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Abstract

In an edge-colored graph (where adjacent edges may have the same color), a rainbow path is a path
whose edge colors are all distinct. The coloring is called a rainbow coloring if any two vertices can
be connected by a rainbow path. The rainbow connection number rc(G) is the smallest number of
colors in a rainbow coloring of G. The corona product G◦H of two graphs G and H is constructed
from one copy of G and n = |V (G)| disjoint copies of H such that the i-th vertex of G is joined to
all vertices in the i-th copy of H , for each i ∈ {1, . . . , n}. Several resuls on the rainbow connection
number of corona product have been published, but there are inaccuracies. In this paper, we close
the gaps and add new results. The strong variant of rainbow connection number is also discussed.
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1. Introduction

For the sake of completeness, we summarize some definition and ideas of graph theory that
will be used throughout the paper. We mainly follow standard terminology and notation, such as
in [1]. All graphs considered will be finite, undirected, and simple. Formally, a graph G consists
of a set of vertices V (G) and a set of edges E(G) such that every edge e is an unordered pair of
vertices e = xy = yx, with x, y ∈ V (G), x ̸= y, as its endpoints. Two vertices x and y are called
neighbours or adjacent if there is an edge xy in the graph. Two edges are called adjacent if they
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share exactly one common endpoint. The degree deg x or degG x is the number of neighbours
of the vertex x, or equivalently the number of edges having x as an endpoint. A vertex is called
isolated if its degree is 0, or a pendant vertex if its degree is 1. A walk of length r−1 is a sequence
of vertices W : x1 − x2 − · · · − xr such that every pair of consecutive vertices are adjacent; the
vertices x2, . . . , xr−1 are called the internal vertices of the walk, and we say that the walk connects
x1 to xr. If W : x1−· · ·−xr is a walk, the notation xiWxj refers to the part of W from xi to xj . A
path is a walk whose vertices are all distinct. A cycle is a walk x1 − · · · − xr − x1 with x1, . . . , xr

all distinct. A graph is called a connected graph if every pair of vertices can be connected by a
walk (equivalently, by a path). The distance d(x, y) or dG(x, y) is the smallest length of a walk
between the vertices x and y. If there is no walk between two vertices, their distance is defined
to be ∞. The diameter of a graph is the maximum distance between two vertices in the graph,
diam(G) = max{d(x, y) | x, y ∈ V (G)}. A complete graph Kn consists of n pairwise adjacent
vertices. A path graph Pn consists of a path with length n − 1 and no other edge. A cycle graph
Cn consists of a cycle with length n and no other edge. A tree is a connected graph without any
cycle; a tree with n vertices is often denoted by Tn. Two graphs G and H are isomorphic, G ∼= H ,
if there is a bijection f : V (G) → V (H) such that xy ∈ V (G) ⇐⇒ f(x)f(y) ∈ E(H).

In the wider graph theory literature, the word “coloring” usually means proper coloring. A
proper edge-coloring is any map c : E(G) → {1, 2, . . . , k} such that adjacent edges have dis-
tinct colors. However, in the rainbow connection literature, the word “coloring” is more flexible:
adjacent edges may have the same color. The concept of rainbow coloring can be motivated by
the desire to design a secure communication network between government agencies; the reader is
referred to Section 1.2 in [15] for a more detailed account. We shall explain the basic concepts.
Following Chartrand et al. [5], a coloring of G is any map γ : E(G) → {1, 2, . . . , k}, where
adjacent edges may have the same color. We call γ(xy) = i the color of the edge xy, and we write

x
i
− y. A path is called rainbow if its edge colors are all distinct. The coloring is called rainbow if

every pair of distinct vertices can be connected by a rainbow path. The rainbow connection number
rc(G) is the smallest number of colors in a rainbow coloring of G. Chartrand et al. also studied a
stronger variant of rainbow coloring. A geodesic between two vertices x and y is any path between
them with length d(x, y). A strong rainbow coloring is a map γ : E(G) → {1, 2, . . . , k} such
that every pair of distinct vertices can be connected by a rainbow geodesic. The strong rainbow
connection number src(G) is the smallest number of colors in a strong rainbow coloring of G. If a
graph has a (strong) rainbow coloring, it must be connected. Conversely, on any connected graph
we can put a (strong) rainbow coloring where all edges have distinct colors. The graph must be
non-trivial (i.e. have more than one vertex), otherwise E(G) = ∅. Therefore, rc(G) and src(G)
are defined if and only if G is a non-trivial connected graph.

