (Kn) = {v1, v2, · · · , vn}. Since ∆(Kn) = n− 1
then χ′L(Kn) ≥ n. We are going to show that χL(Kn) = n for any odd n ≥ 3. We define α on Kn

as follows:
α(eij) = j + i− 2 (mod n) for 1 ≤ i < j ≤ n.

In this case, for any vertex vi, one coordinate (2i − 2) of the edge color code of vi is 1 and the
others are 0. Since for i 6= j, 2i − 2 6= 2j − 2, this coloring is an edge-locating coloring. Thus α
is an edge-locating chromatic coloring of Kn, and so χ′L(Kn) = n for odd n.
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K11 :



− 1 2 3 4 5 6 7 8 9 10
− − 3 4 5 6 7 8 9 10 11
− − − 5 6 7 8 9 10 11 1
− − − − 7 8 9 10 11 1 2
− − − − − 9 10 11 1 2 3
− − − − − − 11 1 2 3 4
− − − − − − − 2 3 4 5
− − − − − − − − 4 5 6
− − − − − − − − − 6 7
− − − − − − − − − − 8
− − − − − − − − − − −


For k ≥ 1, let Mk be a matching with k edges.

In the proof of Theorem below, we can also use the method of the proof of Theorem 3.4 by the
proof of Theorem 3.2.

Theorem 3.3. For n ≥ 1 and 1 ≤ k ≤ n, we have that

χ′L(K2n+1\Mk) =

{
2n+ 1, if 1 ≤ k ≤ n− 1,
2n, if k = n.

Proof. For 1 ≤ k ≤ n − 1, the graph K2n+1\Mk has at least two vertices of degree 2n. Thus,
χ′L(K2n+1\Mk) ≥ 2n + 1. But if k = n, since K2n+1 \ Mn has exactly one vertex of degree
2n, then χ′L(K2n+1\Mn) ≥ 2n. To obtain an edge-locating (2n)-coloring of K2n+1\Mn from
the edge-locating (2n + 1)-coloring of K2n+1 (in Theorem 3.2) we can remove the edges of a
monochromatic Mn. Thus, the proof is observed.

If we note the proof of Theorem 3.1, there exists a χ′L(K2n) with 2n+ 1 colors such that each
edge-locating color class has at least n− 1 edges and we can easily to see exactly 2n color classes
have n − 1 edges, and one color class has n edges. The edge coloring is such that it can be said
that color 2n− 1 was used for n edges, and the rest of the colors were used for n− 1 edges each.
Therefore, we have.

Theorem 3.4. Let n ≥ 2. Then χ′L(K2n\Mk) = 2n if k ∈ {n− 1, n}.

Proof. By Theorem 3.1, we have that χ′L(K2n) = 2n + 1 for n ≥ 2. As we mentioned in the
above, there is exactly one perfect matching Mn with a monochromatic and 2n matchings Mn−1
with a monochromatic each. Thus, we get an edge-locating 2n-coloring of Kn\Mk for k ∈ {n −
1, n}.

As an immediate result of Theorems 3.1 and 3.4, we have.

Corollary 3.1. Let m be a positive integer and m ≤ n− 1. Then there exist m matchings Mn−1 in
which χ′L(K2n −m(Mn−1) ∪Mn) = 2n−m.
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3.2. Matchings
In other words, an edge-locating coloring of a graph G is a partition of its edge set into match-

ings such that the vertices of G are distinguished by the distance of the matchings. The minimum
number of the matchings of G that admit an edge-locating coloring is the edge-locating chromatic
number of G.

Theorem 3.5. Let G be a graph with order n ≥ 5 and size m. If G has a perfect matching, then
χ′L(G) ≤ m− n/2 + 1. This bound is sharp for cycle C6 and path P6.

Proof. Let M be a perfect matching of G. Color all edges of M with color 1, and other edges
with distinct colors. We will show that this coloring is an edge-locating coloring of G. Note that
vertices of G cannot be distinguished by the color 1. Consider an arbitrary vertex v of G.

