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Abstract

Let ¢ and ¢ be positive integers that satisfy ("}') < ¢ < (*}?) and let G be a simple and finite graph
of size ¢q. G is said to have ascending subgraph decomposition (ASD) if G can be decomposed
into ¢ subgraphs Hy, Ho, ..., H; without isolated vertices such that H; is isomorphic to a proper
subgraph of H;,, for 1 <i <t — 1, where {E(H,),..., E(H;)} is a partition of E(G). A graph
that admits an ascending subgraph decomposition is called an ASD graph.

In this paper, we introduce a new type of magic labeling based on the notion of ASD. Let G be
an ASD graphand f : V(G) U E(G) — {1,2,...,|V(G)| + |E(G)|} be a bijection. The weight
of a subgraph H; (1 < i < n)isw(H;) = 3 ey, f(V) + 2ccpu, f(€). If the weight of each
ascending subgraph is constant, say w(H;) = k, V1 < i < t, then f is called an ASD-magic
labeling of GG and G is called an ASD-magic graph. We present general properties of ASD-magic
graphs and characterize certain classes of them.
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1. Introduction

Let G and H be simple and finite graphs. If each edge of G belongs to at least one subgraph
isomorphic to H, then G admits a H-covering. In 2005, Gutiérrez and Lladé introduced the
H-magic labeling or the H-magic covering of a graph G. A bijection f : V(G) U E(G) —
{1,2,...,|V(G)| + |E(G)|} is called a H-magic labeling of G if there exists an integer k such that
for any subgraph H'(V"’, E') of G which is isomorphic to H, the weight w(H) = " .. f(v) +
Y ccr f(€) is equal to k. A graph G is said to be H-magic if it admits a H-magic labeling.
Additionally, if f(V') = {1,2,...,|V|}, then G is called H-supermagic [5].

On the other hand, if each edge of GG belongs to exactly one subgraph isomorphic to H, then
G is said to admit a H-decomposition. Formally, let H = {H;,i = 1,2,3,...,t} be a collection
of ¢ subgraphs of G. If H; = H;, i # j, E(H;) N E(H;) = 0, and J._, H; = G, then G is
decomposable on H or G admits a H-decomposition [3]. Inayah et. al. in [6] then defined a
H-magic decomposition of a graph G as a bijection f : V(G) U E(G) — {0,1,2,...,|V(G)| +
|E(G)|} such that the weights of all subgraphs is constant. Recent results on H-magic covering and
decomposition include F,-covering of graphs [10] and K,-decomposition of some block designs
[7]. For more results, refer to Gallian’s survey [4].

Note that the two previous magic labelings require that the weights be counted in subgraphs that

are isomorphic to a certain graph. However, in 2023, Ashari et al. considered weights in subgraphs
isomorphic to two nonisomorphic subgraphs when they introduced the (F, H)-simultaneously-
magic labelings of graphs [2]. Here, we introduce a magic labeling in which all subgraphs are not
isomorphic to each other. This labeling is based on a type of graph decomposition introduced in
1987 by Alavi et. al. [1].
Definition 1.1. [/] Let t and q be two positive integers satisfying (t;rl) <gqg< (t;Q). Let G be
a simple and finite graph of size q. G admits an ascending subgraph decomposition if G can be
decomposed into t subgraphs H, Ho, . .., H; without isolated vertices such that H; is isomorphic
to a proper subgraph of H;,1 for 1 < i <t — 1. In this case, G is called an ASD graph and
Hy, H,, ..., Hy is the ascending subgraphs of G.

It was conjectured that every graph of positive size has an ascending subgraph decomposition
[1]. Until today, the conjecture remains open, although many families of graphs have been showed
to be ASD. Refer to Liang and Fu survey [8] for some results on ASD graphs.

The definition of ascending subgraph decomposition motivates us to define a new type of magic
labeling of a graph GG admitting an ascending subgraph decomposition, where the weights are
counted over the ascending subgraphs.