Since their introduction in 2008, rainbow connection numbers have been a fairly popular re-
search topic, with several variants and generalization. For example, there is a vertex version [13];
total version [24]; directed version [7]; hypergraph version [2]; connectivity version [6], [26]; and
local version [23]. Computing rainbow connection numbers in general is hard [3]. Therefore,
many studies are focused on specific classes of graph e.g. complete graphs, trees, cycles, wheels,
complete multipartite graphs [5]; circulant graphs [25]; line graphs [14]; comb product [10]; graph
join [21]; sequential join [22], [20]; graphs arising from algebraic structures [8], [28]; etc. The
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reader is refered to Li and Sun’s book [15] and dynamic survey [16] for more detailed expositions.
Below, we collect several results that will be referenced later in the paper.

Theorem 1.1 ([5]).

1. If G is a non-trivial connected graph, then diam(G) ≤ rc(G) ≤ src(G) ≤ |E(G)|. Each
inequality in this chain is tight.

2. The equality rc(G) = 1 holds if and only if G is a complete graph Kn with n ≥ 2.
3. If Tn is a tree with n ≥ 2 vertices, then rc(Tn) = src(Tn) = |E(Tn)| = n− 1.
4. If Cn is a cycle with n ≥ 3 vertices, then rc(Cn) = src(Cn) = ⌈n/2⌉.
5. If H is a connected subgraph that spans G (meaning V (H) = V (G)) then rc(G) ≤ rc(H).

Remark 1.1. From the third and fifth statements we get that if H = Tn is any spanning tree of G,
then rc(G) ≤ rc(Tn) = n− 1.

In the following, ni denotes the number of vertices of degree i in the given graph.

Theorem 1.2 ([19]). If G is a non-trivial connected graph, then rc(G) ≥ n1(G).

In the present study, the author is interested in the rainbow connection number of corona prod-
uct G ◦ H of two graphs G and H . The corona product is obtained from one copy of G and
n = |V (G)| copies of H such that the i-th vertex of G is joined by an edge to all vertices in the i-th
copy of H , for each i ∈ {1, . . . , n}. Generally G ◦H is not isomorphic to H ◦G (except in some
cases e.g. when G ∼= H). Corona product was introduced by Frucht and Harary in 1970 [11] as an
example of a graph product whose automorphism group is the wreath product of the groups of its
factors. Since then, corona product has been studied in various contexts of graph labelings [12].
Note that G ◦ H is connected if and only if G is connected, so rc(G ◦ H) is defined if and only
if G is connected. Several results on the rainbow connection number of corona product have been
published, for example Cn ◦K1 [27]; Cn ◦Pm and Cn ◦Cm [18]; Kn ◦Km [17]; and G ◦H where
|V (G)| ≥ 3 and |V (H)| ≥ 2 [9]; but some are inaccurate or have incomplete/unclear proofs. In
the next section we present our proofs and some new results.

2. Results

2.1. General Bounds
Recall that ni denotes the number of vertices with degree i in the given graph. Note that

K1 ◦H = K1+H is the usual graph join (also denoted by K1∨H). Since the rainbow connection
number of graph join have been studied in [21], the following results on the (strong) rainbow
connection number of G ◦H assume that G is non-trivial, so that rc(G) and src(G) exist.

Theorem 2.1. If G is a connected graph with n ≥ 2 vertices, and H is any graph, then

rc(G ◦H) ≥ max
{
diam(G) + 2, n · n0(H), rc(G)

}
(1)

src(G ◦H) ≥ max
{
src(G), src(K1 ◦H)

}
(2)
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Proof. First, from Theorem 1.1 we have rc(G ◦ H) ≥ diam(G ◦ H) = diam(G) + 2 and from
Theorem 1.2 we have rc(G ◦H) ≥ n1(G ◦H) = n · n0(H).

Note that if a path in G ◦ H has both its endpoints in G, then that path must lie entirely in
G (otherwise it will pass throught the entry/exit point to G more than once). This implies that
any (strong) rainbow coloring of G ◦ H restricts to a (strong) rainbow coloring of G. Therefore,
rc(G ◦H) ≥ rc(G) and src(G ◦H) ≥ src(G).

Similarly, if a path in G◦H has both its endpoints in the same subgraph {gi}◦Hi, then that path
cannot leave the subgraph so any (strong) rainbow coloring of G◦H restricts to a (strong) rainbow
coloring of {gi} ◦Hi. This gives rc(G ◦H) ≥ rc(K1 ◦H) and src(G ◦H) ≥ src(K1 ◦H).

Remark 2.1. The bound rc(G◦H) ≥ rc(K1 ◦H) was ignored because it is weaker than n ·n0(H).
In fact rc(K1 ◦H) ≤ max{3, n0(H)} (see Theorem 2.1 in [21]).

