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Abstract

A subset X of edges of a graph G is called an edge dominating set of G if every edge not in
X is adjacent to some edge in X . The edge domination number γ′(G) of G is the minimum
cardinality taken over all edge dominating sets of G. An edge Roman dominating function of a
graph G is a function f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to
some edge e′ with f(e′) = 2. The weight of an edge Roman dominating function f is the value
w(f) =

∑
e∈E(G) f(e). The edge Roman domination number of G, denoted by γ′R(G), is the

minimum weight of an edge Roman dominating function of G. In this paper, we characterize trees
with edge Roman domination number twice the edge domination number.
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1. Introduction

For notation and graph theory terminology in general we follow [5]. Let G = (V,E) be a
simple graph. The open neighborhood of a vertex v ∈ V is N(v) = NG(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood of v is N [v] = NG[v] = NG(v) ∪ {v}. The degree of v, denoted by
deg(v), is the cardinality of its open neighborhood. A vertex of degree one is called a leaf, and its
neighbor is called a support vertex. An edge incident to a leaf is called a pendant edge. A strong
support vertex is a vertex that is adjacent to at least two leaves. A tree T is a double star if it
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contains exactly two vertices that are not leaves. For a, b ≥ 2, a double star whose support vertices
have degree a and b is denoted by S(a, b). If T is a rooted tree, we for each vertex v, we denote by
Tv the sub-rooted tree rooted at v. The height of a rooted tree is the maximum distance from the
root to a leaf.

A subset X of E is called an edge dominating set of G if every edge not in X is adjacent to
some edge in X . The edge domination number γ′(G) of G is the minimum cardinality taken over
all edge dominating sets of G. We refer to an edge dominating set with minimum cardinality as
a γ′(G)-set. The concept of edge domination was introduced by Mitchell and Hedetniemi [7]. A
function f : V (G) → {0, 1, 2} is a Roman dominating function, or just RDF, if every vertex u for
which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF
is the value f(V (G)) =

∑
u∈V f(u). The Roman domination number of a graph G, denoted by

γR(G), is the minimum weight of an RDF on G (see [3, 6]).
Roushini Leely Pushpam et al. [8] initiated the study of the edge version of Roman domination.

An edge Roman dominating function (or just ERDF) of a graph G is a function f : E(G) →
{0, 1, 2} such that every edge e with f(e) = 0 is adjacent to some edge e′ with f(e′) = 2. The
weight of an edge Roman dominating function f is the value w(f) =

∑
e∈E(G) f(e). The edge

Roman domination number of G, denoted by γ′R(G), is the minimum weight of an edge Roman
dominating function of G. We refer to an ERDF with minimum weight as a γ′R(G)-function. If f
is a γ′R(G)-function, then we simply write f = (E0, E1, E2), where Ei = {e ∈ E(G) : f(e) = i},
i = 0, 1, 2. It is easy to see that γ′R(G) ≤ 2γ′(G) for any graph G. The concept of edge Roman
domination is further studied by several authors, (see for example [1, 2, 4]).

In this paper we give a constructive characterization for trees whose edge Roman domination
number is twice the edge domination number. We use the following.

Theorem 1.1 ([4]). For a graph G, γ′R(G) = 2γ′(G) if and only if there is a γ′R(G)-function f
with E1 = ∅.

2. Main result

A support vertex v of a tree is called a special support vertex if no γ′R(T )-function assigns 2 to
a pendant edge at v. Let F1 be the class of all rooted trees, such that the root has degree at least
two, any leaf is within distance two from the root, and any child of the root is either a leaf or a
strong support vertex.

Now we present a constructive characterization of trees T with γ′R(T ) = 2γ′(T ). For this pur-
pose, we define a family of trees as follows. Let T be the family of trees T that can be obtained
from a sequence T1, T2,· · · ,Tj (j ≥ 2) such that T1 is a star K1,r for r ≥ 2, or a double-star, and
if j ≥ 2, Ti+1 can be obtained recursively from Ti for 1 ≤ i ≤ j − 1 by one of the following
operations.

Operation O1. Assume that w ∈ V (Ti). Then Ti+1 is obtained from Ti by joining w to the root of
a tree of F1.
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Operation O2. Assume that w ∈ V (Ti). Then Ti+1 is obtained from Ti by joining w to a leaf of a
star of order at least four.

OperationO3. Assume that w ∈ V (Ti) is a special support vertex or a leaf. Then Ti+1 is obtained
from Ti by joining w to a leaf of a path P3, or joining w to a center of S(a, 2) whose degree is a.