Suppose first that N(v) = {u}. So, vu ∈ M . It is enough to investigate the vertices that have
distance one from edge(s) e = uw, for w ∈ N(u) \ {v}. Let N(u) \ {v} = {w}. If deg(w) ≥ 3,
there exists a vertex x adjacent tow such that xw /∈M . Hence, any vertex ofN(w)\{u} and vertex
v are distinguished by the color of xw. If deg(w) = 2, since n ≥ 5, there exists an edge f = zy
such that {z} = N(w) \ {u} and y /∈ {v, u, w}. Thus, f /∈ M , and v and z are distinguished by
the color of f . Assume that |N(u) \ {v}| ≥ 2. A vertex z has distance one from edges e = uw, for
w ∈ N(u) \ {v}, when N(u) \ {v} ⊆ N(z). In this situation, there exists a vertex x ∈ N(u) \ {v}
such that xz /∈M . Therefore, v and z have different distances from xz, and the result is immediate.

Assume that deg(v) = 2. There exists at least an edge e = vu /∈ M , for a vertex u of G.
Assign color 2 to e. The only vertex that can be a candidate for the edge color code equal to v
is u. Since u can not be a pendant vertex, we have N(u) \ {v} 6= ∅. If |N(u) \ {v}| ≥ 2, there
exists a vertex w ∈ N(u) \ {v} such that uw /∈ M . Thus, the color of uw distinguishes v and u.
Let |N(u) \ {v}| = 1. Suppose that N(u) \ {v} = {z}. So, uz ∈ M . If deg(z) ≥ 2, then there
exists a vertex w such that zw /∈M . If there is edge vw, then we have a cycle with vertices v, u, z,
and w. Hence, we must have at least one vertex in this cycle with a degree greater than 2. Clearly,
vertices z or w can have a degree of more than 2. Since vw ∈ M , in all possible cases, vertices
v and u have different an edge color codes. Also, if deg(z) = 1, there exist an edge f /∈ M with
d(v, f) = d(u, f)− 1, and the result is available.

Finally, let deg(v) ≥ 3. In this case, consider vertices x, y, and z as neighbors of v such that
xv ∈ M . This implies that yv, zv /∈ M . Now, the colors of yv and zv distinguish v with the other
vertices of G.

Theorem 3.5 can be extended for maximum matching.

Theorem 3.6. Let G be a graph with order n ≥ 5 and size m. If G has a max matching M with
|M | = k, then χ′L(G) ≤ m − k + 1. This bound is sharp for cycle C5, path P5, star K1,n−1 for
n ≥ 2 and double star Sp,1.

Proof. Let M be a maximum matching of G with |M | = k. It is clear that M saturates 2k vertices,
and n − 2k vertices cannot be saturated by M . We add n − 2k vertices to G and make each of
them adjacent to a vertex that is not saturated. Then, the resulted graph is of order 2n − 2k, size
m + n − 2k and has a perfect matching of size k + n − 2k = n − k. Now, Theorem 3.5 implies
that χ′L(G) ≤ m+ n− 2k − (n− k) + 1 = m− k + 1.
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Theorem 3.7. Let G be a graph with order n ≥ 4 and size m. If G has k edge-disjoint perfect
matchings M = M1 ∪M2 ∪ · · · ∪Mk and G\M is a connected spanning subgraph of G, then
χ′L(G) ≤ m− kn/2 + k.

Proof. Let M = M1∪M2∪· · ·∪Mk be k edge-disjoint matchings in G. Let G\M be a connected
subgraph. Then, establish an edge coloring α on G by assigning a distinct color to each matching
and assigning distinct colors to all remaining edges of G\M . Certainly, this coloring α is an
edge proper coloring of G. Since G\M is a connected spanning subgraph, then there are no two
vertices incident to the same set of colors. This means that every vertex has a distinct edge color
code. Therefore, α is an edge-locating coloring of G.

As a closing remark, we raise the following question: Is an edge-locating chromatic number of
a graph monotonic? Precisely, is it true that if G is a proper subgraph of H , then χ′L(G) ≤ χ′L(H)?
We know that the metric dimension of a graph is not monotonic, since if G is a star K1,n−1 with
n ≥ 5 and H is a graph formed from G by adding one edge connecting two end-point vertices,
then dim(G) > dim(H). The locating chromatic number of a graph is also not monotonic, since
if G = C4 and H is a graph formed from C4 by adding two pendant edges to two consecutive
vertices of C4, then 4 = χL(G) > χL(H) = 3.

Theorem 3.8. The edge-locating chromatic number of a graph is not necessarily monotonic.

