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Abstract
A configuration of the triple (P ,L, I) is an incidence relation which has the properties ”any two
points are incident with at most one line” and ”any two lines are incident with at most one point”.
In projective geometry, bipartite graphs can be used as an incidence model between the points and
lines of a configuration. The graphs associated with a space are a good tool for understanding the
topological and geometric properties of space in abstract systems. In this paper we focus on the
incidence graph of circular space and obtain its properties in terms of some pure graph invariants.
We also characterize it in terms of the graphs associated with other spaces in the literature.
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1. Introduction

Let G = (V,E) be a simple graph. If vertices vi and vj are adjacent, we denote this by
vivj ∈ E(G) or vi ∼ vj . The degree of any vertex vi is the number of vertices which are adjacent
to vi and denoted by dvi . The distance between the vertices u and v ∈ V (G), denoted by d(u, v),
is the minimum length of the paths between u and v. The diameter diam(G) of G is the maximum
eccentricity between its vertices, and the radius rad(G) is the minimum eccentricity of its vertices.
For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, we refer to the k-vector

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))
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as the (metric) representation of v with respect to W . The set W is called a resolving set for G if
different vertices have different representations. A resolving set containing a minimum number of
vertices is called a minimum resolving set or a basis for G. The (metric) dimension dim(G) is the
number of vertices in a basis for G. The metric dimension of some extremal graphs such as path,
complete, cycle and complete bipartite graph has been determined in some papers ([8, 15, 4, 5, 1]).

Let Nvi be the set of neighbours of a vertex vi in V (G). Throughout the paper, the common
neighbour of the vertices v1, v2, . . . , vk is denoted as CN(v1, . . . , vk) and its cardinality is denoted
as |CN(v1, . . . , vk)| = cn(v1, . . . , vk). A bipartite graph is a graph G(U,W ) whose vertex set
forms two disjoint sets U and W such that no two graph vertices are adjacent within the same
set. Throughout this paper, G(U,W ) is considered to be a connected bipartite graph. Given a
bipartite graph G(U,W ), a graph G′(U,E ′) is defined as the projection of the bipartite graph G
for the vertex set U with respect to the vertex set W , where V (G′) = U and uiuj ∈ E(G′) if
CN(ui, uj) ̸= ∅ for ui, uj ∈ U [12].

An incidence structure is a (P ,L, σ) triple, where P is a set whose elements are called points,
L is a distinct set whose elements are called lines, and σ ⊆ P × L is the incidence relation. For a
(P ,L, σ) triple, the bipartite graph G with vertex set V = P ∪L and edge set E = {p, l : pσP} is
called an incidence graph. It is also known as a Levi graph [14]. In general, the Levi graph G(π)
of a plane π is a bipartite incidence graph with x, y forming an edge in the graph if and only if the
point x is on the line y. An incidence structure (P ,Z, σ), where P and Z are a set of points and a
set of circles, is called a Möbius plane if the following axioms hold
A1. For any three points, there is exactly one circle containing the points
A2. For any circle c, any point P ∈ c and Q /∈ c there exists exactly one circle z′ with P,Q ∈ z′

and z ∪ z′ = {P}
A3. Each circle contains at least three points [9].

Motivated by Levi graphs, Hauschild et al. [10] give a configuration of (P ,L, σ) triples on the
incidence relation that satisfies the properties ”any two points are incident with at most one line”
and ”any two lines are incident with at most one point”. In projective geometry, bipartite graphs
can be used as incidence models between the points and lines of a configuration. So the Levi graph
of the configuration (P ,L, σ) is the bipartite graph G with V (G) = P ∪ L and p ∈ P is adjacent
to l ∈ L if and only if pσl [10].

The neighborhood graph N (G) of a graph G = (V,E) is a graph with vertex set V ∪ W ,
where W is the set of all open neighborhood sets of G, and with two vertices u,w ∈ V ∪ W
adjacent if u ∈ V and w is in an open neighborhood set containing u [13]. Kulli [13] gives some
characterizations of N (G) for the extremal graph G. In [16] the linear graph (also called bipartite
graph) is defined with the help of linear spaces, and some results on the incidence graph (also
called Levi graph) of linear graphs are given. A linear graph is a bipartite graph whose parts P
and L satisfy two conditions: ”For all p, q ∈ P such that p ̸= q, cn(p, q) = 1” and δ(G) ≥ 2.
There are also many studies in the literature on the metric dimension of the incidence graphs of the
projective plane, the affine plane, generalized quadrangles and the Möbius plane (see, [11, 2, 3] ).

