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Abstract

Let G = (V,E) be a simple connected graph. A subset S of V is called a neighbourhood set
of G if G =

⋃
s∈S〈N [s]〉, where N [v] denotes the closed neighbourhood of the vertex v in G.

Further for each ordered subset S = {s1, s2, . . . , sk} of V and a vertex u ∈ V , we associate
a vector Γ(u/S) = (d(u, s1), d(u, s2), . . . , d(u, sk)) with respect to S, where d(u, v) denote the
distance between u and v in G. A subset S is said to be resolving set of G if Γ(u/S) 6= Γ(v/S)
for all u, v ∈ V − S. A neighbouring set of G which is also a resolving set for G is called a
neighbourhood resolving set (nr-set). The purpose of this paper is to introduce various types of
nr-sets and compute minimum cardinality of each set, in possible cases, particularly for paths and
cycles.
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1. Introduction

All the graphs considered in this paper are connected, simple, undirected, and finite. Let p1

be a graph property satisfied by at least one subset of vertices of G. Then such subsets S which
satisfies the property p1 are called p1-sets of G. A p1-set S of G is called a P1-set if S̄ is not a
p1-set of G. A p?1-set of G is a set S such that both S and S̄ are p1-sets of G. A P ?

1 -set of G is a

Received: 5 June 2016, Revised: 24 December 2017, Accepted: 3 January 2018.

29



www.ejgta.org

On classes of neighborhood resolving sets of a graph | B. Sooryanaryana and Suma A.S.

set S such that both S and S̄ are not p1-sets of G. If p2 is another graph property satisfied by any
subset of vertices of G, then a set S which satisfies both the property p1 and p2 is called a p1p2-set.
If S is a p1-set and also a p?2-set, then we say S is a p1p

?
2-set. Similarly, p1p2p3-sets, p1P

?
2 p3-sets,

p1P2P
?
3 -sets, etc., are defined.

A pq-set is said to be a minimal pq-set of G if none of its proper subsets are pq-set of G. The
minimum cardinality of a minimal pq-set of G is called lower pq number of G and is denoted by
lpq(G).

Let G be a graph and v be a vertex of G. Let N(v) be the set of vertices adjacent to v in G and
N [v] = N(v)∪{v}. A subset S of vertex set of G is called a neighbourhood set or an n-set of G if
G =

⋃
v∈S〈N [v]〉, where 〈N(v)〉 is the subgraph of G induced by the set S. Further a subset S of

a vertex set of G is called a resolving set or an r-set of G if for each pair u, v 6∈ S there is a vertex
w ∈ S with the property that d(v, w) 6= d(u,w).

The metric dimension of G, denoted by β(G), is the minimum cardinality of all the resolving
sets ofG. A resolving set with minimum cardinality is called a metric basis. The concept of Metric
dimension was introduced by F. Harary and R.A. Melter [3] and independently by P.J. Slater [13]
under the term locating set. For more works on metric dimension, we refer [2, 5, 6, 7, 10, 11, 12,
14, 15].

The neighbourhood number of a graph was introduced by E. Sampathkumar et al. in [8] and
studied the relationship of ln(G) (denoted by n0) with some other known graph parameters.

If S is both neighbourhood and resolving, then in the above notation we write S as an nr-
set. The terms not defined here may found in [1]. Throughout this paper Pk denotes a path on k
vertices with a vertex set V = {vi : 1 ≤ i ≤ k} and an edge set E = {vivi+1 : 1 ≤ i ≤ k − 1}.
Similarly, Ck denotes a cycle on k vertices with a vertex set V = {vi : 1 ≤ i ≤ k} and an edge set
E = {vivi+1}

⋃
{v1vk}.

Remark 1.1. From the definition of a resolving set, it is clear that any 2-element subset of vertices
of a path Pk is always an r-set of Pk. In fact, if S = {a, b} and u, v be arbitrary vertices of Pk such
that d(u, a) = d(v, a), then a is the central vertex of the uv-path in Pk, but then exactly one of the
paths, ub-path or vb-path, in Pk contains the vertex a and hence d(u, b) 6= d(v, b).