Definition 1.2. Let G be an ASD graph with H = {H,, Ha, ..., H;} is a collection of t ascending
subgraphs of G. Let f be a bijection which maps V (G) U E(G) onto {1,2, ..., |V(G)| + |E(G)|}.
If there exists a constant k such that the weight of each subgraph is constant, that is w(H;) = k
forevery 1 <1 <t, then f is called an ASD-magic labeling of G.

If a graph GG admits a collection of ascending subgraphs corresponding to an ASD-magic la-
beling of G, then G is ASD-magic.
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In this paper, we characterize some classes of graphs admitting ASD-magic labeling, which
include stars (Section 3), paths (Section 4), and cycles (Section 5). Some general properties of
ASD-magic graphs are needed in characterizing the previously mentioned classes of graphs and
are presented in Section 2.

2. General Properties of ASD-Magic Graphs
We start by observing the size of the smallest subgraph of an ASD graph.

Observation 2.1. If G is an ASD graph and H;,1 < i < t are ascending subgraphs of G, then the
size of H is one or two.

Proof. Tt is clear that |[E(H;)| < |E(H;)| for1 < ¢ < j < t. Assume that ]E(H1)|
|E(Hiy1)| = |E(H;)| + 1. Since we have t ascending subgraphs, then ¢ = >_._ |E(H, )| >

St (i+2) = (tf’) > (*+?), a contradiction. It implies that | E(H;)| < 3. O

In general, the decomposition of a graph in an ascending order is not unique. This is beneficial
in the sense that in proving a graph is ASD-magic, there exist alternative decompositions to be
labeled. On the other hand, this is also a drawback in verifying that a graph is not ASD-magic.
To avoid checking all possible ASDs in proving that a graph is not ASD-magic, we define the
following notions.

Let f: V(G)UE(G) — 1,2,...,|[V(G)| + | E(G)| be a bijection. The maximum weight of the
smallest subgraph, w;,...(H), is the weight when the vertex and edge sets of H; are labeled with
the largest labels, that is

|V (H) |+ E(H )|

Wnao(H1) = Y. (VG| +|EG) —i+1). (1)

=1

Let $) be the collection of all ascending subgraph decompositions of G. The minimum number
of vertices that belong to more than one subgraph over all possibilities of ascending subgraph

decompositions is
¢ = min {Z!V(Hi) n V(Hj)} )
i#j
Next, let C' = {¢; | i = 1,2, ..., c} be the set of intersection vertices with minimum cardinality.
We define the smallest average weight of G by considering the label set of C' as

V(&) |+ E(G)]

GRS S D DRSS S UEIOIB 0

i=1

where d; is the number of subgraphs containing the intersection vertices c;.
The previously defined weight notions lead to the following necessary condition for an ASD-
magic graph.
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Lemma 2.1. Let G be an ASD graph and H, be the smallest ascending subgraph of G. If G admits
an ASD-magic labeling, then W, (H1) > Win(G).

Proof. For the contrary, Suppose Wy,qq(H1) < Wpin(G). Then, there exists H; where w(H;) #
w(H;), a contradiction. O

3. ASD-Magic Labelings for Stars

An ascending subgraph decomposition of stars was studied by Ma et. al. [9], where they
proved that a star forest is an ASD graph.

Theorem 3.1. [9] Let G be a star forest of size (tgl) where each component has at least t edges.
Then G admits an ascending subgraph decomposition where all subgraphs are stars.

Theorem 3.2. A star K, is ASD-magic if and only if n = 2, 3,4,6,10, 15.

Proof. Let {H; | i =1,2,...,t} be a collection of ¢ ascending subgraphs of K ,_;. It is straight-
forward that any subgraph of a star is also a star. To prove that K, ,_; admits an ASD-magic
labeling, we have two cases to verify [y = P5 and H; = Ps. Since the size of K ,_; satisfies

(tgl) <n-—1< (tf), then

—14++/8n=T7 for C 1
t:{L—Q |, for Case 1, @)

[=2E1E8] - for Case 2.

