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Abstract

The power graph P(G) of a group G is the graph with group elements as vertex set and two
elements are adjacent if one is a power of the other. The aim of this paper is to compute the
automorphism group of the power graph of several well-known and important classes of finite
groups.
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1. Introduction

The investigation of graphs associated to algebraic structures is very important, because such
graphs are closely related to automata theory [8] and have valuable applications [9]. In this paper
we describe the automorphism groups of the undirected power graphs of the dicylic groups T4n,
the semidihedral groups SD8n, and the groups U6n and V8n appearing in the textbook of James and
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Liebeck [7]. For even n, V8n is described in [6]. These groups have the following presentations:

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,
SD8n = 〈a, b | a4n = b2 = 1, bab = a2n−1〉,
U6n = 〈a, b | a2n = b3 = 1, b−1ab = a−1〉,
V8n = 〈a, b | a2n = b4 = 1, aba = b−1, ab−1a = b〉.

A directed graph Γ = (V,E) consists of a nonempty set V of vertices and a set E of ordered
pairs of distinct vertices called edges. An undirected graph (or graph for short) is given by a set
V of vertices and set E of edges which are unordered pairs of distinct vertices.

The directed power graph of a semigroup G is a graph in which V (P(G)) = G and two
distinct elements x and y are adjacent if and only if y is a power of x. This directed graph was
firstly introduced by Kelarev and Quinn in their seminal paper [10]. In the mentioned paper, they
gave a very technical description of the structure of the power graphs of all finite abelian groups.
Kelarev and his co-workers [11, 12, 13], studied some other classes of semigroups by directed
power graph.

The undirected power graph P(G) (or power graph for short) of a semigroup G was intro-
duced by Chakrabarty et al. in [5]. It is proved that if G is finite group then P(G) is connected
if and only if G is periodical and if G is a finite group then P(G) is complete if and only if G is
cyclic of order 1 or pm, where p is prime and m ≥ 1 is a natural number. They also obtained exact
formula for the number of edges in a finite power graph. Cameron and Ghosh [3] proved that the
only finite group whose automorphism group is the same as its power graph is the Klein group of
order 4. They also conjectured that two finite groups with isomorphic power graphs have the same
number of elements of each order that proved by Cameron in [4]. Mirzargar et al. [15], consid-
ered some graph theoretical properties of a power graph that can be related to its group theoretical
properties and in [17], the authors considered the problem of 2−connectivity of the power graphs
into account and in [2] this problem is solved in some classes of finite simple groups.

The proper power graph P(G) of a group G is obtained from the power graph of G by deleting
the identity element as a vertex. The power graph of a group is always connected, since identity
element is adjacent to every other vertex. Moghaddamfar et al. [16] proved thatP?(G) is connected
if and only if G has a unique minimal subgroup. Further, P?(G) is shown to be bipartite if and
only if no element of G has order greater than 3, and to be planar if and only if no element of G
has order greater than 6. We refer to [1] for a complete survey of recent results on this topic.

Throughout this paper our graph theory notations are standard and can be taken from the stan-
dard books on graph theory or [8]. To simplify our figures, the power graph of the cyclic group of
order n is denoted by Zn. Other notations are standard and can be taken from the book of James
and Liebeck [7] or [8].

In this paper we prove the following results:
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Theorem 1.1.

Aut(P(T4n)) ∼=


S2n−2 × S2 × (S2 o Sn), if n is a power of 2∏
d|2n Sφ(d) × (S2 o Sn), otherwise

,

where n ≥ 3,

Aut(P(SD8n)) ∼=


S4n−2 × S2n × (S2 o Sn), if n is a power of 2∏
d|4n Sφ(d) × S2n × (S2 o Sn), otherwise