Remark 1.2. A singleton set S = {v} is a resolving set of a path P if and only if v is an end vertex
of Pk.

Remark 1.3. A subset of vertices of Pk containing an end vertex is always a resolving set of Pk.

Remark 1.4. For a connected graphG of order k, every subset of cardinality at least k−1 is always
an n-set.

Remark 1.5. Since a superset of any r-set of a graph G is also an r-set of the graph G, it follows
from Remark 1.1 that every i-element subset of the vertex set of a path Pk is always an r-set of Pk,
for every i, 2 ≤ i ≤ k.

Observation 1.1. Every n-set of a path Pk has at least 2 elements, whenever k ≥ 4.

Observation 1.2. Every r-set of a path Pk, 2 ≤ k ≤ 3, contains a pendent vertex.

We recall the following for immediate reference;
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Theorem 1.1 (S. Khuller, B. Raghavachari, and A. Rosenfeld [6]). For a simple connected graph
G, β(G) = 1 if and only if G ∼= Pk.

Theorem 1.2 (F. Harary and R.A.Melter [3]). For any integer k ≥ 3, the metric dimension of a
cycle on k vertices is 2.

Theorem 1.3 (B. Sooryanarayana [14]). A graphG with β(G) = k, cannot contain k2k+1−(2k−1−
1)e as a subgraph.

Theorem 1.4 (E. Sampathkumar and Prabha S. Neeralagi [9]). For a path Pk on k vertices, the
lower neighbourhood number ln(Pk) = bk

2
c.

Theorem 1.5 (E. Sampathkumar and Prabha S. Neeralagi [8]). For a cycle Ck of length k ≥ 4, the
lower neighbourhood number ln(Ck) = dk

2
e.

Theorem 1.6 (E. Sampathkumar and Prabha S. Neeralagi [8]). A set S of vertices of a graph G is
an n-set if and only if every line of 〈V (G)− S〉 belongs to a triangle one of whose vertices belong
to S.

2. nr-sets and Dimensions of a Path

Theorem 2.1. For any integer k ≥ 1, lnr(Pk) =

{
dk

2
e, for k ≤ 3,

bk
2
c, for k ≥ 4.

Proof. For the case k = 1, 2, it is easy to see that any singleton subset of V (Pk) is always an nr-
set. For k = 3, a singleton subset containing an end vertex is not an n-set and a singleton subset
containing the central vertex is not an r-set of P3. Therefore, every nr-set should have at least two
elements. Further, as any subset S ⊆ V (P3) with |S| = 2 is an nr-set for P3, lnr(P3) = 2. Now
for k ≥ 4, any subset S ⊆ V (Pk) containing two or more elements is always an r-set (by Remark
1.5). Therefore, as ln(Pk) ≥ 2 for all k ≥ 4, it follows that lnr(Pk) = ln(Pk) = bk

2
c(by Theorem

1.4).

Theorem 2.2. For any integer k ≥ 1, lnR(Pk) =

{
k, for k = 1, 2,
k − 1, for k ≥ 3.

Proof. Let S be an nR-set of a path Pk. Then S is an r-set and S̄ is not an r-set. So, by Remark
1.1 and Remark 1.3, it follows that a minimal R-set S should contain both the end vertices and is
of cardinality at least k − 1 whenever k ≥ 3 or exactly k if k ≤ 2. But then, by Remark 1.4, S is
an n-set of Pk. Hence lnR = k − 1 if k ≥ 3 or lnR = k if k ≤ 2.

Theorem 2.3. For any integer k ≥ 1, lNR(Pk) =

{
k, for k ≤ 2,

k − 1, for k ≥ 3.