Casel. H, = P,
In this case, H; needs three labels. Using the three largest label {2n — 1,2n — 2,2n — 3}, we
have w,,q.(H,) = 6n — 6. Moreover, since K ,_; has one center vertex which appears in each
ascending subgraph, the smallest average weight of ¢ subgraph is

2n—1
Winin(K1n-1) = n [121 i+ (t—1)(2n — 3)] = +2n — 3.
Applying Lemma 2.1 gives an inequality
2n* —3n+3
6n—-6 > %‘FQTL—:‘} (5)

which has solution when n € [0.875,1)U{2}U[4, 4.5]. Since n must be an integer, thenn € {2,4}.
So, in this case we conclude that if K ,,_; admits an ASD-magic labeling, then n = 2, 4.

Case2. Hi = P3
In this case, since H; = P; has 2 edges, thenn — 1 = (";2) — 1, and it needs five labels. The five
largest labels for H; is {2n — 1,2n — 2,2n — 3,2n — 4, 2n — 5}, such that w;,,..(H,) = 10n — 15
and

2n—1

o 1 . 202 —3n+5
wmin(Kl,n71> = ; Z 1+ (t - 1)(2n - 5) = 5
=1

+ 2n — 5.
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Applying Lemma 2.1, we have an inequality

M2 —3n+5
10n—152%+2n—5 6)

that has solution when n € [2.5, 3] U (3, 20.13) U (21, 24.15) U (28, 28.16). This implies that a
star K ,,—; is ASD-magic only if n = 3,6, 10, 15.
For the sufficiency, Figure 1 provides the ASD-magic labelings of a star K ,,_; of order n =

2,3,4,6,10,15. [
Kl’li KLQC Kl_’g: K1,5:

3 1 2 4 01 02 6 Ol 93 04
2 \/[ ; \3 5 NI\ |5/7/8
1 3 6 10

k=6 k=15 k=17 k=38

K
19 10 K1,143

9 Q5 910 p11 ©13

415 17 A8
| s 2 12

12 9

1 9 03 lc 03
11

16 1 15 04 26 4

6 05
k=76 k=126

Figure 1. ASD-magic labelings of the star K1 ,,_1

4. ASD-Magic Labelings for Paths

Theorem 4.1. A path P,, admits an ASD-magic labeling if and only ifn = 1,2, 3,4,6,7, 10, 15, 21, 28,
and 36.

Proof. Let {H; |i=1,2...,t} be a collection of ¢ ascending subgraphs of P,. It is easy to see that
P, is ASD-magic for n = 1,2, 3, but for n > 4 we have the following seven cases based on H;
and whether it contains an end vertex:

H; = P, contains an end vertex;
H,; & P, does not contain an end vertex;
H, = P; contains an end vertex;
3
H; = P5 does not contain an end vertex;
H; = 2P, contains two end vertices;
H; = 2P, does not contain an end vertex; and

AR
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7. Hy = 2P, contains exactly one end vertex.

From formula (1), we count the maximum weight of H; for each case.

6n — 6, for Cases 1 and 2,
Wpaz(H1) = ¢ 10n — 15, for Cases 3 and 4, (7
12n — 21, for Cases 5, 6 and 7.

Since the size of P, satisfies ("}') <n —1 < ("?),

t =

{ | =BT | for Cases 1 and 2, 3)

(L VQHSW for Cases 3, 4, 5, 6, and 7.