Remark 2.2. The first and second bounds in (1) are tight, e.g. rc(K3 ◦Km) = diam(K3) + 2 (see
Theorem 2.6) and rc(Cn ◦K1) = n · n0(K1) when n is odd (see Theorem 2.8). We could not find
examples of equality in the other bounds. These bounds imply that G◦H can have arbitrarily large
rc and src compared to G: if H has many isolated vertices, significantly more than rc(G), then (1)
implies rc(G ◦ H) ≥ n · n0(H) ≫ rc(G). Similarly, if n0(H) ≫ src(G) then (2) and Theorem
1.2 imply src(G ◦H) ≥ src(K1 ◦H) ≥ rc(K1 ◦H) ≥ n1(K1 ◦H) = n0(H) ≫ src(G).

Next, we prove an upper bound.

Theorem 2.2. If G is a non-trivial connected graph and H is a graph with no isolated vertex, then
rc(G ◦H) ≤ rc(G) + 3.

Proof. Let V (G) = {g1, . . . , gn} and let Hi be the copy of H that is attached to gi, for each
i ∈ {1, . . . , n}. We will construct a rainbow coloring on G◦H with q+3 colors, where q = rc(G).
First put a rainbow coloring on G with q colors. We will put 3 new colors on the remaining edges
as follows. For each i ∈ {1, . . . , n}, let Ti be a spanning tree for Hi. Since any tree is bipartite, we
can write V (Ti) = Ai ∪ Bi with Ai ∩ Bi = ∅ and no edge of Ti has its endpoints both in Ai nor
both in Bi. Put the color q+ 1 on every edge from gi to Ai, put the color q+ 2 on every edge from
gi to Bi, and put the color q+3 on the other edges. We show that this is indeed a rainbow coloring.
We started with a rainbow coloring on G, so it is enough to consider the following two cases.

• If x ∈ Ai and y ∈ Bj for some i, j ∈ {1, . . . , n}, a rainbow path between them can be found

as follows. Choose a rainbow path P in G from gi to gj . Then x
q+1
− giPgj

q+2
− y is a rainbow

path, because P only uses colors in {1, . . . , q}.

• If x ∈ Ai and y ∈ Aj for some i, j ∈ {1, . . . , n}, a rainbow path between them can be found
as follows. Choose a neighbour z ∈ V (Ti) of x. Then z ∈ Bi because Ai, Bi is a bipartition

of Ti. Choose a rainbow path P from gi to gj . Then x
q+3
− z

q+2
− giPgj

q+1
− y is a rainbow path,

because P only uses colors in {1, . . . , q}. Similarly if x ∈ Bi and y ∈ Bj .

This completes the proof of the theorem.
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Remark 2.3. From Theorem 2.1 and Theorem 2.2 we get

n0(H) = 0 =⇒ max{rc(G), diam(G) + 2} ≤ rc(G ◦H) ≤ rc(G) + 3 (3)

In [9] it was stated that rc(G◦H) = rc(G)+3 for any connected graphs G,H with |V (G)| ≥ 3 and
|V (H)| ≥ 2. This is incorrect: it is possible to have rc(G ◦H) < rc(G) + 3, e.g. rc(K3 ◦Km) =
rc(K3) + 2 (see Theorem 2.6). However, there are many examples with rc(G ◦H) = rc(G) + 3,
such as rc(Pn ◦ P2) = rc(Pn) + 3 (see Theorem 2.4) and rc(Kn ◦H) = rc(Kn) + 3 when n ≥ 4
(see Theorem 2.5).

Remark 2.4. We could not find a similar upper bound for src. The rainbow coloring constructed in
the proof of Theorem 2.2 is probably not a strong rainbow coloring. Following the notation in the

proof, the rainbow path x
q+3
− z

q+2
− giPgj

q+1
− y is not a geodesic (a shorter path can be obtained by

going directly from x to gi) so there may not be any geodesic rainbow from x to y.

Finally, we consider the corona product G ◦H when H ∼= K1.

Theorem 2.3. If G is a connected graph with |V (G)| = n ≥ 2, then

n ≤ rc(G ◦K1) ≤ n+ rc(G). (4)

Proof. The lower bound follows from Theorem 2.1. For the upper bound, we construct a rainbow
coloring on G◦K1 with n+rc(G) colors as follows: first put a rainbow coloring on G using rc(G)
colors, then give every pendant edge its own new color. This coloring is clearly rainbow.

Remark 2.5. These bounds are tight, for example rc(Cn ◦K1) = n when n is odd (see Theorem
2.8) and rc(Tn ◦K1) = n + rc(Tn) where Tn is any tree with n vertices (see Theorem 2.7). It is
possible to have n < rc(G ◦ K1) < n + rc(G), e.g. rc(Cn ◦ K1) = n + 1 when n is even (see
Theorem 2.9).

2.2. Exact Values
Here we find rc(G◦H) for some particular graphs G and H , and sometimes we get src(G◦H)

too. These were used in the previous section as tight examples.