In this paper we study a bipartite graph which is an incidence graph of the circular space
given in [7, 6]. We present the properties of the circular graph in terms of graph invariants such
as diameter, degree, etc., and we characterize the relationships between the circular graph and the
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graphs associated with other spaces which are neighborhood graph, Mobius plane and linear graph.

2. Main Results

Definition 2.1. [6] Let P be a set of points, C be a set of certain distinguished subsets of points
called circles and o ⊆ P × C. The incidence structure C = (P,C, o) is called a circular space if:
C1. Every circle contains at least three distinct points.
C2. Any three distinct points are contained in exactly one circle.

Using Definition 2.1, the incidence graph of a circular space can be defined the following:

Definition 2.2. Let G(U,W ) be any finite bipartite graph. G is called a circular graph if it satisfies
the following conditions

(i) cn(ui, uj, uk) = 1 for all ui, uj, uk ∈ U .

(ii) dw ≥ 3, for all w ∈ W .

If |U | = 1 or |W | = 1, then G is called a trivial circular graph. In this case, it is easy to see that
G ∼= K1,n−1. (See Figure 1 and Figure 2.)

,

Figure 1. Sample of trivial circular graph

Figure 2. Sample of non-trivial circular graph

Lemma 2.1. Let G(U,W ) be a circular graph. Then the number of common neighbours of any
pair of the vertices in W is at most 2. That’s

cn(w1, w2) ≤ 2

for every w1, w2 ∈ W .
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Proof. Let G = (U,W ) be a circular graph. Suppose that |N(w1) ∩N(w2)| ≥ 3. Then there exist
(ui, uj, uk) triples in the partition U such that {ui, uj, uk} ⊆ CN(w1, w2), and hence cn(ui, uj, uk) ≥
2. But this is a contradiction because cn(ui, uj, uk) = 1. Therefore, we have cn(w1, w2) ≤ 2. Note
that cn(w1, w2) ̸= 0.

Theorem 2.3. Let T be a family of trees. Then T ∈ T is a circular tree iff T ∼= K1,n−1.

Proof. Let T be an arbitrary tree of order n in T . Since T is also a bipartite graph, we consider as
the vertex set V = U ∪W where U = {u1, . . . , ut} and W = {w1, . . . , ws} such that t + s = n.
Now think of T as a circular tree. Then we have cn(ui, uj, uk) = 1 and dwi

≥ 3. From Lemma
2.1 we also know that cn(wi, wj) ≤ 2 for wi, wj ∈ W . Suppose cn(wi, wj) = 2. Then we have
{u1, u2, u3} ⊆ Nwi

and {u2, u3, u4} ⊆ Nwj
for ui ∈ U (1 ≤ ui ≤ 4). So we get {u2, u3} ⊆

CN(wi, wj) and thus T contains the cycle wi − u2 − wj − u3 − wi, but this is a contradiction
because T is tree. So we have cn(w1, w2) = 1 for any pair of vertices w1 and w2. Since every
triple of {ui, uj, uk} has exactly one common neighbour in W , W must be a singleton partition.
That’s U = {u1, . . . , un−1} and W = {w1}. So T ∼= K1,n−1.
Conversely, if T ∼= K1,n−1, it is clear that T is a (trivial) circular tree from Definition 2.2.

Lemma 2.2. Let G(U,W ) be a non-trivial circular graph. Then for all x ∈ U we have dx ≥ 3.