Proof. Follows by the proof of the previous Theorem 2.2, as each nR-set S of Pk is also an NR-
set of Pk (Since the set S̄ contains at most one element which is non-end vertex and hence by
Observation 1.1 and Observation 1.2, S̄ is not an n-set if k 6= 3 and not an r-set if k = 3).
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Lemma 2.1. Any independent set S of vertices of a path Pk contains more than k
2

vertices is always
an n-set.

Proof. Let S be an independent set of the path Pk contains more than k
2

vertices. Then k is odd,
S = {v1, v3, v5, . . . , vk−2, vk}, and

⋃
v∈S N [v] = V (Pk). Let ei = vivi+1 be an edge of Pk,

1 ≤ i ≤ k−1. Then ei is an edge of either 〈N [vi]〉 or 〈N [vi+1]〉 depending upon whether i is odd or
even. Hence for each i, the edge ei ∈ 〈N [vj]〉 for some odd j. Therefore,

⋃
vi∈S〈N [vi]〉 = G.

Similarly, we prove:

Lemma 2.2. Any independent set S of vertices of a path P2k contain (at least) k vertices is always
an n-set of P2k.

Lemma 2.3. If S is an n-set of the graph G, then S̄ is independent.

Proof. If not, suppose that S̄ contains two adjacent vertices say x and y, then the edge xy is not in
the graph

⋃
v∈S〈N [v]〉 = G, a contradiction to the fact that S is an n-set.

Theorem 2.4. For any integer, lNr(Pk) =

{
k, for k = 1, 2,
dk

2
e, for k ≥ 3.

Proof. The result is obvious for k ≤ 4. Consider the case k ≥ 5, let S be an N -set of Pk.
Then S is an n-set, so by Theorem 1.4, |S| ≥ bk

2
c ≥ 2 vertices and hence by Remark 1.5, S

is also an r-set. If k is odd and |S| = bk
2
c, then |S̄| ≥ bk

2
c, so by Lemma 2.3 and Lemma

2.1 the subset S̄ is an n-set, a contradiction to the fact that S is an N -set. Therefore, |S| ≥
dk

2
e for all k implies that lNr(Pk) ≥ dk

2
e. On the other hand, it is easy to see that the set

S = {v2b k
4
c, v2b k

4
c−2, . . . , v2}

⋃
{vP}

⋃
{vb k

2
c+1, vb k

2
c+3, . . . , vk−1} is an Nr-set of Pk with |S|=dk

2
e

where p = 2, if k is even and p = 1, if k is odd. Thus, lNr(Pk) ≤ dk
2
e.

Theorem 2.5. For any positive integer k, k 6= 1, 3, ln?r(Pk) = lnr?(Pk) = ln?r?(Pk) = bk
2
c.

Proof. The result is obvious for k = 2. Now for the case k ≥ 4, as every n?-set S is also an
n-set, we have |S| ≥ bk

2
c (by Theorem 1.4) and hence ln?r?(Pk), ln?r(Pk), lnr?(Pk) ≥ bk

2
c. On

the other hand, we see that the set S = {v2, v4, . . . , v2b k
2
c} is an n-set of Pk. So, by Lemma 2.1

or Lemma 2.2 respectively when k is odd or even, the set S̄ is an n-set. Since k ≥ 4, both S
and S̄ have at least two elements and hence each of them will resolve Pk. Hence S is an n?r-set
as well as nr?-set and n?r?-set with |S| = bk

2
c. Therefore, ln?r(Pk) ≤ bk

2
c, lnr?(Pk) ≤ bk

2
c, and

ln?r?(Pk) ≤ bk
2
c.

Remark 2.1. When k = 1, S̄ is empty. Hence n?-set as well as r?-set are not defined. But when
k = 3, it is easy to see that ln?r(P3) = lnr?(P3) = 2. However, P3 has no n?r?-set S and hence
ln?r?(P3) is not defined.