Y

Case 1. H; & P, contains an end vertex
Let ¢1, qo, ..., ¢: be a sequence of size of H; for 1 < i <t and ¢ = 1. To minimize the number of
intersection vertices, H; = P, Vi = 1,2,...,t, and so ¢ = ¢t — 1. To find the smallest average
weight, the label set of C' must contain {1,2,...,t — 2, 2n — 3}, where 2n — 3 is a label of a vertex
of H,. Hence, the minimum average weight for P, is

t—2

2n—1
— 1 : . mi4n—2 t—3
Winin(Pn) = ;[E Z+z§:02+2n_3 = . +

i=1

By Lemma 2.1,

2n’+n—2 -3

t + 2
which gives the integer solution n € {4,7}. The ASD-magic labelings of P, and P; can be seen
in Figure 2.

6n —6 >

Py: P
4 O ) O O 7 O ) O O )
7 5 4 1 2 3 6 1311109 6 8 1125 4 3 2 7
k=16 k=34

Figure 2. ASD-magic labelings of paths in Case 1

Case 2 H; = P, does not contain an end vertex

Let g1, qo, ..., q¢: be a sequence of the size of H; for 1 < ¢ <t and ¢; = 1. To minimize the number
of intersection vertices, we divide the order set into two subcases: when4 < n < 6andn > 7.
For n = 4, the ascending subgraphs of P, are H, = P, and Hy, = 2P,. For n = 5, the ascending
subgraphs of P; are H; = P, and Hy = P, U P5. While for n = 6, the ascending subgraphs of Fj
are 1 = P, and Hy = 2P or Hy = P, and Hy = P, U P,. Therefore, c = 2 whenn = 4,5, 6.
Next, for each n = 4, 5,, and 6, we apply the largest labels for H;, the smallest labels for H5, and
the two smallest labels of H; are labels for the two intersection vertices. Then we derive

18, ifn =4,
Wnae(Hy) = { 24, ifn =5, )
30, ifn =6.
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and
19.5, ifn =4,
Wnin(Pn) = 30, ifn=25, (10)
42.5, ifn =6.

From (9) and (10), we see that wy,..(H1) < Win(P,) for n = 4,5, 6, which means P,, Ps, and
Fs do not admit an ASD-magic labeling.

Subsequently, the ascending subgraphs for P,,n > 7 are H; = P, 1, which implies ¢ =
t — 1. Since two of elements in C' are two vertices in H;, then the label set for C' must contain
{1,2,...,t — 3,2n — 2,2n — 3} and the minimum average weight for P, is

2n—1 t—3

» 1 : : 2% +3n—2 t—5
Winin(Py) > n iglz+i§0@+(2n—2)+(2n—3) = . + 5
By Lemma 2.1,
2n?+3n—2 t—5
6n—6 > ”*}” 22

with solution in n € [0.875,0.999), or no integer solution.

Case 3. H; = P; contains an end vertex
Let ¢1, g9, ..., g: be a sequence of the size of subgraph H; for 1 < i <t and ¢; = 2. To minimize
the number of intersection vertices, H; = P, ;1 Vi = 1,2,...,¢, and so ¢ = t — 1. Consider that
one element of C'is a vertex of Hy, then the labels for C' must contain {1,2,...,t —2,2n — 5} and
the minimum average weight for P, is

2n—1 t—2

= 1 : : Mm2Z+n—4 t—3
Wmin () 2 5 ;_12+§02+2n—5 = . +
By Lemma 2.1,
2n? —4 t—
10n—15> -+ " 3

t * 2
with solution in n € [2,2.5] U (3,27.79] U (28,32.74] U (36,37.69]. Using the fact that ¢ =
("1?) — 1 = "3 and n > 6, if P, admits an ASD-magic labeling, then n = 6,10, 15, 21. The
ASD-magic labelings on paths in this case can be seen in Figure 3.

Case 4. H; = P; does not contain an end vertex
Let q1, g2, ..., q: be a sequence of size of H; for 1 < ¢ < ¢t and ¢ = 2. To minimize the number
of intersection vertices, we separate into two subcases: ¢ = 2 and ¢ > 3. Whent = 2 (n = 6), P
admits an ASD-magic labeling as demonstrated in the Figure 4.