Theorem 2.4. If n ≥ 3, then rc(Pn ◦ P2) = n+ 2.

Proof. Let Pn : g1 − g2 − · · · − gn and for each i ∈ {1, . . . , n} let Hi be the i-th copy of H ∼= P2

attached to gi with V (Hi) = {h1
i , h

2
i }. From Theorem 1.1 and Theorem 2.2 we get rc(Pn ◦ P2) ≤

rc(Pn) + 3 = n− 1 + 3 = n+ 2. We will prove rc(Pn ◦ P2) ≥ n+ 2.
Suppose otherwise that rc(Pn ◦ P2) ≤ n + 1. Then there is a rainbow coloring γ on Pn ◦ P2

with n + 1 colors. Under that coloring, there is a rainbow path from h1
1 to h1

n. The length of this
path is at least 1 + (n − 1) + 1 = n + 1. Since there are only n + 1 colors, the length is exactly
n+ 1. By relabeling the colors if necessary, we may assume that the colors are as follows

h1
1

1
− g1

2
− g2

3
− · · ·

n−1
− gn−1

n
− gn

n+1
− h1

n
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Figure 1. Considering the colors of Hn−1 in Pn ◦ P2.

Similarly, by considering rainbow paths between h2
1 and h1

n, as well as between h1
1 and h2

n, we get
γ(h2

1g1) = 1 and γ(gnh
2
n) = n+ 1. Next we consider the colors of Hn−1.

There are three paths from h1
1 to h1

n−1 with length at most n+ 1, namely

h1
1

1
− g1

2
− g2

3
− · · ·

n−1
− gn−1 − h1

n−1 (5)

h1
1 − h2

1

1
− g1

2
− g2

3
− · · ·

n−1
− gn−1 − h1

n−1 (6)

h1
1

1
− g1

2
− g2

3
− · · ·

n−1
− gn−1 − h2

n−1 − h1
n−1 (7)

and there are four paths from h1
n to h1

n−1,

h1
n

n+1
− gn

n
− gn−1 − h1

n−1 (8)

h1
n − h2

n

n+1
− gn

n
− gn−1 − h1

n−1 (9)

h1
n

n+1
− gn

n
− gn−1 − h2

n−1 − h1
n−1 (10)

h1
n − h2

n

n+1
− gn

n
− gn−1 − h2

n−1 − h1
n−1 (11)

One of the paths (5), (6), (7) must be rainbow, and one of the paths (8), (9), (10), (11) must be
rainbow. Consider the following cases:

a. The path (5) or (6) is rainbow. Then γ(gn−1h
1
n−1) ∈ {n, n+ 1}.

b. The path (7) is rainbow. Then {γ(gn−1h
2
n−1), γ(h

2
n−1h

1
n−1)} = {n, n+ 1}.

c. The path (8) or (9) is rainbow. Then γ(gn−1h
1
n−1) ̸∈ {n, n+ 1}.

d. The path (10) or (11) is rainbow. Then {γ(gn−1h
2
n−1), γ(h

2
n−1h

1
n−1)} ∩ {n, n+ 1} = ∅.

One of a,b is true, and one of c,d is true. Cases a,c are incompatible, and so are b,d. Therefore,
either we have a,d or b,c. There are three paths from h1

1 to h2
n−1 with length at most n+ 1,

h1
1

1
− g1

2
− g2

3
− · · ·

n−1
− gn−1 − h2

n−1

h1
1 − h2

1

1
− g1

2
− g2

3
− · · ·

n−1
− gn−1 − h2

n−1

h1
1

1
− g1

2
− g2

3
− · · ·

n−1
− gn−1 − h1

n−1 − h2
n−1
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If Case d is true then the colors of gn−1h
2
n−1 and h1

n−1h
2
n−1 are in the set {1, 2, . . . , n− 1}, so none

of the paths above is rainbow. Therefore, Cases b,c must be true and we have

{γ(gn−1h
2
n−1), γ(h

2
n−1h

1
n−1)} = {n, n+ 1} and γ(gn−1h

1
n−1) ̸∈ {n, n+ 1} (12)

Now, by the symmetry of Hn−1
∼= P2 we can repeat the same argument (starting from the

paragraph when we first considered the colors of Hn−1) but with h1
n−1 replaced by h2

n−1, to obtain

{γ(gn−1h
1
n−1), γ(h

1
n−1h

2
n−1)} = {n, n+ 1} and γ(gn−1h

2
n−1) ̸∈ {n, n+ 1} (13)

We have a contradiction, e.g.γ(gn−1h
1
n−1) ̸∈ {n, n+1} in (12) and {γ(gn−1h

1
n−1), γ(h

1
n−1h

2
n−1)} =

{n, n+ 1} in (13). This completes the proof.