,

where n ≥ 2,

Aut(P(U6n)) ∼=


∏
d|3n Sφ(d) ×

∏
d|2n,d-n Sφ(d) o S3 k = 0∏

d|2n,d-n Sφ(d) o S3 ×
∏
d|n Sφ(d) ×

∏
d|n,d-t Sφ(d) o S3 k = 1∏

d|2n,d-n Sφ(d) o S3 ×
∏
d|n Sφ(d) ×

∏
d|3t,d-t Sφ(d) o S3

×
∏
d|n,d-3t Sφ(d) o S2 k ≥ 2

,

where k is nonnegative integer and satisfies n = 3kt and some positive

integer t such that 3 - t,

Aut(P(V8n)) ∼=


S2n × S2 o Sn ×

∏
d|2n,d-n Sφ(d) o S2 ×

∏
d|2n Sφ(d) k = 0,

S2n+1 × S2 o Sn ×
∏k−1
l=1 S2

2l
× S2k o S2 t = 1, k ≥ 1

S2n × S2 o Sn ×
∏
d|t S

4
φ(d) ×

∏k
s=2

∏
d|2st , d-2s−1t S

2
φ(d)

×
∏
d|2k+1t , d-2kt Sφ(d) o S2 t > 1, k ≥ 1

.

where n = 2kt for a nonnegative k and some positive odd integer t.

We also describe the automorphism groups of the undirected power graphs of the first Mathieu
group M11 and first Janko group J1.

Theorem 1.2.

Aut(P(M11)) ∼= (S10 o S144)× (S4 o S396)× (S2 o S55)×
(
(S6 o S3)× (S2 o S4)× S2

)
o S165,

Aut(P(J1)) ∼= (S10 o S1596)× (S6 o S4180)× (S18 o S1540)

×
((
S2 × S8 × S4 × (S4 o S3)× (S2 o S5)

)
o S2

)
o S1463.

2. Power Graph Descriptions

Our proof of Theorem 1.1 relies upon the authors’ earlier description of the power graphs of
these groups [14].

Theorem 2.1.

Aut(P(Zn)) ∼=
{

Sn n is a prime power
Sφ(n)+1 ×

∏
d|n,d6=1,n Sφ(d) otherwise

.

Suppose Γ1 = (V1, E1) and Γ2 = (V2, E2) are graphs with disjoint vertex sets. The union
Γ1 ∪ Γ2 is the graph with V (Γ1 ∪ Γ2) = V1 ∪ V2 and E(Γ1 ∪ Γ2) = E1 ∪E2. For positive integers
n, we write nΓ to denote the union of n disjoint copies of Γ.
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Theorem 2.2. Suppose Γ = n1Γ1 ∪ n2Γ2 ∪ · · · ∪ ntΓt with Γi 6∼= Γj for i 6= j. Then, Aut(Γ) =
Aut(Γ1) o Sn1 × Aut(Γ2) o Sn2 × · · · × Aut(Γt) o Snt .

Let Γ = (V,E) be a graph, and for each v ∈ V , let ∆v be a graph. Following Sabidussi [18,
p. 396], the Γ−join of {∆v}v∈V is the graph Γ[{∆v}v∈V ] with

V (Γ[{∆v}v∈V ]) = {(x, y) | x ∈ V & y ∈ V (∆x)},
E(Γ[{∆v}v∈V ]) = {(x, y)(x′, y′) | xx′ ∈ E or x = x′ & yy′ ∈ E(∆x)}.

We represent the Γ−join pictorially by a graph Γ whose vertices are labeled by other graphs.
In graph join diagrams, we abbreviate Zn = P(Zn). Note that P(Z2) is an edge and P(Z4) is the
complete graph on four vertices.

Theorem 2.3. The following are hold:

(1) InP(T4n), there is an element a of order 2 adjacent to every other element. P(T4n)\{e, a} ∼=
T ∪nZ2, where T is the power graph of Z2n with the identity an element to order 2 removed.

(2) The power graph of SD8n is depicted in 1. In this figure, D denotes the power graph of Z4n

with the identity and element a to order 2 removed.

(3) The power graph of U6n is depicted in Figure 2.

(4) For odd integers n, P(V8n) is isomorphic to the nested graph join of Figure 3.

(5) For n = 2k, P(V8n) is isomorphic to the nested graph join of Figure 4.

(6) For n = 2kt, where k is positive and t is positive odd integer P(V8n) is isomorphic to the
nested graph join of Figure 5.

The identity of a group is adjacent to every vertex in its power graph. If there is no other such
vertex, then the identity is fixed by every automorphism and P(G) = P?(G). More generally, if A
is the set of all vertices adjacent to every vertex in a graph Γ, then Aut(Γ) is isomorphic to S|A|×
Aut(Γ−A). By [5], the power graph of a group is complete if and only if the group is isomorphic
to a cyclic group of prime power order.

