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Abstract

We give some reduction formulas for computing the Tutte polynomial of any graph with parallel
classes. Several examples are given to illustrate our results.
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1. Introduction

Many polynomials have been extensively researched in relations to certain properties of graphs;
graph polynomials play some important roles as they encode various information about graphs.
Tutte and chromatic polynomials are two of the most studied graph polynomials. In addition, the
Tutte polynomial is applicable in many fields, such as, colorings, flows, network relaibility, knot
theory, statistical physics, etc.

This paper was motivated by the fact that the chromatic polynomial of a graph is an evaluation
of its Tutte polynomial. See [2, 4]. Further, it is easier to find the chromatic polynomial of a given
graph than to compute its Tutte polynomial which is often intractable. In fact, multigraphs of same
parallel classes share the same chromatic polynomials even though their Tutte polynomials are
different. This adds to the level of complexity for finding explicit formulas of Tutte polynomial of
graphs in general.
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For this reason, many research have been focused on finding more efficient algorithms to re-
duce the computational steps; see for instance [1, 3], for some reduction formulas for graphs and
matroids. Our results are inspired particularly by the work done in [3].

In this paper, we first present a short algorithm describing a sequence of deletion of some
edges of a simple graph to get a minor. This process gives rise to three types of minors. Later, we
classify multigraphs according to the type of minors obtained from their simplification. Then, for
each multigraph of these classes, we give a reduction formula for their Tutte polynomial in terms
of the Tutte polynomial of their simplification and the minor of their simplification. Finally, we
provide examples to illustrate the reduction formulas obtained for each class of multigraphs.

2. Preliminaries

In this section we review some basic definitions and methods for computing the Tutte polyno-
mial relevant to this paper.

G = (V,E) denotes an undirected (multi)graph where V = V (G) and E = E(G) denote,
respectively, the set of vertices and the multiset of unordered pair of vertices called edges or ele-
ments of G. An edge e ∈ E(G) with ends u, v ∈ V is denoted by {u, v} and when {u, v} occurs
more than once in E, it is said to be parallel. An edge in a connected graph is an isthmus if its
removal leaves a disconnected graph. The special edge {u, u} is called a loop. A graph that admits
no parallel edges or loops is said to be simple. The simplification or underlying graph of G is
obtained by removing any loop and repeated edge of E. A graph G is said to be isomorphic to
a graph H if G can be obtained by relabeling the vertices of H; and we write G ∼= H . Given
G, the deletion of an edge e ∈ E is denoted by G\e = (V,E\e). The contraction of e, denoted
by G/e, results in identifying the endpoints of e after its deletion. A minor G′ of G is a graph
obtained from G through a sequence of edge deletions/contractions. A collection of multigraphs
G = Gn, Gn−1, · · · , G1 forms a parallel class if their simplifications are isomorphic.

There are several methods for computing the Tutte polynomial of a graph, see [4, 5]. The most
widely used technique involves the deletion/contraction operation and it is given by the following:

T1. T (I;x, y) = x and T (L;x, y) = y where I is an isthmus and L is a loop.
T2. If e is an edge of the graph G and e is neither a loop nor an isthmus, then

T (G;x, y) = T (G\e;x, y) + T (G/e;x, y).

T3. If e is a loop or an isthmus of the graph G, then

T (G;x, y) = T (G(e);x, y)T (G/e;x, y).

T4. T (G;x, y) = 1 if G is an edgeless or null graph.

3. Types of graphs with parallel classes

In this section, we present an algorithm called DEL that is used to classify any graph. From a
simple graph G, we obtain a minor through a series of edge deletion; G is classified according to
the type of minor we obtain from DEL.
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Suppose G is a simple graph with some of its edges labeled, e1, e2, · · · , en. Let Mn =
{e1, e2, · · · , en} ⊆ E(G). By considering only the elements of Mn in G, we obtain a special
minor for G based on the deleted elements of Mn using the following algorithm:

Algorithm DEL

1. If all the elements of Mn are isthmuses in G, STOP, otherwise go to step 2.
2. Choose any element ei ∈Mn which is not an isthmus in G.
3. Delete ei from Mn.
4. If Mn 6= ∅, repeat step 1, otherwise STOP.