Proof. For a positive integer n, let Tn denote the perfect binary tree, i.e., Tn is a tree with a root r
of degree 2 and other vertices of degree 3 or 1 in which the distance between the root vertex r and
any leaf is n. Let G denote the graph obtained from Tn by making adjacent a pendant edge to r in
T3. We will show that χ′L(G) ≥ 5. For a contradiction, since G has at least two vertices of degree
3, we assume that χ′L(G) = 4. Without loss of generality, we may suppose that the incident edges
of r are colored by 1, 2, and 3, such that the leaf is colored by 1. It is clear thatG has seven vertices
with degree 3. The distance between any vertex of degree 3 and any color class is at most 2. So,
we don’t have more than two vertices of G with the same colored incident edges. Since

(
4
3

)
= 4,

there are 4 ways for coloring the incident edges of a vertex of degree 3. Hence, for exactly one
vertex of degree 3, the edges incident on it take a set of three colors, and for the rest of the vertices
of degree 3, for both vertices, the edges incident on them take a set of three colors. Vertex r is the
only vertex with colored incident edges 1, 2, and 3. Any other vertex with these colored incident
edges has distance 1 from color 4. We say that the vertices of depth i in G are the vertices of T3
with distance i from r. In T3, there are two children, as rL and rR, on the left and right of r. The
children and grandchildren of rL and rR, called by left part and right part, receptively. Now, we
want to determine the position of two vertices of degree 3 with colored incident edges 2, 3 and
4. Clearly, these two vertices cannot be in depth 1 or the same part simultaneously. If these two
vertices are in different parts, then one edge between depth 1 vertex and depth 2 vertex must be
colored by 1, and the other one is not colored by 1. This implies that we have three vertices with
colored incident edges 2, 3 and 4, which is a contradiction. Assume that there are two vertices of
degree 3 with colored incident edges 2, 3, and 4 in depth 1 and depth 2. Similarity, distinguishing
these two vertices gives us another vertex with colored incident edges 2, 3, and 4, a contradiction.
Therefore, χ′L(G) ≥ 5 and obviously, by assigning 5 colors to the edges of G, we can show that
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χ′L(G) = 5. Let H denote the graph obtained from G with join r to a pendant vertex in depth 3.
One can check that χ′L(H) = 4 (see Figure 2). Therefore, there exist graphs G and H that G ⊂ H
and χ′L(H) ≤ χ′L(G).

1

23

1 3

43

4

1 24 1 32

2 4

Figure 2. Graph H with edge-locating chromatic number 4.

4. Join graphs

For any graphsG andH , a join graph betweenG andH , denoted byG+H , is a graph obtained
by connecting all vertices ofG with all vertices ofH . In particular, ifG = K1 andH is a cycle Cn,
the graph K1 + Cn is called a wheel, and it is denoted by Wn. The graph K1 + Pn is called a fan,
graph and it is denoted by Fn. The graph K1 + nK2 is called a windmill graph and it is denoted
by Wm(2n). The graph K2 + nK2 is called a book graph with n pages, and it is denoted by Bn. In
this section, we will determine the edge-locating chromatic of join graph G+H .

Theorem 4.1. For any graphs G and H , χ′L(G+H) ≥ max{∆(G) + |V (H)|, |V (G)|+ ∆(H)}.

Proof. It is straightforward since ∆(G+H) = max{∆(G) + |V (H)|, |V (G)|+ ∆(H)}.

The upper bound is sharp and achieved by a wheel, a fan, or a windmill, as stated in the
following theorem.

Theorem 4.2. The following are the edge-locating chromatic number for special join graphs:

• For n ≥ 4, χ′L(Wn) = n.

• For n ≥ 4, χ′L(Fn) = n; χ′L(F2) = 3, and χ′L(F3) = 4.
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• For n ≥ 3, χ′L(Wm(n)) = 2n, χ′L(Wm(2)) = 5

• For n ≥ 3, χ′L(Bn) = 2n+ 2, and χ′L(B2) = 6.

Proof. For wheels and fans, let V (Wn) = V (Fn) = {c, v1, v2, . . . , vn} with a center c and n ≥ 4.
Since ∆(Wn) = ∆(Fn) = n then χ′L(Wn) ≥ n and χ′L(Fn) ≥ n. Now, construct an edge
n-coloring α of Wn (as well as of Fn) as follows.

α(e) =

{
i, if e = cvi,
i+ 2 mod n, if e = vivi+1.