Operation O4. Assume that w ∈ V (Ti) is a vertex that has a neighbor u of degree at least two
such that any vertex of N(u)− {w} is a leaf. Then Ti+1 is obtained from Ti by joining w to a leaf
of a path P3, or joining w to a center of S(a, 2) whose degree is a.

Operation O5. Assume that w ∈ V (Ti) is a vertex such that (1) a component of T − w is a path
P3 : xyz, where x ∈ NTi(w), or (2) a component of T − w is a double-star S(a, 2), where w is
adjacent to a vertex of maximum degree S(a, 2). Then Ti+1 is obtained from Ti by joining w to a
leaf of a path P3, or joining w to a center of S(a, 2) whose degree is a.

Lemma 2.1. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O1, the γ′R(Ti+1) =
2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti), and w ∈ V (Ti). Assume that Ti+1 is obtained by joining w to the
root x of a tree T ∈ F1. Let y1, . . . , yk be the children of x which are strong support vertex.
Clearly adding xyi (i = 1, 2, . . . , k) to any γ′(Ti)-set yields an edge dominating set for Ti+1, and
so γ′(Ti+1) ≤ γ′(Ti) + k. Furthermore, any γ′R(Ti)-function can be extended to an ERDF for
Ti+1 by assigning 2 to xyi (i = 1, 2, . . . , k), and 0 to wx and each other edge of Ti+1. Thus
γ′R(Ti+1) ≤ γ′R(Ti)+2k. Let f = (E0, E1, E2) be a γ′R(Ti+1)-function such that |E2| is maximum.
Clearly we may assume that f(xyi) = 2 (i = 1, 2, . . . , k). If f(wx) = 2, then we replace f(wx)
by 0, and one edge of Ti at w by 2. Thus we may assume that f(xw) = 0. Then f |V (Ti) is an ERDF
for Ti, implying that γ′R(Ti) ≤ γ′R(Ti+1)− 2k. Thus γ′R(Ti+1) = γ′R(Ti) + 2k. Now,

γ′(Ti) =
γ′R(Ti)

2
=
γ′R(Ti+1)− 2k

2
≤ 2γ′(Ti+1)− 2k

2
= γ′(Ti+1)− k,

and thus γ′(Ti+1) ≥ γ′(Ti) + k. Thus γ′(Ti+1) = γ′(Ti) + k. Now γ′R(Ti+1) = γ′R(Ti) + 2k =
2γ′(Ti) + 2k = 2γ′(Ti+1).

Lemma 2.2. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O2, the γ′R(Ti+1) =
2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti), and w ∈ V (Ti). Assume that Ti+1 is obtained by joining w to a leaf
x of a star of order at least four. Let y be the center of the added star and x, y1, . . . , yl (l ≥ 2) be
the leaves of the added star. Clearly adding xy to any γ′(Ti)-set yields an edge dominating set for
Ti+1, and so γ′(Ti+1) ≤ γ′(Ti)+1. Furthermore, any γ′R(Ti)-function can be extended to an ERDF
for Ti+1 by assigning 2 to xy and 0 to wx and yyi (i = 1, . . . , l). Thus γ′R(Ti+1) ≤ γ′R(Ti) + 2.
Let f be a γ′R(Ti+1)-function. Clearly we may assume that f(xy) = 2. If f(wx) = 2, then may
assume that f(e) = 0 for every edge of Ti at w. Then we replace f(wx) by 0, and one edge
of Ti incident with w by 2. Thus we may assume that f(xw) = 0. Then f |V (Ti) is an ERDF
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for Ti, implying that γ′R(Ti) ≤ γ′R(Ti+1) − 2. Thus γ′R(Ti+1) = γ′R(Ti) + 2. Now, γ′(Ti) =
γ′R(Ti)

2
=

γ′R(Ti+1)−2
2

≤ 2γ′(Ti+1)−2
2

= γ′(Ti+1)− 1, and this implies that γ′(Ti+1) = γ′(Ti)+ 1. Now
γ′R(Ti+1) = γ′R(Ti) + 2 = 2γ′(Ti) + 2 = 2γ′(Ti+1).