Types of minors

For any simple graph G, this algorithm DEL results in a minor G′, of one of the following three
groups:

Type-i None of the elements of Mn are deleted. Thus, they are all isthmuses in G and the minor
G′ = G.

Type-ii All the elements of Mn are deleted. In this the case the minor G′ = G\Mn.

Type-iii Some elements of Mn are deleted and its remaining elements become isthmuses. Hence,
the minor G′ = G\Ml with l < n and the deleted elements are e1, e2, · · · , el.

Let G = Gn, Gn−1, . . . , G1 be a collection of all multigraphs whose simplification is G. It is clear
that Gn, Gn−1, . . . , G1 are isomorphic up to parallel class. Consider a member say, Gn with parallel
edges, e1, e2, · · · , en. Denote by G, the graph obtained from Gn by replacing each edge ei in Gn by
a single edge (with the same label) ei in G, for i = 1, . . . , n. Thus, Mn = {e1, e2, · · · , en} ⊆ E(G)
and G a simplification of Gn. Since G is simple, we apply DEL to Mn to obtain the minor G′ of
Type-i, Type-ii or Type-iii, as previously described. Further, we classify Gn according to the type
of its minor G′ of G. Therefore we say that Gn (or G) is of Type-i, Type-ii or Type-iii if G′ is of
Type-i, Type-ii or Type-iii, respectively.

4. Tutte polynomials of parallel classes

In this section we state and prove the main results of this paper. In particular, we give expres-
sions for the Tutte polynomials of the different types of parallel classes defined in Section 3.

In the next two Lemmas, we give a recursion for computing the Tutte polynomial of parallel
class whose members have each, one single parallel edge.

Lemma 4.1. Let G be a simple graph with an edge e which is an isthmus. Let G1 be a graph whose
simplification is G such that e is parallel to k edges in G1 and k ≥ 1. Then the Tutte polynomial
of G1 is

T (G1;x, y) = (x+ (
k∑

i=1

yi))T (G/e;x, y).
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Proof. Note that if the edge e of G1 is contracted, then all the edges parallel to e become loops in
the minor G1/e. Furthermore, since e is an isthmus T (G;x, y) = xT (G/e;x, y). This establishes
the base case, when k = 1, for a proof by induction. An induction on k completes the proof.

Lemma 4.2. Suppose G is a simple graph with an edge e which is not an isthmus. Let G1 be a
graph whose simplification is G such that e is parallel to k edges in G1 and k ≥ 1. Then the Tutte
polynomial of G1 is

T (G1;x, y) = (
k∑

i=0

yi)T (G;x, y)− (
k∑

i=1

yi)T (G\e;x, y).

Proof. Recall that T (G;x, y) = T (G\e;x, y) + T (G/e;x, y) since e is not an isthmus. Hence we
write

T (G/e;x, y) = T (G;x, y)− T (G\e;x, y). (1)

Furthermore, if the edge e is contracted in G1, then all edges parallel to e become loops in the
minor G1/e. Induction on k completes the proof.

We now present the main results of this paper that give the Tutte polynomial of a member of
any parallel class in terms of the Tutte polynomial of its simplification. Thus, the next theorems
generalize the results in Section 3.

Recall that if a graph Gn is of Type-i, then all the elements of En = {e1, e2, · · · , en} in the
simplification of Gn are isthmuses.

Theorem 4.1. Let G be the simplification of a graph Gn which is of Type-i with En = {e1, e2, · · · ,
en} being the set of all parallel edges. If the edge ej is parallel to jp edges in Gn for any j ∈
{1, 2, · · ·n}, then the Tutte polynomial of Gn is

T (Gn;x, y) = [
n∏

j=1

(x+ (

jp∑
i=1

yi))]T (G/En;x, y).

Proof. By applying Lemma 4.1 on one parallel edge at a time, starting with en and repeating the
process for en−1, · · · , e1 successively, we get

T (Gn;x, y) = (x+

np∑
i=1

yi)T (Gn−1/en;x, y)

= (x+ (

np∑
i=1

yi))(x+ (

n−1p∑
i=1

yi))T (Gn−2/e1/e2;x, y)

...
...