Remark 2.6. The final step above relies on the symmetry of P2. If m ≥ 3, then Pm is no longer
symmetric and the argument does not generalize readily. But we do have a narrow range

n+ 1 ≤ rc(Pn ◦H) ≤ n+ 2 (14)

if n0(H) = 0, from (3) and rc(Pn) = diam(Pn) = n− 1 (Theorem 1.1).

Liu and Wang [17] stated that rc(Kn ◦ Km) = 4 if n ≥ 4. This is generalized below and
extended to src in Theorem 2.6.

Theorem 2.5. If n ≥ 4 and H is any graph with no isolated vertex, then rc(Kn ◦H) = 4.

Proof. From (3) and rc(Kn) = 1 we have 3 ≤ rc(Kn ◦ H) ≤ 4. We prove rc(Kn ◦ H) ≥ 4 by
contradiction. Suppose rc(Kn ◦H) ≤ 3. Then there is a rainbow coloring of Kn ◦H with 3 colors.
Let V (Kn) = {g1, . . . , gn}, and for each i ∈ {1, . . . , n} let Hi be the copy of H that is attached
to gi, with V (Hi) = {h1

i , . . . , h
m
i }. Consider a rainbow path from h1

i to h1
j , with i,∈ {1, . . . , n}

and i ̸= j. Since d(h1
i , h

1
j) = 3, the length of the rainbow path is at least 3. But there are only 3

colors, so the length of the rainbow path is exactly 3 (it is a geodesic) and there is only one such
path, namely h1

i − gi − gj − h1
j . Therefore γ(h1

i gi) ̸= γ(h1
jgi). Since this is true for all i, j, we

conclude that the n edges h1
1g1, . . . , h

1
ngn all have distinct colors, contradicting n ≥ 4.

Theorem 2.6. Let n,m ∈ N.

1. If n ∈ {2, 3}, then rc(Kn ◦Km) = src(Kn ◦Km) = 3.
2. If n ≥ 4, then rc(Kn ◦K1) = src(Kn ◦K1) = n.
3. If n ≥ 4 and m ≥ 2, then rc(Kn ◦Km) = 4 and src(Kn ◦Km) = n.

Proof. If n = 2, then K2 ◦Km consists of an edge xy together with complete graphs {x} +Km

and {y} +Km. We have rc(K2 ◦Km) ≥ diam(K2) + 2 = 3 by Theorem 2.1. The upper bound
rc(K2 ◦Km) ≤ 3 is proved by constructing a rainbow coloring as follows: put the color 1 on the
complete graph {x}+Km, color 2 on xy, and color 3 on the complete graph {y}+Km.

Next, assume n ≥ 3. First we prove an upper bound for src that will be used in all cases:
src(Kn ◦Km) ≤ n. Define γ : E(Kn ◦Km) → {1, . . . , n} by

γ(e) =

{
i, if e ∈ E({gi} ◦Hi) for some i ∈ {1, . . . , n},
min

(
{1, . . . , n} − {i, j}

)
, if e = gigj for some i, j ∈ {1, . . . , n}, i ̸= j.
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See Figure 2 for an illustration. We check that this is strong rainbow. It is enough to find a rainbow
geodesic between x ∈ Hi and y ∈ Hj with i, j ∈ {1, . . . , n}, i ̸= j (rainbow geodesic between
any other pair is a subpath of this one). Let x = ha

i and y = hb
j , for some a, b ∈ {1, . . . ,m}. Then

ha
i

i
− gi

k
− gj

j
− hb

j is a rainbow geodesic because k = min ({1, . . . , n} − {i, j}) ̸= i, j.

Figure 2. A strong rainbow coloring on K3 ◦K2

If n = 3, Theorem 2.1 and the upper bound give 3 ≤ rc(K3 ◦ Km) ≤ src(K3 ◦ Km) ≤ 3,
proving the first statement. If n ≥ 4 and m = 1, then Theorem 2.3 and the upper bound give
n ≤ rc(Kn ◦K1) ≤ src(Kn ◦K1) ≤ n, proving the second statement.

To prove the third statement, we assume n ≥ 4 and m ≥ 2. Now Km has no isolated vertex, so
by Theorem 2.5 we have rc(Kn ◦Km) = 4. There is a unique geodesic from h1

i to h1
j for all i ̸= j,

namely h1
i − gi − gj − h1

j , so in any strong rainbow coloring the edges h1
i gi, . . . , h

1
ngn must use

distinct colors. This gives src(Kn◦Km) ≥ n. Together with the upper bound, we get equality.