Observe that if two elements of a group generate the same cyclic subgroup, then they have the
same neighbors in the power graph of the group. In particular, there is an automorphism of the
power graph which swaps two such elements while fixing every other vertex of the power graph.
For the reason we often see direct summands of the form Sφ(d). Cameron and Ghosh [3] proved
that the only finite group whose automorphism group is the same as its power graph is the Klein
group of order 4.

Suppose G is a finite group and x ∈ G. Then the degree of x in P(G) can be calculated by
deg(x) = |{g ∈ G | 〈x〉 ≤ 〈g〉 or 〈g〉 ≤ 〈x〉}|.

If n = 1 then P(T4) ∼= K4 and so Aut(K4) ∼= S4, and if n = 2 then Aut(P(T8)) ∼= C2×C2×
S4. The other cases are considered in the following theorem:
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Theorem 2.4. Suppose n ≥ 3 is a natural number. Then

Aut(P(T4n)) ∼=


S2n−2 × S2 × (S2 o Sn), n is a power of 2∏
d|2n

Sφ(d) × (S2 o Sn), otherwise
.

Proof. By Theorem 2.3, the power graph of T4n can be constructed from a copy of P(Z2n) and n
copies of K4 that all of them have a common edge ea such that o(a) = 2. Note that vertices e and
a have maximum degrees between vertices of P(T4n). On the other hand,

P(T4n)− {e, a} ∼= P̃(Z2n) ∪K2 ∪ · · · ∪K2︸ ︷︷ ︸
n

,

where P̃(Z2n) ∼= P(Z2n)− {e, a}. We now assume that n is a power of 2. Then deg(e) = deg(a)
and P̃(Z2n) is complete graph of order 2n− 2. Therefore,

Aut(P(T4n)) = Aut(P̃(Z2n))× Aut(K2)× Aut(K2) o Sn ∼= S2n−2 × S2 × S2 o Sn.

Otherwise, deg(e) 6= deg(a) and by Theorem 2.1,

Aut(P̃(Z2n)) ∼= Sφ(2n) ×
∏

1,2,2n6=d|2n

Sφ(d) ∼=
∏
d|2n

Sφ(d).

Therefore,

Aut(P(T4n)) = Aut(P̃(Z2n))× Aut(K2) o Sn ∼=
∏
d|2n

Sφ(d) × (S2 o Sn),

which completes the proof.

It is easy to see that if n = 1 then Aut(P(SD8)) ∼= C2× (S2 oS2). The other cases, are studied
in the following theorem:

Theorem 2.5. Suppose n ≥ 2 is a natural number. Then,

Aut(P(SD8n)) ∼=


S4n−2 × S2n × (S2 o Sn), n is a power of 2∏
d|4n

Sφ(d) × S2n × (S2 o Sn), otherwise
.

Proof. By Theorem 2.3, the power graph of SD8n is a union of P(Z4n), n copies of P(Z4) that
share an edge and 2n copies of P(Z2), all of them are connected to each other in the identity
element of SD8n, Figure 1. Suppose n ≥ 2 and P̃(Z4n) ∼= P(Z4n)− {e, a}, where o(a) = 2. It is
clear that the identity has maximum degree in P̃(Z4n) and so Aut(P∗(SD8n)) = Aut(P(SD8n)).
On the other hand,

P∗(SD8n)− {a} = P̃(Z4n) ∪K2 ∪ · · · ∪K2︸ ︷︷ ︸
n

∪K1 ∪ · · · ∪K1︸ ︷︷ ︸
2n

.
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We now assume that n is a power of 2. Then P̃(Z4n) ∼= K4n−2 and Aut(P̃(Z4n)) ∼= S4n−2, So

Aut(P(SD8n)) ∼= S4n−2 × S2n × (S2 o Sn)

Otherwise, by Theorem 2.1,

Aut(P̃(Z4n)) ∼= Sφ(4n) ×
∏

1,2,4n6=d|4n

Sφ(d) ∼=
∏
d|4n

Sφ(d).

Therefore,

Aut(P(SD8n)) = Aut(P̃(Z4n))× S2n × Aut(K2) o Sn ∼=
∏
d|4n

Sφ(d) × S2 × (S2 o Sn),

proving our result.