...

= (x+ (

np∑
i=1

yi))(x+ (

n−1p∑
i=1

yi)) · · · (x+ (

1p∑
i=1

yi))T (G/e1/e2/ · · · /en;x, y)

= [
n∏

j=1

(x+ (

jp∑
i=1

yi))]T (G/En;x, y).
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Recall that if a graph Gn is of Type-ii, then in the process of obtaining the minor G′, all the
elements of En = {e1, e2, · · · , en} are deleted in G.

Theorem 4.2. Let Gn be a graph of Type-ii whose simplification is G and let En = {e1, e2, · · · , en}
be the set of all parallel edges in Gn. If the edge ej is parallel to jp edges for any j ∈ {1, 2, · · ·n}
and S ⊆ En such that S = {e1, e2, · · · , et} where t ≤ n and the complement of S, S =
{et+1, et+2, · · · , en}, then the Tutte polynomial of Gn is

T (Gn;x, y) = (−1)|S|
∑
S⊆En

[
t∏

l=1

(

lp∑
i=1

yi)][
n∏

l=t+1

(

lp∑
i=0

yi)]T (G\S;x, y)

Proof. Note that when S = ∅, S = En.
The Proof is by induction on n with the case when n = 1 being Lemma 4.2. When n = 2, E2

has two parallel elements namely, e1 and e2. We apply repeatedly Lemma 4.2 on e2 then on e1 to
get

T (G2;x, y) = (

2p∑
i=0

yi)T (G1;x, y)− (

2p∑
i=1

yi)T (G1\e2;x, y)

= (

2p∑
i=0

yi)[(

1p∑
i=0

yi)T (G;x, y)− (

1p∑
i=1

yi)T (G\e1;x, y)]

− (

2p∑
i=1

yi)[(

1p∑
i=0

yi)T (G\e2;x, y)− (

1p∑
i=1

yi)T (G\e2\e1;x, y)]

= (

2p∑
i=0

yi)(

1p∑
i=0

yi)T (G;x, y)− (

2p∑
i=0

yi)(

1p∑
i=1

yi)T (G\e1;x, y)

− (

2p∑
i=1

yi)(

1p∑
i=0

yi)T (G\e2;x, y)− (

2p∑
i=1

yi)(

1p∑
i=1

yi)T (G\e1\e2;x, y)

= (−1)|S|
∑
S⊆E2

[
t∏

l=1

(

lp∑
i=1

yi)][
2∏

l=t+1

(

lp∑
i=0

yi)]T (G\S;x, y).

Now assume the result is true for some graph Gq with q ≥ 1 parallel elements. Consider a graph
Gq+1 = Gq ∪ eq+1, where eq+1 is a parallel element. Thus, the simplification of Gq is equal to
the simplification of Gq+1 which is G. If S is a subset of Eq then S is also a subset of Eq+1 since
Eq ⊂ Eq+1. by definition.

Consider any subset S ′ of Eq+1. Note that there are two types of subsets of Eq+1 : those that
contain the element eq+1 and those that do not. By applying Lemma 4.2 on the parallel element
eq+1, we get

T (Gq+1;x, y) = (

(q+1)p∑
i=0

yi)T (Gq;x, y)− (

(q+1)p∑
i=1

yi)T (Gq\eq+1;x, y). (2)

117



www.ejgta.org

Formulas for the computation of the Tutte polynomial | E. Mphako-Banda and J.A. Allagan

Since eq+1 is not in Gq, it is not an element of Eq. Thus, eq+1 is not in any S ⊂ Eq. Therefore,
eq+1 is in all the minors of G\S when computing T (Gq;x, y). Furthermore, if we consider the set
Eq+1 and any subset S ′ which do not contain eq+1, it is clear that S ′ = S ⊆ Eq ⊂ Eq+1 Hence, we
obtain that

(

(q+1)p∑
i=0

yi)T (Gq;x, y) = (−1)|S|(
(q+1)p∑
i=0

yi)
∑
S⊆Eq

[
t∏

l=1

(

lp∑
i=1

yi)][

q∏
l=t+1

(

lp∑
i=0

yi)]T (G\S;x, y)