Note that all indices are in mod n. In wheels, the color code of vertex vi under α will have zero
entries in the ith, (i+ 1)th, and (i+ 2)th (in modulo n) positions. In fans, the color code of v1 has
zeros in the 1st and 3rd positions; the color code of vn has zeros in the 1st and the nth positions.
The color codes for other vertices are the same as for wheels. The color code of vertex c has all
zero entries. Therefore all color codes are different for wheels as well as on fans. For small cases,
it is easy to verify that χ′L(F2) = 3, and χ′L(F3) = 4.

In windmills Wm(n), for n ≥ 3, let V (Wm(n)) = {c, v1, v2, . . . , v2n} with a center c and
E(Wm(n)) = {vivi+1| for all odd i ≤ 2n} ∪ {cvi| for all i ≤ 2n}. Since ∆(Wm(n)) = 2n, then
χ′L(Wm(n)) ≥ 2n. Now, construct an edge (2n)-coloring α of Wm(n) as follows.

α(e) =

{
i, if e = cvi,
i+ 2 mod n, if e = vivi+1 and i is odd.

Note that all indices are in mod n. This coloring α is easily verified as an edge-locating coloring.
In books Bn, for n ≥ 3, let V (Bn) = {c1, c2, v1, v2, · · · , v2n−1, v2n} and E(Bn) = {c1c2} ∪

{c1v2i−1, c1v2i, c2v2i−1, c2v2i| 1 ≤ i ≤ n} ∪{v2i−1v2i| 1 ≤ i ≤ n}. Since ∆(Bn) = 2n + 1 and
there are two vertices of degree 2n+ 1, then χ′L(Bn) ≥ 2n+ 2. Now, construct an edge (2n+ 2)-
locating coloring α of Bn as follows.

α(e) =


1, if e ∈ {c1c2, v2i−1v2i| 1 ≤ i ≤ n},
i+ 1 (mod 2n), if e ∈ {c1v2i−1, c2v2i| 1 ≤ i ≤ n},
n+ 2, if e = c1v2,
n+ 2 + i (mod 2n), if e ∈ {c1v2i+2, c2v2i−1| 1 ≤ i ≤ n− 1},
2n+ 2, if e = c2v2n−1.

It is easy to verify that this coloring α is an edge-locating coloring.

Theorem 4.3. Let G be a connected graph and H = G+K1. Then we have

(i) If G is graph of order 2n and ∆(G) ≤ 2n − 2, then χ′L(H) ≤ 2n. Furthermore, χ′L(H) =
2n+ 1 if and only if G has at least one vertex of degree 2n− 1,

(ii) If G is a graph of order 2n + 1 and ∆(G) ≤ 2n − 1, then χ′L(H) ≤ 2n + 2, and equality
holds if G has at least one vertex of degree 2n

Proof. (i). Let |V (G)| = 2n. If ∆(G) ≤ 2n − 2, then G ⊆ K2n \ Mn. From Theorem 3.4
χ′L(K2n \Mn) = 2n and then χ′L(G) ≤ 2n. Now we have, H ⊆ K2n+1 \Mn and from Theorem
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3.3 χ′L(K2n+1 \Mn) = 2n and then χ′L(H) ≤ 2n.
Now suppose that G has at least one vertex of degree 2n − 1. Then H has at least two vertices of
degree 2n, and hence χ′L(H) ≥ 2n + 1. On the other hand, H ⊆ K2n+1 \Mk for k ≤ n − 1. By
Theorem 3.3, χ′L(K2n+1 \Mk) = 2n+1, and thus χ′L(H) ≤ 2n+1. Therefore, the equality holds.
Conversely, suppose that the equality holds and, in contradiction, G has no vertex of degree 2n−1,
which means that ∆(G) ≤ 2n − 2. From the first part of the proof, since the order of G is 2n,
hence χ′L(H) ≤ 2n, that is a contradiction.

(ii). Let |V (G)| = 2n + 1. If ∆(G) ≤ 2n − 1, then G ⊆ K2n+1 \Mn ∪Mk where k ≥ 1.
From Theorem 3.3, χ′L(K2n+1 \Mn ∪Mk) ≤ 2n, and then χ′L(G) ≤ 2n. In this case, H + K1 is
a connected graph of order 2n + 2, with exactly one vertex of maximum degree ∆(H) = 2n + 1.
Thus we have H ⊆ K2n+2 \Mn ∪Mk and from Theorem 3.4 χ′L(K2n+2 \Mn ∪Mk) ≤ 2n + 2
and then χ′L(H) ≤ 2n+ 2.
Now suppose that G has at least one vertex of degree 2n. Then H has at least two vertices of
degree 2n+ 1 and hence χ′L(H) ≥ 2n+ 2. On the other hand, H ⊆ K2n+2 \Mn. By Theorem 3.4
χ′L(K2n+2 \Mn) ≤ 2n+ 2, and thus χ′L(H) ≤ 2n+ 2. Therefore, the equality holds.