The power graph of the group U6n is depicted in Figure 2 and in three cases that 3 - n, 3|n and
9 - n, and 9|n, respectively.

Theorem 2.6. Suppose n = 3kt, where k is a non-negative integer and t is a positive integer such
that 3 - t and k ≥ 0. Then

Aut(P(U6n)) ∼=



∏
d|3n

Sφ(d) ×
∏

d|2n,d-n

Sφ(d) o S3, k = 0

∏
d|2n,d-n

Sφ(d) o S3 ×
∏
d|n

Sφ(d) ×
∏
d|n,d-t

Sφ(d) o S3, k = 1

∏
d|2n,d-n

Sφ(d) o S3 ×
∏
d|n

Sφ(d) ×
∏
d|3t,d-t

Sφ(d) o S3 ×
∏

d|n,d-3t

Sφ(d) o S2, k ≥ 2

.

Proof. Our main proof consider three cases as follows:

1. k = 0. In this case, the power graph can be constructed from a copy of P(Z3n) and three
copies of P(Z2n) all of them share a subgraph isomorphic to P(Zn), Figure 2. Since the
identity has maximum degree, Aut(P∗(U6n)) ∼= Aut(P(U6n)). Define P̃(Z3n) = P(Z3n)−
P(Zn) and P̃(Z2n) = P(Z2n)− P(Zn). Thus,

Aut(P∗(U6n)) = Aut(P̃(Z3n))× Aut(P(Zn))× Aut(P̃(Z2n)) o S3,

∼=
∏

d|3n,d-n

Sφ(d) ×
∏
d|n

Sφ(d) ×
∏

d|2n,d-n

Sφ(d) o S3,

∼=
∏
d|3n

Sφ(d) ×
∏

d|2n,d-n

Sφ(d) o S3.
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2. k = 1. By Theorem 2.3, the power graph can by constructed from three copies ofP(Z2n) and
four copies of P(Zn) in such a way that all copies of P(Z2n) share a subgraph isomorphic to
P(Zn) and three of four copies of P(Zn) share in a subgraph isomorphic to P(Zt), Figure 2.
Define P̃(Zn) = P(Zn)− P(Zt) and P̃(Z2n) = P(Z2n)− P(Zn). Since Aut(P∗(U6n)) ∼=
Aut(P(U6n)),

Aut(P∗(U6n)) = Aut(P̃(Z2n)) o S3 × Aut(P̃(Zn))× Aut(P(Zt))× Aut(P̃(Zn)) o S3,

∼=
∏

d|2n,d-n

Sφ(d) o S3 ×
∏
d|n,d-t

Sφ(d) ×
∏
d|t

Sφ(d) ×
∏
d|n,d-t

Sφ(d) o S3,

∼=
∏

d|2n,d-n

Sφ(d) o S3 ×
∏
d|n

Sφ(d) ×
∏
d|n,d-t

Sφ(d) o S3.

3. k ≥ 2. By Theorem 2.3, the power graph can be constructed from three copies of P(Z2n),
three copies of P(Zn), four copies of P(Z3t) and a copy of P(Zt), see Figure 3. Define
P̃(Z3t) = P(Z3t) − P(Zt), P̃(Zn) = P(Zn) − P(Z3t) and P̃(Z2n) = P(Z2n) − P(Zn).
Therefore,

Aut(P∗(U6n)) = Aut(P̃(Z2n)) o S3 × Aut(P̃(Zn))× Aut(P̃(Z3t))

× Aut(P(Zt))× Aut(P̃(Z3t)) o S3 × Aut(P̃(Zn)) o S2,

∼=
∏

d|2n,d-n

Sφ(d) o S3 ×
∏

d|n,d-3t

Sφ(d) ×
∏
d|3t,d-t

Sφ(d) ×
∏
d|t

Sφ(d)

×
∏
d|3t,d-t

Sφ(d) o S3 ×
∏

d|n,d-3t

Sφ(d) o S2,

∼=
∏

d|2n,d-n

Sφ(d) o S3 ×
∏
d|n

Sφ(d) ×
∏
d|3t,d-t

Sφ(d) o S3 ×
∏

d|n,d-3t

Sφ(d) o S2.

This completes the proof.