= (−1)|S|(
(q+1)p∑
i=0

yi)
∑

S=S′⊆Eq+1

eq+1 /∈S′

[
t∏

l=1

(

lp∑
i=1

yi)][

q∏
l=t+1

(

lp∑
i=0

yi)]T (G\S;x, y)

= (−1)|S′|
∑

S′⊆Eq+1

[
t∏

l=1

(

lp∑
i=1

yi)][

q+1∏
l=t+1

(

lp∑
i=0

yi)]T (G\S ′;x, y).

On the other hand, when eq+1 is deleted in Gq, it means eq+1 is not in any minor of the form
G\eq+1\S in the computation of T (Gq\eq+1;x, y). Thus, if we consider the set Eq+1 and any
subset S ′′ containing eq+1, then it is clear that S ′′ = S ∪ eq+1 ⊆ Eq ∪ eq+1 = Eq+1. Moreover, if
S = {e1, e2, · · · , et} then S ′′ = {e1, e2, · · · , et, et+1} where eq+1 = et+1 and t ≤ q. Furthermore,
the complement of S ′′, S ′′ = {et+2, et+3, · · · , en}. Hence, we can rewrite

−(
(q+1)p∑
i=1

yi)T (Gq\eq+1;x, y)

= (−1)(−1)|S|(
(q+1)p∑
i=1

yi)
∑
S⊆Eq

[
t∏

l=1

(

lp∑
i=1

yi)][
n∏

l=t+1

(

lp∑
i=0

yi)]T (G\eq+1\S;x, y)

= (−1)|S′′|
∑

S∪eq+1⊆Eq∪eq+1

[
t∏

l=1

(

lp∑
i=1

yi)(

(q+1)p∑
i=1

yi)][

q∏
l=t+1

(

lp∑
i=0

yi)]T (G\S ∪ eq+1;x, y)

= (−1)|S′′|
∑

S′′⊆Eq+1

[
t+1∏
l=1

(

lp∑
i=1

yi)][

q+1∏
l=t+2

(

lp∑
i=0

yi)]T (G\S ′′;x, y).

Now considering the fact that all subsets of Eq+1 are either the form S ′ or S ′′ and returning back
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to Equation 2, we get

T (Gq+1;x, y) = (

(q+1)p∑
i=0

yi)T (Gq;x, y)− (

(q+1)p∑
i=1

yi)T (Gq\eq+1;x, y)

= (−1)|S′|
∑

S′⊆Eq+1

[
t∏

l=1

(

lp∑
i=1

yi)][

q+1∏
l=t+1

(

lp∑
i=0

yi)]T (G\S ′;x, y)

+ (−1)|S′′|
∑

S′′⊆Eq+1

[
t+1∏
l=1

(

lp∑
i=1

yi)][

q+1∏
l=t+2

(

lp∑
i=0

yi)]T (G\S ′′;x, y).

= (−1)|S|
∑

S⊆Eq+1

[
t∏

l=1

(

lp∑
i=1

yi)][

q+1∏
l=t+1

(

lp∑
i=0

yi)]T (G\S;x, y).

Recall that if a graph Gn is of Type-iii, then some edges of {e1, e2, · · · , en} are not in the minor
G′ and those that are present in G′ are isthmuses in G′.

The proof for the next theorem follows directly from Theorem 4.1 and Theorem 4.2.

Theorem 4.3. Let Gn be a graph of Type-iii, such that in Gn the edge ej is parallel to jp edges
for any j ∈ {1, 2, · · ·n}. Suppose Er = {e1, e2, · · · , er} is a maximal set of edges which are not
isthmuses in Gn for some r < n, such that Er = {er+1, er+2, · · · , en} is a set of isthmuses in the
minor G\Er. If S ⊆ Er then the Tutte polynomial of Gn is

T (Gn;x, y) = (−1)|S|
∑
S⊆Er

(−1)|S|[
t∏

l=1

(

lp∑
i=1

yi)][
n∏

l=t+1

(

lp∑
i=0

yi)]T (G\S;x, y)

+ (−1)r[
r∏

l=1

(

lp∑
i=1

yi)][
n∏

l=r+1

(x+

lp∑
i=1

yi)]T (G\Er/Er;x, y).