Lemma 2.3. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O3, the γ′R(Ti+1) =
2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti). Assume that w is a special support vertex of Ti, and assume that
Ti+1 is obtained by joining w to the leaf x of a path xyz. Clearly adding xy to any γ′(Ti)-set
yields an edge dominating set for Ti+1, and so γ′(Ti+1) ≤ γ′(Ti) + 1. Furthermore, any γ′R(Ti)-
function can be extended to an ERDF for Ti+1 by assigning 2 to xy, and 0 to wx and yz. Thus
γ′R(Ti+1) ≤ γ′R(Ti)+2. Clearly γ′R(Ti+1) ≥ γ′R(Ti)+1. Suppose that γ′R(Ti+1) = γ′R(Ti)+1. Let
f = (E0, E1, E2) be a γ′R(Ti+1)-function such that |E2| is maximum and f(yz) 6= 2. If f(xy) = 2,
then f |V (Ti) is an ERDF for Ti, a contradiction. Thus f(xy) 6= 2. Then f(xw) = 2, and so
f(yz) = 1. Let w1 be a leaf of Ti adjacent to w. Then clearly f(ww1) = 0. Now replacing f(ww1)
by 2 yields a γ′R(Ti)-function contradicting the speciality of w. Thus γ′R(Ti+1) = γ′R(Ti)+2. Now
γ′(Ti) =

γ′R(Ti)

2
=

γ′R(Ti+1)−2
2

≤ 2γ′(Ti+1)−2
2

= γ′Ti+1 − 1, and thus γ′(Ti+1) ≥ γ′(Ti) + 1. Thus
γ′(Ti+1) = γ′(Ti) + 1. Now γ′R(Ti+1) = γ′R(Ti) + 2 = 2γ′(Ti) + 2 = 2γ′(Ti+1). If w is a leaf, or
Ti+1 is obtained by joining w to a center of a double star S(a, 2) whose degree is a, then similarly
γ′R(Ti+1) = 2γ′(Ti+1).

Lemma 2.4. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O4, the γ′R(Ti+1) =
2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti), w ∈ V (Ti), and u ∈ N(w) be the vertex such that any vertex of
N(u) − {w} is a leaf. First assume that Ti+1 is obtained by joining w to the leaf x of a path
xyz. As Lemma 2.3, we have γ′(Ti+1) ≤ γ′(Ti) + 1 and γ′R(Ti+1) ≤ γ′R(Ti) + 2. Clearly
γ′R(Ti+1) ≥ γ′R(Ti)+1. Let f = (E0, E1, E2) be a γ′R(Ti+1)-function with pendant edges assigned
the value 2 as few as possible. By our choice f(vw) = f(xy) = 2. Hence f |E(Ti) is an ERDF
and γ′(Ti) ≤ γ′(Ti+1) − 2. Thus γ′R(Ti+1) = γ′R(Ti) + 2. Now γ′(Ti) =

γ′R(Ti)

2
=

γ′R(Ti+1)−2
2

≤
2γ′(Ti+1)−2

2
= γ′Ti+1 − 1, and thus γ′(Ti+1) ≥ γ′(Ti) + 1. Thus γ′(Ti+1) = γ′(Ti) + 1. Now

γ′R(Ti+1) = γ′R(Ti) + 2 = 2γ′(Ti) + 2 = 2γ′(Ti+1). If Ti+1 is obtained by joining w to a center of
a double star S(a, 2) whose degree is a, then similarly γ′R(Ti+1) = 2γ′(Ti+1).

Similarly the following is verified.

Lemma 2.5. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O5, the γ′R(Ti+1) =
2γ′(Ti+1).

We now are ready to state the main result of this paper.

Theorem 2.1. For a tree T , γ′R(T ) = 2γ′(T ) if and only if T ∈ T .

Proof. The sufficiency follows by an induction on the edge Roman domination number and Lem-
mas 2.1, 2.2, 2.3, 2.4, and 2.5. We need to prove the necessity. We prove by induction on the edge
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domination number γ′(T ) of a tree T with γ′R(T ) = 2γ′(T ) that T ∈ T . If γ′R(T ) = 1, then since
γ′R(K2) 6= 2γ′(K2), T is a star with at least three vertices, or a double-star, and so T ∈ T . Suppose
the result is true for all trees T ′ with γ′R(T

′) = 2γ′(T ′) and γ′(T ′) < γ′(T ). Since γ′(T ) > 1, we
obtain diam(T ) ≥ 4. Among all diametrical paths in T , let xx1x2 . . . xd be a diametrical path in
T such that deg(xd−1) is maximum. We root T at x. By Theorem 1.1 there is a γ′R(T )-function
f = (E0, E1, E2) with E1 = ∅. We may assume that f(xd−1xd−2) = 2.