5. Trees

Theorem 5.1. For any double star Sp,q, χ′L(Sp,q) =

{
p+ 1, if p > q

p+ 2, if p = q.
.

Proof. LetG = Sp,q, where p > q, with support vertices v, u of degrees p+1, q+1 and end vertices
v1, . . . , vp, u1, . . . , uq respectively. Then, by König’s Theorem [13, Theorem 10.8], χ′(G) = p+ 1
and hence χ′L(Sp,q) ≥ p + 1. On the other hand, if we assign color i to vvi and uui, and assign
color p + 1 to the vertex vu, then cπ(vi) = (1, 1, . . . , d(vi, Ci) = 0, 1, . . . , 1) for 1 ≤ i ≤ p,
cπ(v) = (0, 0, . . . , 0), cπ(u) = (0, 0, . . . , 0, d(u,Cq+1) = 1, . . . , d(u,Cp) = 1, d(u,Cp+1) = 0),
and cπ(uj) = (1, 1, . . . , d(uj, Cj) = 0, 1, . . . , d(uj, Cq) = 1, d(uj, Cq+1) = 2, . . . , d(uj, Cp) =
2, d(uj, Cp+1) = 1) for 1 ≤ j ≤ q. Therefore χ′L(Sp,q) = p+ 1.

Let p = q. Then χ′(Sp,q) = p+ 1, and edges color i for vvi and uui 1 ≤ i ≤ p and color p+ 1
for vu. In this case, cπ(v) = (0, 0, . . . , 0) = cπ(u). Now by changing the color edge uu1 from 1
to p + 2. Then using above method, it can be seen that all vertices have distinct edge color codes.
Therefore, χ′L(Sp,q) = p+ 2.

In general we have,

Theorem 5.2. Let n ≥ 4. There exists a tree T of size m having edge-locating-chromatic number
k if and only if k ∈ {3, 4, . . . ,m− 1,m}.

Proof. For k = 3, consider T = Pm+1 by Theorem 2.1. For k ≥ 4, let T be a tree with vertex set
{v1, v2, . . . , vm+1} where vertex v2 is of degree k, vertices v1, v3, v4, . . . , vk, vm+1 of degree 1, and
other vertices are of degree 2. Now if we assign i to edge v2vi, (1 ≤ i 6= 2 ≤ k + 1), assign 2 and
1 to other edges alternately, then for this T , it is obvious to see that χ′L(T ) = k.
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Theorem 5.3. Let T be a tree with k support vertices v1, v2, · · · , vk, and `i leaves adjacent to vi,
where `1 ≤ `2 ≤ · · · ≤ `k. Let ei,j be the pendant edges corresponding to the support vertex vi
where 1 ≤ j ≤ `i and T ′ be the induced subgraph of non-leaves of T . If ∆(T ) < m =

∑k
i=1 `i.

Then χ′L(T ) ≤ ∆(T ′) + `k + k − 1. Equality holds if and only if T = Sp,p.

Proof. We can consider an edge proper ∆(T ′)-coloring of T ′, with colors 1, 2, . . . ,∆(T ′). Also,
color the `k pendant edges with distinct colors ∆(T ′) + 1,∆(T ′) + 2, . . . ,∆(T ′) + `k. Now assign
colors ∆(T ′)+1,∆(T ′)+2, . . . ,∆(T ′)+ `i−1,∆(T ′)+ `k + i to the edges ei,1, · · · , ei,`i if `i ≥ 2
or assign color ∆(T ′) + `k + i to edge ei,`i if `i = 1. Now, let v and u be two arbitrary vertices of
T . Let Pv−u denote the path between v and u, and P be a maximal path that contains Pv−u. There
exist two leaves e and e′ on P such that the colors of e and e′ are distinct and distinguish vertices
v and u.