Suppose n = 2kt, where k is a non-negative and t is an odd positive integer. The power graph
of the group V8n is depicted in Figures 3, 4 and 5, in three cases that k = 0, (t = 1, k ≥ 1) and
t > 1, k ≥ 1, respectively. It can easily be seen that if n = 1 then Aut(P(V8)) ∼= S4 × S3. The
other cases will be studies in the following theorem:
Theorem 2.7. Suppose n = 2kt, where k is a non-negative and t is an odd positive integer. Then

Aut(P(V8n)) ∼=



S2n × S2 o Sn ×
∏

d|2n,d-n

Sφ(d) o S2 ×
∏
d|2n

Sφ(d) k = 0

S2n+1 × S2 o Sn ×
k−1∏
l=1

S2
2l × S2k o S2 t = 1, k ≥ 1

S2n × S2 o Sn ×
∏
d|t

S4
φ(d) ×

k∏
s=2

∏
d|2st
d-2s−1t

S2
φ(d) ×

∏
d|2k+1t

d-2kt

Sφ(d) o S2 t > 1, k ≥ 1

.
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Proof. Suppose n ≥ 3 is odd. From Figure 3, one can see that the identity has maximum degree.
This shows that Aut(P∗(V8n)) = Aut(P(V8n)). On the other hand,P∗(V8n) = F ∗∪K1 ∪ · · · ∪K1︸ ︷︷ ︸

2n

and so Aut(P∗(V8n)) ∼= S2n × Aut(F ∗). Consider the element a of order 2 in F and F ∗∗ =
F ∗ − {a}. Since a has maximum degree, Aut(F ∗∗) ∼= Aut(F ∗). Define P̃(Z2n) = P(Z2n) −
P(Zn)− P(Z2). We have:

Aut(F ∗∗) ∼= S2 o Sn × Aut(P̃(Z2n)) o S2 × Aut(P̃(Z2n))× Aut(P(Zn))

∼= S2 o Sn ×
∏

d|2n,d-n

Sφ(d) o S2 ×
∏

d|2n,d-n

Sφ(d) ×
∏
d|n

Sφ(d)

∼= S2 o Sn ×
∏

d|2n,d-n

Sφ(d) o S2 ×
∏
d|2n

Sφ(d).

This completes the proof of part (1).
For part (2), we first assume that k = 1. Then Aut(P(V16)) ∼= S5× (S2 oS2) oS2, as desired. If

k ≥ 2 then by Figure 4, Aut(P∗(V8n)) ∼= Aut(P(V8n)) and P∗(V8n)) = K1 ∪ · · · ∪K1︸ ︷︷ ︸
2n+1

∪R∗ ∪ S∗

which implies thatP∗(V8n)) ∼= S2n+1×Aut(R∗)×Aut(S∗). On the other hand, Aut(S∗) ∼= S2 oSn.
So, it is enough to calculate Aut(R∗). To do this, we define ˜P(Z2l) = P(Z2l)−P(Z2l−1), 2 ≤ l ≤
k + 1. Then

Aut(R∗) =
k∏
l=2

(Aut( ˜P(Z2l)))
2 × Aut( ˜P(Z2k+1)) o S2,

∼=
k∏
l=2

S2
2l−1 × S2k o S2,

∼=
k−1∏
l=1

S2
2l × S2k o S2.

This proved the part (2).
To prove (3), we note that by Figure 5, one can see that Aut(P∗(V8n)) = Aut(P(V8n)) and

P∗(V8n) ∼= K1 ∪ · · · ∪K1︸ ︷︷ ︸
2n

∪J∗. Hence Aut(P∗(V8n)) ∼= S2n × Aut(J∗). Again we assume that a

is an element of order 2 in J . It is clear that a has maximum degree in J . If J∗∗ = J∗ − {a} then
Aut(J∗∗) ∼= Aut(J∗). Define P̃(Z2st) = P(Z2st)− P(Z2s−1t), 1 ≤ s ≤ k + 1. Then

Aut(J∗∗) ∼= S2 o Sn × Aut(P(Zt))× Aut( ˜P(Z2t))
3

×
k∏
s=2

Aut( ˜P(Z2st))
2 × Aut( ˜P(Z2k+1t)) o S2.
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Since t is odd, P(Zt) = ˜P(Z2t) and so Aut(P(Zt)) ∼= Aut( ˜P(Z2t)). Therefore,

Aut(J∗∗) ∼= S2 o Sn × Aut(P(Zt))4 ×
k∏
s=2

Aut( ˜P(Z2st))
2 × Aut( ˜P(Z2k+1t)) o S2

∼= S2 o Sn ×
∏
d|t

S4
φ(d) ×

k∏
s=2

∏
d|2st
d-2s−1t

S2
φ(d) ×

∏
d|2k+1t

d-2kt

Sφ(d) o S2.