Assume that d = 4. Clearly, we may assume that x1 and x3 are strong support vertices, and any
child of x1 different from x2 is a leaf. Thus we may assume that f(x1x2) = f(x2x3) = 2. Since
E1 = ∅ we obtain that any child of x2 is a leaf or a strong support vertex. Clearly T − Tx2 is a star
of order at least three, and so belongs to T . If deg(x2) ≥ 3, then Tx2 ∈ F1, and so T is obtained
from T −Tx2 by OperationO1. Thus deg(x2) = 2. Then T is obtained from T −Tx2 by Operation
O2. We thus assume that d ≥ 5. We consider the following two cases.

Case 1. deg(xd−1) ≥ 3.
Assume that deg(xd−2) ≥ 3. Since E1 = ∅ we obtain that any child of xd−2 is a leaf or a

strong support vertex. Let T1 = T − Txd−2
, and assume that xd−2 has precisely k children that

are strong support vertices. Then we may assume that f(xd−2u) = 2 for each child u of xd−2
with deg(u) ≥ 3. If f(xd−3xd−2) = 2, then we change f(xd−3xd−2) to 0, and assign 2 to one
of edges of T1 incident with xd−3. Thus we may assume that f(xd−3xd−2) = 0. Then f |V (T1) is
an ERDF for T1 implying that γ′R(T1) ≤ γ′R(T ) − 2k. Similarly γ′(T1) ≤ γ′(T ) − k. On the
other hand any γ′R(T1)-function can be extended to an ERDF for T by assigning 2 to the xd−2u
for each child u of xd−2 with deg(u) ≥ 3, and 0 to xd−3xd−2 and any other edge of Txd−2

. So
γ′R(T ) ≤ γ′R(T1) + 2k, and thus γ′R(T ) = γ′R(T1) + 2k. Similarly we obtain γ′(T ) = γ′(T1) + k.
Then γ′R(T1) = γ′R(T )− 2k = 2γ′(T )− 2k = 2γ′(T1). By the inductive hypothesis T1 ∈ T . It is
also clear that Txd−2

∈ F1. Thus T ∈ T , and is obtained from T1 by Operation O1.
We next assume that deg(xd−2) = 2. Clearly we may assume that f(xd−3xd−2) = 0. Let

T2 = T − Txd−2
. As before, we can see that γ′R(T ) = γ′R(T2) + 2, and γ′(T ) = γ′(T2) + 1, and so

we obtain that γ′R(T2) = 2γ′(T2). By the inductive hypothesis T2 ∈ T . Thus T is obtained from
T2 by Operation O2.

Case 2. deg(xd−1) = 2.
Then each child of xd−2 is a leaf or a support vertex of degree two. Assume that xd−2 has a

child u 6= xd−1 with deg(u) = 2, and u1 is the child of u. Then clearly we may assume that
f(xd−2u) = 0. But then f(uu1) = 1, a contradiction. We deduce that xd−1 is the unique child of
xd−2 that is not a leaf. Assume that deg(xd−3) ≥ 3. Let T3 = T − Txd−2

. As before, we can see
that γ′R(T ) = γ′R(T3)+2, and γ′(T ) = γ′(T3)+1, and so we obtain that γ′R(T3) = 2γ′(T3). By the
inductive hypothesis T3 ∈ T . Assume that xd−3 is a support vertex. If there is a γ′R(T3)-function
such that assigns 2 to a pendant edge e incident with xd−3, then we replace f(e) by 0, f(xd−3xd−2)
by 2, f(xd−1xd) by 1, and assign 0 to any other edge of Txd−2

to obtain an ERDF for T of weight
less than γ′R(T ), a contradiction. Thus xd−3 is a special support vertex of T3. Consequently, T ∈ T
and is obtained from T3 by Operation O3. Thus we may assume that xd−3 is not a support vertex.
Assume that xd−3 has a child u such that any child of u is a leaf. Then T is obtained from T3 by
Operation O4. Thus xd−3 has no child u such that any child of u is a leaf. Since deg(xd−3) ≥ 3,

5



www.ejgta.org

A note on the edge Roman domination in trees | Nader Jafari Rad

we obtain that a component of T −xd−3 is a double-star S(a, 2), where xd−3 is adjacent to a vertex
of maximum degree S(a, 2). We conclude that T is obtained from T3 by Operation O5. Thus
deg(xd−3) = 2. Then xd−3 is a leaf of T3, and T is obtained from T3 by Operation O3. Thus
T ∈ T and the proof is complete.
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