5. Examples

We conclude this paper with some examples that illustrate the recurrence formulas presented
in the previous sections, for each type of parallel class.

Example 5.1. Let a multigraph G2 be defined by the vertex set V (G1) = {1, 2, 3, 4, 5, 6} and the
edge set

E(G2) = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {4, 5}, {5, 4}, {3, 6}, {6, 3}}.

If we let e1 = {4, 5} and e2 = {3, 6}, then E2 = {{4, 5}, {3, 6}} and 1p = 1 and 2p = 1. The
simplification of G2, is the graph G defined by the vertex set V (G) = {1, 2, 3, 4, 5, 6} and the edge
set

E(G) = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {4, 5}, {3, 6}}.
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The minor G′ obtained after applying algorithm DEL is defined by the vertex set V (G′) = {1, 2, 3, 4, 5, 6}
and the edge set

E(G′) = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {4, 5}, {3, 6}}.

G′ is a minor of Type-i, that is all the edges of E2, e1 and e2 are isthmuses in G′. Thus G2 is a
graph of Type-i. To find the Tutte polynomial of G2 we apply Theorem 4.1 where E2 = {e1, e2}
and G/E2

∼= C4, a cycle on 4 vertices.

T (G2;x, y) = [
2∏

j=1

(x+ (

jp∑
i=1

yi))]T (G/S;x, y)

= (x+ y)(x+ y)T (G/e1/e2;x, y)

= (x2 + 2xy + y2)T (C4;x, y)

= (x2 + 2xy + y2)(y + x+ x2 + x3)

= x3 + x4 + x5 + y3 + 3yx2 + 3y2x+ 2yx3 + 2yx4 + y2x2 + y2x3.

Example 5.2. Let a multigraph H2 be defined by the vertex set V (H2) = {1, 2, 3, 4} and the edge
set

E(H2) = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}, {3, 2}, {1, 4}}.

If we let e1 = {4, 1} and e2 = {2, 3} then E2 = {{4, 1}, {2, 3}} and 1p = 1 and 2p = 1. The
simplification of H2 is a graph H defined by the vertex set V (H) = {1, 2, 3, 4} and the edge set

E(H) = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}}.

The minor H ′ obtained after applying algorithm DEL is defined by the vertex set V (H ′) =
{1, 2, 3, 4} and the edge set E(H ′) = {{1, 2}, {1, 3}, {3, 4}}. H ′ is a minor of Type-ii as the
edges of E2, e1 and e2, are not in H ′. Hence H2 is a graph of Type-ii. To find the Tutte polynomial
of H2, we apply Theorem 4.2 where S ⊆ E2 = {{4, 5}, {3, 6}}. If S = ∅ then H\S = G and
also if S = {e1} then G\S is isomorphic to C3 ∪ e where e is an isthmus. Similarly, if S = {e2}
then G\S is isomorphic to C3 ∪ e where e is an isthmus. Finally, if S = {e1, e2} this implies
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E2 = {e1, e2} and H\S ∼= P4, a path on 4 vertices.

T (H2;x, y) = (−1)|S|
∑
S⊆E2

[
t∏

l=1

(

lp∑
i=1

yi)][
2∏

l=t+1

(

lp∑
i=0

yi)]T (H\S;x, y)

= (−1)|∅|[
2∏

l=1

(

lp∑
i=0

yi)]T (H\∅;x, y)

+ (−1)|{e1}|[
1∏

l=1

(

lp∑
i=1

yi)][
2∏

l=t+1

(

lp∑
i=0

yi)]T (H\{e1};x, y)

+ (−1)|{e2}|[
1∏

l=1

(

lp∑
i=1

yi)][
2∏

l=t+1

(

lp∑
i=0

yi)]T (H\{e2};x, y)

+ (−1)|{e1,e2}|[
2∏

l=1

(

lp∑
i=0

yi)]T (H\{e1, e2};x, y)