Subsequently, when ¢ > 3 the ascending subgraphs of P, are H; = P, 1, Vi = 1,2,...,t, and
so ¢ = t — 1. The label set for C' must contain {1,2,....,t — 3,2n — 5,2n — 4} where two of its
elements are the labels for two vertices in H;. Thus,

2n—1 t—3

1 . . 2n2+3n—-6 t—5

Tin(Pr) = 5 S > it @n-5)+(2n—4)| =" t” 5
i=1 i=1
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Ps: Py 191817 51116 6 1410
(O e O O O O O (@ O O O O
11107 421653098 A
k=34 . |
i 237151281309
k=170
Pis: 2928271225242221 6 Pyt 414039363735322827 3 313026
@ O O O O (@ O O O O
5 3111315171820 19" 141516171921292223 7 9 18 24>
O O O O O O
26031614109 8 7 2 1 453383433201211108 6 5 2 1
O O O O O O O
= 121 T — 103

Figure 3. ASD-magic labelings of paths in Case 3

And by Lemma 2.1,
2n?+3n—6 t—5

t * 2
with solution n € (3,26.88] U (28, 31.84] U (36, 36.79]. Using the fact that ¢ = ("1?) — 1 = {2
and n > 6, if a path with ¢ > 3 admits an ASD-magic labeling, then its order is n = 6, 10, 15, and
21. The ASD-magic labelings of P, in Case 4 are shown in Figure 4.

10n — 15 >

P: Py 141211109 1 181916
O O s S O O O O O O
1 20811675104 3 s
k= 41 .
2’346 7 8131517
k=175
Pis: 24222119 7 3 292827 Py: 38363533 5 1 41403932373431
O O O O O O
116 812131517182!° 621222324272829 4 8 9 10460
O O O O O
26032014109 5 4 2 1 3)252019181716151413 1211 7
O O O O O O O
=125 e — 189

Figure 4. ASD-magic labelings of paths in Case 4

Case 5. H; = 2P, contains two end vertices
The minimal number of intersection vertices can be derived utilizing the ascending subgraphs
of P,_; in Case 1. Here we add one more intersection vertex while preserving the number of
ascending subgraphs. Thus, ¢ = ¢ that includes two vertices of H;. The label set for C' contains
{1,2,...,t — 2,2n — 6,2n — 5}, thus we obtain

-1 =2
_ 1 : : 2n* +3n—10 t—3
Winin (Pn) > 7 izlz+izlz+(2n—6)+(2n—5) = . + 5
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Due to (7), since H; = 2P,, then wy,,,(H1) = 12n — 21. Using Lemma 2.1, solution of
Winaz(H) > Winin(P,) or 120 — 21 > 207430210 4 123 4y ¢ [2,2.5] U (3,44.5] U (45, 50.46] U
(55, 56.41]. Using the fact that ¢ = (*1?) =1 = ") and n > 6, if a path P, admits an ASD-magic
labeling, then its order is n = 6, 10, 15,21, 28, and 36. Conversely, the ASD-magic labelings of

the paths in Case 5 are shown in Figure 5.

Ps: Po: 6165108 131415 1
O () O O O ) O ) O O
1168912751043 ;
O
ke = 42 9182129117174
k= 66
Pis: 2326 5 1824211525 4 Py: 3839113736352431 4 6 172825
O ) O O O ) O O
61632019221714I11 2293423222120 7 16 1 3 3230
O O O O
7 9 10271213 1 2829 2 819105 1213141518 9 4041
= 112 i — 178

Pys: 5554315150494837 4 46454443 DPse: 7170605544 6168 6635574751 54
O OO O

O O
9 3 728333435363941 5 1 A‘L“Z 3 40204239 5245465048 4 49 40>
O O O O O O O O
32:;29272624232221192 6 4738 244)31335334 5 56373843 2 2127
0 6