Remark 2.7. In [18] it was claimed that Cn ◦ Cm and Cn ◦ Pm have the same rainbow connection
number which is 4 if n = 3, or ⌈n/2⌉+ 3 if n ≥ 4. Theorem 2.6 with n = 3 is a counter-example,
since rc(C3 ◦C3) = rc(K3 ◦K3) = 3 and rc(C3 ◦ P2) = rc(K3 ◦K2) = 3. Their proof for n ≥ 4
is unclear, but we could not find a counter-example. We do have a narrow range

⌊n/2⌋+ 2 ≤ rc(Cn ◦H) ≤ ⌈n/2⌉+ 3 (15)

if n0(H) = 0, from (3), diam(Cn) = ⌊n/2⌋, and rc(Cn) = ⌈n/2⌉ (Theorem 1.1).

Next we consider some corona product G ◦H with H ∼= K1. In [9] Estetikasari and Sy proved
that rc(Tn ◦K1) = 2n− 1. Here we state the result again with a small addition of src.

Theorem 2.7. If Tn is a tree with n ≥ 2 vertices, then rc(Tn ◦K1) = src(Tn ◦K1) = 2n− 1.

Proof. Note that Tn ◦ K1 is also a tree, and it has 2n vertices and 2n − 1 edges, so by the third
statement in Theorem 1.1 we have rc(Tn ◦K1) = src(Tn ◦K1) = |E(Tn ◦K1)| = 2n− 1.
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The corona product Cn ◦K1 of a cycle graph with the trivial graph is known as a sunlet graph
or sun graph, sometimes denoted by Sn. The name comes from the shape of the graph, which is
a cycle with a pendant at every vertex. In [27] it was stated that rc(Sn) = src(Sn) = ⌊n/2⌋ + n.
Unfortunately this is incorrect: this is only the upper bound in (4) and not efficient. The exact
value is actually close to the lower bound in (4).

Theorem 2.8 (Odd Sunlet). If n = 2q + 1 with q ≥ 1, then rc(Cn ◦K1) = src(Cn ◦K1) = n.

Proof. Write Sn = Cn◦K1. Let the cycle be Cn : g1−g2−· · ·−gn−g1 in the clockwise direction.
For each i ∈ {1, . . . , n} let Hi be the i-th copy of H ∼= K1 joined to gi, and V (Hi) = {hi}. All
indices will be understood modulo n, thus e.g. gn+1 = g1.

From Theorem 2.3 we get rc(Sn) ≥ n. We show src(Sn) ≤ n by constructing a strong
rainbow coloring γ on Sn with n colors. For each i ∈ {1, . . . , n}, put the color i (mod n) on the
pendant edge joined to gi, and also on the cycle-edge that is directly opposite from that pendant
edge (there is such an edge precisely because n is odd). Formally, γ(higi) = i (mod n) and
γ(gigi+1) = q + 1 + i (mod n) for each i ∈ {1, . . . , n}. See Figure 3 for an illustration.

Figure 3. A strong rainbow coloring on S5.

We check that this is a strong rainbow coloring. Let x, y be non-adjacent vertices in Sn. Since
all edges in the cycle have different colors, any path in the cycle is rainbow. Any geodesic between
two pendant vertices hi and hj must be of the form hi− gi−· · ·− gj −hj so it contains a geodesic
from hi to gj . Therefore, it is enough to find a rainbow geodesic between any two pendant vertices.
Suppose that x, y are both pendant vertices. By rotational symmetry we may assume x = h1 and
y = hj for some j ∈ {2, . . . , n}. We consider two cases depending on whether g1 is nearer to gj
in the clockwise or counterclockwise direction.

• Let j ≤ q + 1. Then d(x, y) = 1 + (j − 1) + 1 = j + 1 and there is a clockwise geodesic

x = h1

1
− g1

q+2
− g2

q+3
− · · ·

q+j−1
− gj−1

q+j
− gj

j
− hj = y
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The colors are distinct mod n because 1 < j < q + 2 < · · · < q + j ≤ 2q + 1 = n.

• Let j ≥ q+2. Then d(x, y) = 1+n−(j−1)+1 = n−j+3 and there is a counterclockwise
geodesic

x = h1

1
− g1

q+1+n
− gn

q+n
− · · ·

q+2+j
− gj+1

q+1+j
− gj

j
− hj = y

Modulo n, the colors are congruent to

x = h1

1
− g1

q+1
− gn

q
− · · ·

j−q+1
− gj+1

j−q
− gj

j
− hj = y

The colors are distinct mod n because n ≥ j > q + 1 > · · · > j − q + 1 > j − q > 1.

This completes the proof of the theorem.

Theorem 2.9 (Even Sunlet). If n = 2q with q ≥ 2, then rc(Cn ◦K1) = src(Cn ◦K1) = n+ 1.