Proof. Let G(U,W ) be a non-trivial circular graph. Then there exists at least x ∈ U for y ∈ W
such that x ̸∈ Ny. From Definition 2.2 (i), for {ui, uj, uk} triples in U we get {ui, uj, uk} ⊆ Ny

because dy ≥ 3. Since x ̸∈ Ny, we get x ̸= ui, (x ̸= uj, x ̸= uk). By Definition 2.2 (ii),
there are w1, w2, w3 vertices in W such that CN(x, ui, uj) = {w1}, CN(x, ui, uk) = {w2} and
CN(x, uj, uk) = {w3}.
Since y is not in Nx, then y ̸= w1, (y ̸= w2, y ̸= w3). If w1 = w2, then cn(ui, uj, uk) ≥ 2. But this
contradicts the Definition 2.2 (i). So w1 ̸= w2. Similarly, we have w1 ̸= w3 and w2 ̸= w3. So we
get dx ≥ 3 since {w1, w2, w3} ⊆ Nx.

Theorem 2.4. Let G(U,W ) be a non-trivial circular graph. Then the following holds

(i) d(u1, u2) = 2 for any u1, u2 ∈ U and d(w1, w2) = 2 for w1, w2 ∈ W .

(ii) d(u1, w1) ∈ {1, 3} for any u1 ∈ U and w1 ∈ W .

Proof. (i) Since G is a bipartite graph, u1 ̸∼ u2 for u1, u2 ∈ U . Then we have d(u1, u2) ̸= 1
and there is w ∈ W such that CN(u1, u2, u3) = {w} for every u3 ∈ U since cn(u1, u2, u3) = 1
in Definition 2.2. So the path between u1 and u2 must be the path of u1 − w − u2, so we get
d(u1, u2) = 2. Similarly, d(w1, w2) ̸= 1 for w1, w2 ∈ W , since G is a bipartite graph. Also by
Lemma 2.1 we have cn(w1, w2) ≤ 2. Let 1 ≤ cn(w1, w2) ≤ 2. In this case there is at least one
vertex u1 in U such that {u1} ⊆ CN(w1, w2). So we get d(w1, w2) = 2.

(ii) If u1 ∈ Nw1) for u1 ∈ U and w1 ∈ W , d(u1, w1) = 1. If u1 /∈ Nw1 , then there exist the
vertices u2, u3, u4 in U such that u2, u3, u4 ∈ Nw1 . Since cn(u1, u2, u3) = 1, we have w2 ∈ W
such that cn(u1, u2, u3) = {w2}. So the path of u1 − w2 − u3 − w1 is one of the shortest paths
between the vertices u1 and w1. Therefore d(u1, w1) = 3.
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Corollary 2.1. Let G(U,W ) be a circular graph.

(i) If G is trivial circular graph, then diam(G) = 2 and rad(G) = 1.

(ii) If G is non-trivial circular graph, then diam(G) = 3 and rad(G) = 3.

Proposition 2.1. Let Kn be a complete graph of order n ≥ 3. Consider U = V (Kn) and W =
{{a, b, c} : a, b, c are vertices of different triangles in Kn}. Then G = (U ∪ W,E) is a circular
graph with uw ∈ E for every u ∈ U and w ∈ W such that u is adjacent to w.

Proof. Let Kn be a complete graph with n ≥ 3 vertices. There are
(
n
3

)
different triangles in Kn.

Let U = V (Kn) and W = {{a, b, c} : distinct triangles in Kn}. Then G = (U∪W,E) is a circular
graph with uw ∈ E for u ∈ U , w ∈ W and u ∈ N(w).

Any ui, uj, uk vertices in V (Kn) form a unique triangle in W , so there is only one w in W
such that CN(ui, uj, uk) = {w}. This satisfies condition (i) in Definition 2.2. Also, d(w) = 3 for
w ∈ W , which satisfies condition (ii) in Definition 2.2.

1 2 3 4

c123 c124 c134 c234
,

Figure 3. CG∆K4
triangular circular graph

1 2 3 4 5

c123 c124 c125 c134 c135 c145 c234 c235 c245 c345

Figure 4. CG∆K5
triangular circular graph

Remark 2.1. The circular graph, which is constructed in Proposition 2.1, can be defined as trian-
gular circular graph and denoted by CG∆Kn

. Also, N (K4) ∼= CG∆K4

Corollary 2.2. Let G(U,W ) be a non-trivial circular graph. Then

dim(G) = |U | − 1 (1)