50253205 81011121314151617 1

2816 1 4117 8 183658226429 1

6

k=270 656 7259 101112131415625967
O e Qe e OO O

k=389

Figure 5. ASD-magic labelings of paths in Case 5

Case 6. H; = 2P, does not contain an end vertex
Let q1, g2, ..., q; be a sequence of size of H; for 1 < ¢ < ¢t and ¢; = 2. To minimize the number
of intersection vertices, the ascending subgraphs of the paths for ¢ = 2,3, and 4 are as follows.
For ¢t = 2 or n = 6, the ascending subgraphs of F; are H; = 2P, and H; = 3F,. Fort = 3 or
n = 10, the ascending subgraphs of Py are H, = 2P,, Hy = P, and Hs = P, U P,. Fort > 4,
the ascending subgraphs of P, are H; = 2P, and for i > 2, H; = P,,. Hence

4, ift=2,34
¢, ife>5.

Fort = 2,3 or 4 (n = 6,10, 15), to determine w,,;, (P,), the label set of all intersection vertices
should contain the smallest labels of H, that is {2n — 6,2n — 5,2n — 4,2n — 3}. Consider that
those labels are counted twice, so

20+ 7n — 18

1
_min Pn 2 o

Zni—l—(2n—6)—|—(2n—5)—|—(2n—4)+(2n—3)
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Combining Formula (7) and Lemma 2.1, the solution of wy,e.(H1) > Winin(P,) or 12n — 21 >
4TS gy € [1,1.5) U (3, 42.74] U (45, 48.74]. Using the fact that ¢ = (%) — 1 = {2 and
n > 6, if a path P,, admits an ASD-magic labeling, then its order is n = 6, 10, and 15.

Furthermore, for ¢t > 5, the label set for C contains {1,2, ...,t—5,2n—6,2n—>5,2n—4,2n—3}
which includes the four smallest labels of H;. Therefore,

2n—1 t—5
_ 1 . .
Toin(Pa) 2 5 ;z+;z+(2n—6)+(2n—5)+(2n—4)+(2n—3)
B 2n2+7n—8+t—9
B t 2

Solution of the inequality wyaq (H1) > Woin(Fy) or 12n—21 > M + % isn € (3,42.67|U
(45,48.64]. Using the fact that ¢ = ("5%) — 1 = % and n > 6, if t > 5, if P, admits an ASD-
magic labeling, then its order is n = 6,10, 15,21, 28,36. On the other hand, the ASD-magic

labelings on paths in Case 6 can be seen in Figure 6.

P: P: 191211107 8 17 4 16
O O O O O O O O O
249763511108 1 ig
O
k=48 132351 6141815
k=84
Pis: 29 8 21221018262427 Poi: 3534333230 1 4115399 2 2026
O O O O O O

259 231112131415 I 1019131829 7 2122373638231425

28176 5 4 2201 161141211401782765432831
O O O O O O O

k=134 k =206

Pyt 504847464311544053 8 4241 6  Dse: 208646036260160717069 9 8 3756

O O O
29303132 3 3527 1 4951522038 4546474849 1041 12666568531455
2046282534232221371912 1418 10 44] 4220403938573635343332 2
332244555 7169 454413 1E15 3018 59 171922232425672726%921
O (e e O Qe Qe
J = 299 161514135251501158 7 6 5 4 3 3143
O O O k_O409 O O O O

Figure 6. ASD-magic labelings of paths in Case 6

Case 7. H, = 2P, contains exactly one end vertex
The minimal number of intersection vertices can be derived utilizing the ascending subgraphs
for P,_; in Case 2. Here we add one more intersection vertex while preserving the number of
ascending subgraphs. Thus, ¢ = ¢ that includes three vertices of H;. Now, consider two subcases
fort =2andt > 3. Whent = 2 or n = 6, P admits an ASD-magic labeling as illustrated in
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Figure 7. For t > 3 or n > 10, the label set for all the intersection vertices contains {1,2,...,t —