Proof. Write Sn = Cn◦K1. Let the cycle be Cn : g1−g2−· · ·−gn−g1 in the clockwise direction.
For each i ∈ {1, . . . , n} let Hi be the i-th copy of H ∼= K1 joined to gi, and V (Hi) = {hi}. All
indices will be understood modulo n, e.g. gn+1 = g1. We will prove that

n+ 1 ≤ rc(Sn) ≤ src(Sn) ≤ n+ 1.

Proving the lower bound rc(Sn) ≥ n+ 1.

Suppose rc(Sn) ≤ n, so Sn has a rainbow coloring γ with n colors. All colors will be under-
stood modulo n. All pendant edges have different colors; by relabeling the colors we may assume
γ(gihi) = i for every i ∈ {1, . . . , n}. First we prove two claims.

Claim A: The edge colors of Cn are a permutation of 1, 2, . . . , n.
Proof of Claim A: Since there are n edges in the cycle and only n colors, it is enough to show that
all edges on the cycle have different colors. Suppose that some two edges on the cycle have the
same color. This repeated color must also appear on a pendant edge. By rotating the coloring if
necessary, we may assume that the repeated color is 1. So 1 = γ(g1h1) = γ(gaga+1) = γ(gbgb+1)
for some a, b ∈ {1, . . . , n} with a < b. There must be a rainbow path from the pendant vertex h1 to

ga+1. But there are only two paths between them, namely the clockwise path h1

1
−g1−· · ·−ga

1
−ga+1

and the counterclockwise path h1

1
−g1−gm−· · ·−gb+1

1
−gb−· · ·−ga+1 and both are not rainbow,

a contradiction. This completes the proof of Claim A.

We try to contradict Claim A by showing that some color i ∈ {1, . . . , n} cannot be used on Cn.
First we eliminate the cycle-edges next to gi.

Claim B: For every i ∈ {1, . . . , n}, we have γ(gigi+1) ̸= i and γ(gi−1gi) ̸= i.
Proof of Claim B: Suppose γ(gigi+1) = i. There is a rainbow path from hi+1 to hi. The counter-

clockwise path hi+1

i+1
− gi+1

i
− gi

i
− hi is not rainbow, so the clockwise path

hi+1

i+1
− gi+1 − gi+2 − · · · − gi

i
− hi
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must be rainbow. By Claim A the color i+1 must appear on the cycle. Since γ(gigi+1) = i ̸= i+1,
the color i+1 must appear on the remaining n−1 edges of the cycle which is gi+1−gi+2−· · ·−gi, so
the path above is actually not rainbow, a contradiction. The case γ(gi−1gi) = i can be eliminated in
a similar manner by “mirroring” the above argument on the line gigi+q which is a line of symmetry
because n = 2q is even. This completes the proof of Claim B.

A similar argument can be used to show that the color i ∈ {1, . . . , n} also does not appear in
the four edges around gi, namely gi−2gi−1, gi−1gi, gigi+1, and gi+1gi+2. Instead, we show more
generally that the color i never appears on the 2j edges around gi, for every j ∈ {1, . . . , q}.

Claim C: For every i ∈ {1, . . . , n = 2q} and j ∈ {1, . . . , q}, the color i is absent from the 2j
edges around gi (namely, j edges to the left and j edges to the right of gi).
Proof of Claim C: We prove this by induction on j. The basis j = 1 is Claim B. For the in-
duction step, let i ∈ {1, . . . , n} and j ∈ {2, . . . , q} be such that the color i appears among the
2j edges around gi. Suppose that the color i appears in the clockwise direction from gi, namely
γ(gi+a−1gi+a) = i for some a ∈ {1, . . . , j} (the case when the color i appears in the counterclock-
wise direction can be handled similarly by mirror symmetry). Consider the set of colors of the
edges between gi and gi+a−1, namely

S = {γ(gigi+1), . . . , γ(gi+a−2gi+a−1)}

We will show that

i+ a, i+ a+ 1, i+ a+ 2, . . . , i+ 2a− 1 ∈ S (16)

To prove this, take any color i + a + k with k ∈ {0, 1 . . . , a− 1}. Note that hi+a+k ̸= hi because
i < i + a + k ≤ i + 2a− 1 ≤ i + 2j − 1 ≤ i + 2q − 1 < i + n (recall that n = 2q) so there is a
rainbow path from hi+a+k to hi. Because the counterclockwise path from gi+a+k to hi repeats the
color i (namely γ(gi+agi+a−1) = γ(higi) = i), the rainbow path must be the clockwise path

hi+a+k

i+a+k
− gi+a+k − gi+a+k+1 − · · · − gn − g1 − · · · gi

i
− hi

By Claim A, the color i + a + k must appear on the cycle. Since the path above is rainbow,
γ(gi+a+kgi+a+k+1), . . . , γ(gi−1gi) ̸= i+ a+ k. Therefore, the color i+ a+ k must appear among
the remaining edges of the cycle, i.e.

gi − gi+1 − · · · − gi+a−2 − gi+a−1

i
− gi+a − gi+a+1 − · · · − gi+a+k−1 − gi+a+k

We use the inductive hypotesis to conclude that the color i+a+k is absent from the 2(j−1) edges
around gi+a+k. Since k ≤ a− 1 ≤ j− 1, these 2(j− 1) edges include the 2k edges around gi+a+k,
including the k edges gi+a − gi+a+1 − · · · − gi+a+k−1 − gi+a+k. Therefore, the color i+ a+ k can
only occur on the edges gi − gi+1 − · · · − gi+a−2 − gi+a−1 so i+ a+ k ∈ S. This proves (16).