For equality, if T = Sp,p (p ≥ 2) Theorem 5.1 deduces the result.
Conversely, let χ′L(T ) = ∆(T ′) + `k + k − 1 and T 6= Sp,p. If T = Sp,q, where p ≥ q + 1,
then Theorem 5.1 shows that χ′L(T ) = p + 1 6= 1 + p + 1 = p + 2, a contradiction. Hence
T has at least k ≥ 3 support vertices, ∆(T ′) ≥ 2 and T ′ has at least two leaves, say vr, vt, and
one non leaf, say vi. Suppose vk is not a leaf in T ′, since `r ≤ `k, then the pendant edges er,js
corresponding to vr can be colored with the colors of the pendant edges ek,js corresponding to vk.
Suppose vk is a leaf in T ′, then the pendant edges ei,js corresponding to vi can be colored with
the colors of the pendant edges ek,js corresponding to vk. In the two above cases, other pendant
edges corresponding to other support vertices can be colored by the method in the first part of the
theorem. Therefore χ′L(T ) ≤ ∆(T ′) + `k + k − 2. This contradiction presents T = Sp,p.

Theorem 5.4. Let T be a tree with m ≥ 3 leaves. If ∆(T ) = m then χ′L(T ) = m. If ∆(T ) < m
then χ′L(T ) ≤ ∆(T ′) +m, where T ′ is the induced subgraph of non-pendant vertices of T .

Proof. Assume first that ∆(T ) = m. Let N(v) = {w1, w2, . . . , wm}, for a vertex v of T . Let
v1u1, v2u2, . . . , vmum be the leaves of T such that vi’s are pendant vertices, for 1 ≤ i ≤ m. For
any i, 1 ≤ i ≤ m, suppose that Pi is the v − vi path that contains vertex wi, 1 ≤ i ≤ m. Since
∆(T ) = m, V (Pi) ∩ V (Pj) = {v}, for any i and j, 1 ≤ i, j ≤ m. Consider a coloring of T in
such a way that for any i, 1 ≤ i ≤ m − 1, the edges of Pi (Pm) are colored by colors i (m) and
i+ 1 (1), alternately, such that edges vwi are colored by i, for 1 ≤ i ≤ m. Any non-pendant vertex
of Pi (Pm) has a distance zero from Ci (Cm) and Ci+1 (C1), and distance more than zero from other
colors. Hence, each non-pendant vertex of T is distinguished by other vertices. On the other hand,
vi (vm) has a distance zero from one of the color classes Ci (Cm) and Ci+1 (C1), and distance one
from another class, for any i, 1 ≤ i ≤ m, that |V (Pi)| ≥ 3. There exist only some elements of
N(v) \ V (Pi) (N(v) \ V (Pm)) that can have the same coordinates according to the color classes
Ci (Cm) and Ci+1 (C1). Let z ∈ N(v) ∩ V (Pi). If |V (Pi)| ≥ 3, then degree z is 2 and the result
is obtained. If z is a pendant vertex, then since m ≥ 3, there exists a color class Cj such that the
distance of z from Cj is one and the distance of vi from Cj is more than one. Therefore, all vertices
of T have a different edge color code, and the result is available.

For the other implication, by [13, Theorem 10.8], we can consider an edge proper ∆(T ′)-
coloring of T ′, with colors 1, 2, . . . ,∆(T ′). Also, color the leaves by distinct colors ∆(T ′) +
1,∆(T ′) + 2, . . . ,∆(T ′) +m. Now, let v and u be two arbitrary vertices of T . Let Pv−u denote the
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path between v and u and P be a maximal path that contains Pv−u. There exists two leaves, e and
e′ on P . The colors of e and e′ distinguish vertices v and u, and the proof is completed.

6. Edge metric dimension and distinguishing chromatic index

The minimum size of subset S of edges of graph G that for any two edges e and e′, there exists
f ∈ S such that d(e, f) 6= d(e′, f), is the edge metric dimension of G and denoted by dimE(G).
We say that the set S is an edge basis of G. Actually, the edge metric dimension of a graph G is
the standard metric dimension of the line graph L(G). This concept is introduced and studied by
Nasir et. al. [24]. Also, Kalinowski and Pilśniak introduced the distinguishing chromatic index in
[18], wherein the edge distinguishing coloring is an edge proper coloring such that the only color
preserving automorphism is the trivial automorphism. The distinguishing chromatic index χ′D(G)
of a graph G is the minimum number of colors that admit an edge distinguishing coloring. In this
section, we study some relations between edge-locating coloring and those concepts.