= [(1 + y)(1 + y)]T (H\∅;x, y)− [(1 + y)y]T (H\{e1};x, y)
− [(1 + y)y]T (H\{e2};x, y) + [y2]T (H\{e1};x, y)
= [(1 + 2y + y2]T (H;x, y)− 2y(1 + y)xT (C3;x, y)

+ y2T (P4;x, y)

= [1 + 2y + y2][y + x+ 2x2 + x3 + 2yx+ y2]

− [2y2 + 2y][y + x+ x2] + y2x3

= x+ 2x2 + x3 + y + y2 + 3y3 + y4 + 2xy + 3y2x.

Example 5.3. Let N2 be a multigraph defined by the vertex set V (N2) = {1, 2, 3, 4} and the edge
set

E(N2) = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {2, 1}, {4, 3}}.

If we let e1 = {1, 2} and e2 = {3, 4} then E2 = {e1, e2} and 1p = 1 and 2p = 1. The simplification
of N2 is a graph N defined by the vertex set V (N) = {1, 2, 3, 4} and the edge set E(N) =
{{1, 2}, {2, 3}, {3, 4}, {4, 1}}. The minor N ′ obtained after applying the algorithm DEL is a graph
defined by the vertex set V (N ′) = {1, 2, 3, 4} and the edge set E(N ′) = {{1, 4}, {3, 4}, {2, 3}}.
N ′ is a minor of Type-iii, that is e1 is not in N ′ and e2 is an isthmus in N ′. Thus, N2 is a graph
of Type-iii. To find the Tutte polynomial of N2 we apply Theorem 4.3 where S ⊆ E1 = {e1}.
Therefore if S = ∅ then N/S = N and if S = {e1} this implies that N\S is isomorphic to P4.
Note that N\E1/E1

∼= P3.
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T (N2;x, y) = (−1)|S|
∑
S⊆Er

(−1)|S|[
t∏

l=1

(

lp∑
i=1

yi)][
n∏

l=t+1

(

lp∑
i=0

yi)]T (N\S;x, y)

+ (−1)r[
r∏

l=1

(

lp∑
i=1

yi)][
n∏

l=r+1

(x+

lp∑
i=1

yi)]T (M\Er/Er;x, y)

= (−1)|S|
∑
S⊆E1

[
t∏

l=1

(

lp∑
i=1

yi)][
2∏

l=t+1

(

lp∑
i=0

yi)]T (N\S;x, y)

+ (−1)1[
1∏

l=1

(

lp∑
i=1

yi)][
2∏

l=2

(x+

lp∑
i=1

yi)]T (N\E1/E1;x, y).

= [(1 + y)(1 + y)]T (N\∅;x, y)− [(1 + y)y]T (N\{e1};x, y)
− y[x+ y]T (N\e1/e2;x, y).
= [1 + 2y + y2]T (C4;x, y)− y(1 + y)xT (P4;x, y)

+ [y(y + x)]T (P3;x, y)

= [1 + 2y + y2][y + x+ x2 + x3]− y(1 + y)x4 − [y2 + yx]x2

= x+ x2 + x3 + y + 2y2 + y3 + 2yx+ 2yx2 + y2x.

Acknowledgement
a Supported wholly by the National Research Foundation of South Africa, Grant no. 86330

References

[1] A. Andrzejak, Splitting Formulas for Tutte polynomials, J. Combin. Theory Ser. B 70 (1997),
346–366.

[2] T.H. Brylawski, and J.M. Oxley, The Tutte polynomial and its applications, in White, N.,
editor, Matroid Applications, Encyclopedia of Mathematics and its Applications, Cambridge
University Press, Cambridge, (1992), 123–215.

[3] L. Traldi, Series and parallel reductions for the Tutte polynomial, Discrete Math. 220 (2000),
291–297.

[4] T.W. Tutte, A contribution to the theory of polynomials, Can. J. Math. 6 (1954), 80–91.

[5] D.J.A. Welsh, Counting, colourings and flows in random matroids, Combinatorics, Paul
Erdös is Eighty, Ketszthely, Hungary 2 (1993), 1–15.

122