Proof. Let G(U,W ) be a circular graph. Let U = {u1, . . . , un} and W = {w1, . . . , wm}. Since
cn(w1, w2) is at most 2, we have n ≤ m ≤

(
n
3

)
. Suppose S ⊆ U is a resolving set such that

S = {u1, . . . , uk}, where k < n − 1. Then there are at least two vertices ut, ul ̸∈ S but in U . In
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this case we get that the representations r(ut|S) = (2, 2, . . . , 2) and r(ul|S) = (2, 2, . . . , 2) are
the same, since d(u, v) = 2 for all u, v ∈ U by Theorem 2.4 (i). This contradicts the choice of
the set S as the resolving set. Now consider S = {u1, . . . , un−1}. Again from Theorem 2.4 (ii),
any representation r(w1|S), . . . , r(wm|S), r(un|S) are distinct. Therefore, the set S does indeed
resolve all vertices in G.

Proposition 2.2. Let G(U,W ) be a circular graph. Then we have N (G) ∼= G ∪G

Proof. Let G(U,W ) be a circular graph, where U = {u1, u2, . . . , ui} and W = {w1, w2, . . . , wj}.
Since the neighbourhood graph is bipartite, N (G) is a bipartite graph of order 2(i+ j) with vertex
partitions U ∪W = {u1, . . . , ui, w1, . . . , wj} and NU ∪NW = {Nu1 , . . . , Nui

, Nw1 , . . . , Nwj
}. For

any x ∈ U and y ∈ NU , the vertices x and y are not adjacent in N since NU ⊆ W . Similarly, x ̸∼ y
for x ∈ W and y ∈ NW . Thus, N (G) is a disconnected graph whose components are G1(U,NW )
with edge set E1 and G2(W,NU) with edge set E2, where E1 = {xy : x ∈ U, y ∈ NW} and
E2 = {xy : x ∈ W, y ∈ NU}.

Now, let {um, un, ut} be any triple for um, un, ut ∈ U . Then we have CN(um, un, ut) = wj in
G. By identifying wj with Nwj

, we get CN(um, un, ut) = {Nwj
} in G1 because um, un, ut ⊆ Nwj

.
Hence, we see that the neighbourhood of any vertex in G and G1 are the same, so G1

∼= G.
Similarly, it is easy to see that G2

∼= G. Therefore, we have N (G) ∼= G ∪G.

Theorem 2.5. Let G(U,W ) be a non-trivial circular graph. Define G′(U ′,W ′) as a linear graph,
where U ′ = U − {u} and W ′ = W − S, with u ∈ U and S = {x : x ̸∈ Nu}. In G′, there exists an
edge u′w′ ∈ E(G′) for all u′ ∈ U ′ and w′ ∈ W ′.

Proof. Let G(U,W ) be a non-trivial circular graph. Consider {u, q, r} be any triple such that
CN(u, q, r) = {w} for u, q, r ∈ U and w ∈ W . Then there is only one w′ ∈ W ′ such that
Nw′ = Nw − {u} = {q, r}. So we get CN(q, r) = {w′} in G′. This satisfies the first condition
of a linear graph. Since every pair (q, r) has exactly one common neighbour, we get du′ ≥ 2 for
u′ ∈ U ′. On the other hand, if we delete the vertices in W that are not in the neighbourhood of u,
we have dw′ ≥ 2 for w′ ∈ Nu. So we have δ(G′) ≥ 2. This also satisfies the second condition in
the definition of a linear graph.

Remark 2.2. As we can see from Theorem 2.5, any linear graph can be an induced subgraph of a
circular graph. Also the graph in Figure 5. is a linear graph but not a circular graph.

L1 L2 L3 L4

P1 P2 P3 P4

Figure 5. A linear graph

Corollary 2.3. The incidence graph of a Möbius plane is also a circular graph.
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Proof. From the definition of Möbius plane, it is easy to see that the axioms A1 and A2 in Möbius
plane coincide with the two axioms of the circular graph.

Remark 2.3. We know that every incidence graph of the Möbius plane is circular graph from
Corollary 2.3. But the reverse is not true. In Figure 3, the triangular circular graph CG∆K4

is not
an incidence graph of the Möbius plane because the second axiom in the definition of the Möbius
plane does not hold.
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