3,2n —6,2n — 5,2n — 4, 2n — 3} and we obtain
2n—1 t—3
_ 1 . . m?P+5m—12 t-5

By Lemma 2.1, the solution of the inequality w,,qz(H1) > Winin(P,) or 12n—21 > Wiﬂjttj

isn € (3,43.57) U (45,49.53] U (55, 55.49]. Using the fact that ¢ = ("3?) — 1 = & and n > 6,
if a path in case 7 admits an ASD-magic labeling, then n = 6, 10, 15, 21, 28, and 36. To complete

the proof, we present Figure 7 to illustrate the ASD-magic labelings of all paths in Case 7. [

Ps: Pro: 1491971 131 2 18

O O Qe O OOy

579643210118 1 5

k=44 1341561781116
=81

Pis: 62027 523 4 212428 Pyr: 401839 4 3433 32283836373521

OO O O

12111315 3 161719

11 221814710829 9
T — 132

Past 55545348464542 9 5231504341 DPsg:
OO OO

2 2227293536394437101230 8

333228262524211918171415

34567 8111316204047 1

k=295

646059524139141312108 7 5
O O O O O O

;25 1413161017 19 12312422 23 516

Wi27209 8 7 629253 2 130
Qe Qe Qe Qe OO
k =208

7068696763 6261 167165665857

24444546474849513015 185415‘

42403837363534333219 9 31

31

107 6 112021 22252627282943%53
4
o 0

k =409

Figure 7. ASD-magic labelings of paths in Case 7

5. ASD-Magic Labelings for Cycles

In this last section, we characterize ASD-magic cycles.

Theorem 5.1. Cycle C,, is ASD-magic if and only if n =

Proof. The three cases to be considered are

1. H1QJP2;
2. Hi = Ps;and
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3. H =2P;.

As a consequence, we have

6n — 3, for Case 1,
Wpin(H1) = ¢ 10n — 10, for Case 2,
12n — 15, for Case 3.

Since the size of C,, satisfy (Hl) <n< (t+2) we obtain

. | =TSR | for Case 1,
[=3/08817 - for Cases 2 and 3.

Next, we shall count w,,;,(C,,) for each case so that we can apply Lemma 2.1.

Casel. Hi = B,
The minimal number of intersection vertices can be derived utilizing the ascending subgraphs as
in Case 1 of the proof of Theorem 4.1 by joining the two ends of the path. Thus, we obtain ¢ = t.
To obtain the smallest average weight of a cycle, the set of labels for the intersection vertices must
contain {1,2,...,¢ — 2,2n — 2,2n — 1}. This set involves two labels of H;, so we have

2 on—2 t—-3
Zz—i—Zz—i— 2n—2)+(2n—-1)| = " +tn + 5

wm'm n -

1
t

By Lemma 2.1, the integer solution for w,,a.(H1) > Wyin(Cy) or 6n — 3 > %Qt‘/ﬂ + % is
n = 3. Therefore, the only cycle admitting an ASD-magic labeling in case 1 is C's. Moreover, the
ASD-magic labeling of Cf is given in Figure 8.

Cs: 4 H =P
6 3 Hy= Py
5 1 w(H) =w(H) =15

Figure 8. ASD-magic labeling of C3

Case2. Hi = P3
The minimal number of intersection vertices can be derived utilizing the ascending subgraphs as
in Case 3 of the proof of Theorem 4.1 by joining the two ends of the path. Thus, we get ¢ = t.
Subsequently, to obtain the smallest average weight of a cycle, the set of labels for the intersection
vertices must contain {1,2, ....,t — 2,2n — 4, 2n — 3}, which include two labels of H;: 2n — 4 and
2n — 3. Hence,

= 1 2n* +5n—6 t—3
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By Lemma 2.1 the solution for wy,q,.(H1) > Wpin(Cy) or 10n — 10 > w + % isn €
o) U D) U . U .2). Using the fact that ¢ = —1 = -~ an

(1,1.5) U (2,26.3) U (27,31.25) U (35,36.2). Using the fact that ¢ = (*1%) — 1 = "2 and

n > 5, if a cycle admits an ASD-magic labeling, then the order is n = 5,9, 14, 20. Moreover, the

ASD-magic labelings of (), in Case 2 are given in Figure 9.