Now, the consecutive numbers i + a, i + a + 1, . . . , i + 2a − 1 are all distinct modulo n, so
(16) shows that S has at least a distinct members. But from the definition of S it is clear that
|S| ≤ a− 1, so we get a contradiction. This completes the proof of Claim C.
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Finally, using Claim C with i = 1 and j = q, we conclude that the color 1 is absent from the
2q = n edges around g1. But there are only n edges in the cycle, so the color 1 does not occur
anywhere in the cycle. This contradicts Claim A, and completes the proof of the lower bound.

Proving the upper bound src(Sn) ≤ n+ 1.

Color the edges as in Figure 4. More formally, the coloring is given by γ(higi) = i for every
i ∈ {1, . . . , 2q} and

γ(gigi+1) =


q + i, i ∈ {1, 2, . . . , q − 1}
2q + 1, i ∈ {q, 2q}
i− q + 1, i ∈ {q + 1, q + 2, . . . , 2q − 1}

Figure 4. A strong rainbow coloring on S2q+1.

We verify that this is strong rainbow. Let x, y be non-adjacent vertices in Sn. Since all edges in
the cycle have different colors, any path within the cycle is rainbow. The remaining cases are as
follows. Split the edge-colored graph into two subgraphs as in Figure 5.

• Let x, y be in the same subgraph. In each subgraph, all the edges have different colors so
any path within the subgraph is rainbow. Moreover, in each subgraph, distance between any
two vertices is always equal to distance in the whole graph. So there is always a rainbow
geodesic between x, y.
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Figure 5. Two subgraphs of S2q+1.

• Let x, y be in different subgraphs, say x is in the subgraph on the left of Figure 5 and y is
in the subgraph on the right. Since the two subgraphs intersect on {h1, g1, gq+1}, we may
assume that x and y are none of these vertices.

(i) If x = hq+1, then the counterclockwise path to y ∈ {gq+1, gq, hq, . . . , g2, h2} is always
a rainbow geodesic, because the right subgraph only uses the color q + 1 on g2g1.

(ii) Let x = hi and y = hj with 2 ≤ j ≤ q < q + 1 < i ≤ 2q.
If i − j < q, then d(x, y) = i − j and the counterclockwise path below is a rainbow
geodesic

x = hi

i
− gi

i−q
− gi−1

i−q−1
− · · ·

2
− gq+1

2q+1
− gq

2q−1
− gq−1

2q−2
− · · ·

q+j
− gj

j
− hj = y

because 2 < · · · < i− q < j < i < q + j < · · · < 2q − 1 < 2q + 1.
If i− j ≥ q, then the clockwise path below is a rainbow geodesic

x = hi

i
− gi

i−q+1
− gi+1

i−q+2
− · · ·

q
− g2q

2q+1
− g1

q+1
− g2

q+2
− · · ·

q+j−1
− gj

j
− hj = y

because j < i− q + 1 < · · · < q < q + 1 < · · · < q + j − 1 < i < 2q + 1.
(iii) If (x, y) = (hi, gj) or (gi, hj) with 2 ≤ j ≤ q < q + 1 ≤ i ≤ 2q, then we can use the

rainbow geodesic from hi to hj in Case (ii) and cut the last or first vertex of the path
respectively.

This completes the proof of the upper bound rc(Sn) ≤ n+ 1, hence the theorem.
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3. Concluding Remarks

In this paper we have investigated the rainbow connection number of corona product of two
graphs G ◦H . We have obtained a general lower bound (Theorem 2.1), an upper bound when H
has no isolated vertex (Theorem 2.2), a lower bound and an upper bound when H ∼= K1 (Theorem
2.3), and some exact values (Theorems 2.4, 2.5, 2.6, 2.7, 2.8, 2.9). Tightness of the bounds were
also discussed. There are some open problems, for example:

1. Examples of rc(G ◦H) = rc(G) or src(G ◦H) = max{src(G), src(K1 ◦H)}.
2. Exact values for Pn ◦H and Cn ◦H in the narrow ranges (14) and (15), cf. Theorem 2.5.
3. Better bounds for src(G ◦H).
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