This completes the proof.

Figure 1. The power graph of the semi−dihedral group SD8n.

Figure 2. The power graph of U6n.

3. Concluding Remarks

In this paper the automorphism group of the power graphs of some families of finite groups are
computed. The present authors [14] asked the following question:
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Figure 3. The graph P(V8n), where n is odd.

Figure 4. The graph P(V8n), where n = 2k.

Figure 5. The graph P(V8n), where n = 2kt, k is positive and t is positive odd integer.

Figure 6. The graph P(M11).
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Figure 7. The graph P(J1).

Question. What is the automorphism group of P(G), where G is a sporadic group?

In this section, the automorphism group of P(M11) and P(J1) are computed. We start this
section by computing the automorphism group of the first Mathieu group.

Proposition 3.1. The automorphism group of the power graph of the first Matheiu group M11 is
isomorphic to

(S10 o S144)× (S4 o S396)× (S2 o S55)×
(
(S6 o S3)× (S2 o S4)× S2

)
o S165.

Proof. In [14] it is proved that the power graph of P(M11) has exactly 7920 vertices. This graph
can be constructed from 165 copies of a graph L, Figure 6, 55 copies of P(Z3), 396 copies of
P(Z5) and 144 copies of P(Z11), all connected to each other in the identity group of M11.

On the other hand, it is clear that Aut(P∗(M11)) ∼= Aut(P(M11)) and so

P∗(M11) ∼= 165L∗ ∪ 144P∗(Z11) ∪ 396P∗(Z5) ∪ 55P∗(Z3).

Therefore,

Aut(P∗(M11)) ∼= Aut(L∗) o S165 × S10 o S144 × S4 o S396 × S2 o S55.

To complete the proof, we have to compute Aut(L∗). Suppose a is an element of order 2 in L∗

and L∗∗ = L∗ − {a}. Since this element has maximum degree in L∗, Aut(L∗) ∼= Aut(L∗∗). Thus,
Aut(L∗∗) ∼= S6 o S3 × S2 o S4 × S2, which completes the proof.

Proposition 3.2. The automorphism group of the power graph of the first Janko group J1 is iso-
morphic to

(S10 o S1596)× (S6 o S4180)× (S18 o S1540)×
((
S2 × S8 × S4 × (S4 o S3)× (S2 o S5)

)
o S2

)
o S1463.
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Proof. In [14] it is proved that the Janko group J1 has exactly 175560 elements and its power graph
is a union of 1463 copies of a graph K, Figure 7, 1540 copies of P(Z19), 1596 copies of P(Z11)
and 4180 copies of P(Z7), all connected to each other in the identity group of J1. Obviously,
Aut(P∗(J1)) ∼= Aut(P(J1)) and

P∗(J1) ∼= 1463K∗ ∪ 1596P∗(Z11) ∪ 4180P∗(Z7) ∪ 1540P∗(Z19).

Therefore,

Aut(P∗(J1)) ∼= Aut(K∗) o S1463 × S10 o S1596 × S6 o S4180 × S18 o S1540.

Suppose a is an element of order 2 in K∗ and K∗∗ = K∗ − {a}. Since a has maximum degree in
K∗, Aut(K∗) ∼= Aut(K∗∗). Thus,

Aut(K∗∗) ∼=
(
(S2 × S8 × S4 × (S4 o S3)× (S2 o S5)

)
o S2.

This completes the proof.

The following general problem is most important and worth considering.

Problem 1. Investigate properties of the diameters of the power graphs.

Suppose F is the set of all groups which can be constructed from symmetric group by direct
or wreath product. Our calculations with small group theory of GAP [19] suggests the following
conjecture.

Conjecture 1. The automorphism group of the power graph of each group is a member of F .
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