Cs: 6 10 7 Co: 161817 1 9 1012
)

4 5
g 24
1 14 13
O O
957373 k=35 B 7 62328 k=10
Cit 282726172423222113 9 10 Can: 363938373440353320
2 25 1 19
232527283132
4 18 5 3
5 16 6] 4] 302622211815
78 116222505
6 7 8 11121920 1 3 1415 g 13 k=181
L 199 ol 1214172420162 | 3

Figure 9. ASD-magic labelings of cycles in Case 2

Case3. H, = 2P,
The minimal number of intersection vertices can be derived utilizing the ascending subgraphs as
in Cases 6 or 7 of the proof of Theorem 4.1. Thus, for ¢ = 2 we have ¢ = 2 and for ¢ > 3 we have
c=t+1. Fort =2orn =25, C5 admits an ASD-magic labeling as shown in the Figure 10. For
t > 3, to find the smallest average weight of cycle, the set of labels for the intersection vertices
must contain {1,2,....t — 3,2n — 5,2n — 4,2n — 3,2n — 2}, where 2n — 5,2n — 4,2n — 3, and
2n — 2 are labels for four vertices in H;. Hence,

2n t—3
Winin (Cr) > % D i+ i+ (2n=5)+ (2n—4) + (20— 3) + (2n — 2)
=1 =1

2n? +9n — 11 +15—5

t 2
By Lemma 2.1, the solution of inequality w40 (H1) > Wyin(Cy) or 12n — 15 > Mi—"_l?’ + %
isn € [0.5,1] U (2,41.98] U (44, 47.95]. Using the fact that ¢ = (*1?) —1 = ¥ and n > 5, ifa

2 2
cycle C,, admits an ASD-magic labeling then its order is n = 5,9, 14, 20, 27, and 35. To complete

the proof, Figure 10 presents the ASD-magic labelings of cycles in case 3. U

6. Remark and Open Problems

In this paper, we introduce the notion of ASD-magic labeling, a natural magic labeling arising
from the ascending subgraph decomposition. From our preliminary results on characterizing ASD-
magic stars, paths, and cycles, few graphs seem to be ASD-magic. However, we can still ask
several general questions regarding ASD-magic labeling.
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0 Cy: 152 312131716

8 O O
I9 18K i7
9 11

k=40 109 6 54114 k=78

—
[

Ciat 28142620 19 16 12 11251323 Ca0: 402938 322072620520 31

1 24
21
3 17

4 5101822279 6 7 8 14 14
k=129 O12

Cor: 54535245514938184650444342 Cs5: 7069686261 605533 66676549 48
O Qe Qe e e ()

7 1323243637

2 392011910817106

k=199
9 153034351110

o0 O\ L W N =

1| 28293031323336 5 1435 | ; 404251525657 50 1144 45 Jig
2 f? 6 3748242322212019 15 i fg 8 155343383736353432
31 13 5 30
9 121617252734474 61217 2829
b 8912161725273447407 |5 2 1824 1217 2829 1%
B 9 25 64 |19 |27 |39 |16
k=299 130 10

o)
41 5459 212223 5863
k =405

Figure 10. ASD-magic labelings of cycles in Case 3

Problem 1. If G is an ASD-magic graph of order n, what are the upper and lower bounds of the
magic constant k, as functions of n?

Problem 2. Does there exist an infinite graph class where most of the graphs in that class are
ASD-magic?

Problem 3. If G and H are two ASD-magic graphs, which binary graph operation o preserves the
ASD-magicness of G o H?

Problem 4. [fwe relax the bijection condition in the ASD-magic labeling to injection, is it possible
to have ASD-magic injection for all graphs?
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