For any subset S of edges of G, let G− S denote the subgraph of G with vertex set V (G) and
edge set E(G) \ S. Let S be an edge basis of G. Consider graph H := G − S and assign colors
1, 2, . . . , χ′(H) to edges H according to a proper edge coloring of H . Also give distinct colors
χ′(H) + 1, χ′(H) + 2, . . . , χ′(H) + |S| to elements of S. Clearly this coloring is an edge-locating
coloring of G. Since χ′(H) ≤ χ′(G), we have the following bound.

χ′(G) ≤ χ′L(G) ≤ χ′(G) + dimE(G). (1)

Clearly, this bound is sharp. For instance, let G = C2n.
Let vu and wx be two edges in graph G and f ∈ Aut(G). We say that f(vu) = wx, if

f(v) = w, and f(u) = x.

Theorem 6.1. Any edge-locating coloring of a graph is an edge distinguishing coloring.

Proof. Let G be a graph with size m and π = (C1, C2, . . . , Cn) be the color classes admitted by
an edge-locating coloring c of G. The result is immediate if n = m. Assume that n < m. For
a contradiction, suppose that c is not an edge distinguishing coloring of G. Thus, there exists an
automorphism f of G that preserves the coloring, and f(ea) = eb for two edges ea and eb in C1.
Let ea = aa′, eb = bb′, f(a) = b and f(a′) = b′. Consider arbitrary color i (1 ≤ i ≤ n) and let
d(a, Ci) = d(a, eai ) and d(b, Ci) = d(b, ebi), for edges eai and ebi with color i. We will have

d(a, eai ) = d(f(a), f(eai )) = d(b, f(eai )) (2)

and

d(b, ebi) = d(f−1(b), f−1(ebi)) = d(a, f−1(ebi)). (3)

Since d(a, Ci) ≤ d(a, f−1(ebi)) and d(b, Ci) ≤ d(b, f(eai )), (2) and (3) imply that d(a, Ci) = d(b, Ci).
This means that cπ(a) = cπ(b), a contradiction.

Corollary 6.1. For any graph G,
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(i) χ′D(G) ≤ χ′L(G).

(ii) χ′D(G) ≤ χ′(G) + dimE(G).

By Theorem 16 [18], the equality of Corollary 6.1 (ii) is achieved if and only if G is a
path graph, C4 or C6. Also, Theorem 16 [18] concludes that χ′D(G) = χ′L(G) = k for k ∈
{∆(G),∆(G) + 1}.

7. Future Research

Several issues regarding this new concept are still unresolved. Here, we will discuss only a few
that arise from our findings. As demonstrated in the previous sections, the edge-locating chromatic
number is associated with various well-known graph concepts. One of them is the edge chromatic
index. Recall that χ′(G) ≤ χ′L(G), for a connected graph G. Classifying connected graphs G
such that χ′(G) = χ′L(G) can be valuable. Also, one can check if the edge chromatic index is
independent of the edge-locating chromatic number. For this purpose, looking for a graph where
the edge chromatic index is m and the edge-locating chromatic number is n, for any integers m
and n that m ≤ n. It appears that such a graph is available. For k ≥ 2, let Tk be the perfect binary
tree with root a, such that deg(a) = 2, other non-pendant vertices have degree 3, and all pendant
vertices have distance k from a. By König’s Theorem [13, Theorem 10.8], the chromatic index of
Tk is 3, for any k ≥ 2. But as k increases, the edge-locating chromatic number of Tk also increases.
If we find the edge-locating chromatic number of Tk and let G be the graph obtained by joining the
rote of Tk to a star graph, the question is answered. We end the paper with the following problems.

Problem 1. Prove or disprove that for any connected graph G of order n, χ′L(G) ≤ χ′L(Kn).

Problem 2. Characterize the class Ψ of connected graphs such thatG ∈ Ψ if and only if χ′D(G) =
χ′L(G) = k for k ∈ {∆(G),∆(G) + 1}.

Problem 3. For a connected graph G, is there a significant relationship between χL(G) and
χ′L(G)?
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[18] R. Kalinowski and M. Pilśniak, Distinguishing graphs by edge colourings, European J.
Combin. 45 (2015), 124-131.

72



www.ejgta.org

Edge-locating coloring of graphs | M. Korivand et al.
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