Theorem 2.6. For any integer k ≥ 4, lN?r(Pk) = lN?r?(Pk) = 2.
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Proof. Let S be anN?r-set of Pk. Then S is not an n-set, S̄ is not an n-sets, and S is an r-set. Now,
if |S| = 1, then S contains only an end vertex of Pk (by Remark 1.2) and hence |S̄| = k − 1. But
then, S̄ is an n-set (by Remark 1.4), a contradiction. Thus, 2 ≤ |S| ≤ k − 2. Hence lN?r(Pk) ≥ 2
and lN?r?(Pk) ≥ 2. On the other hand, take S ′ = {v1, v2}. The set S ′ as well as S̄ ′ are not n-sets
(since the edge v1v2 is not an edge of

⋃
v∈S̄′〈N [v]〉). But S ′ is an r-set (and S̄ ′ is also an r-set),

whenever k ≥ 4 (since |S ′| = 2 and |S̄ ′| ≥ 2 and by Remark 1.5). Hence lN?r(Pk) ≤ 2 and
lN?r?(Pk) ≤ 2.

Remark 2.2. If k ≤ 3, for every subset S of V (Pk), either S or S is an n-set. Hence no N?-set
exists.

We end up this section with the following theorem, whose proof follows similar to the proof of
Theorem 2.4.

Theorem 2.7. For any integer k ≥ 3, lNr?(Pk) = dk
2
e.

When k = 1, no r?-set exists and when k = 2, no N -set exists. It is easy to see that the
other sets like nR?-set, n?R?-set, NR?-set, and N?R?-set are not exists in any path due to the non-
existence of R?-sets. Finally, the non-existence of N?R-set is due to the fact that if S is any such
set, then its complement should contains exactly one vertex other than the end vertex to become an
R-set implies that the set S is an n-set (so not an N?-set).

3. nr-sets and Dimensions of a Cycle

We first restate the consequences of Theorem 1.6 as;

Lemma 3.1. Let e = xy be an edge of a graph G such that e is not an edge of a triangle in G and
S be an n-set of G. Then x, y ∈ N [v] for some v ∈ S if and only if x = v or y = v.

Lemma 3.2. If S is an n-set of a graph G, then for each edge e = xy there exists a vertex v in S
such that both x, y ∈ N [v].

Theorem 3.1. For each integer i ≥ 3, every i-element subset S of vertices of a cycle Ck is always
an r-set.

Proof. Let S be a subset of the vertices of Ck with cardinality at least 3. Let a, b, c ∈ S and x, y
be any two vertices of cycle Ck for k ≥ 3. If possible, let d(a, x) = d(a, y) and d(b, x) = d(b, y).
Then a and b lie in distinct xy-paths in Ck and Ck is an even cycle. In case if c lies between a
and x, then d(c, x) < d(c, y) and hence c resolves the pair x, y. Similarly, other cases follows by
symmetry.

Remark 3.1. A set containing two adjacent vertices of a cycle Ck is always an r-set of Ck for each
k ≥ 3.

Theorem 3.2. For any integer k ≥ 3, lnr(Ck) =

{
3, for k = 4,
dk

2
e, otherwise.
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Proof. In the case k = 4, it follows by Theorem 1.4 that |S| ≥ 2. If |S| = 2, then S contains
two adjacent vertices (else it is not an r-set). But then, 〈V (C4) − S〉 contains an edge and hence
by Theorem 1.6, Ck should contain a triangle, a contradiction. Hence every nr-set should have
at least 3 elements. For the case k ≥ 5, it is easy to see from Theorem 1.5 and Theorem 1.6
that the set S = {v1, v3, v5, . . . , v2d k

2
e−1} is an n-set and hence by Theorem 3.1, it follows that

lnr(Ck) = |S| = dk
2
e.

Theorem 3.3. For any integer k ≥ 4, lN?r(Ck) = lN?r?(Ck) = 2

Proof. Let e = xy be an edge of Ck and S = {x, y}. Then S is a resolving set for Ck. Now as
k ≥ 4, there is an edge e1 = uv not adjacent to e. So, by Lemma 3.2, S is not an n-set (Since
Ck has no triangle and u, v 6∈ S). Hence S is an N?r-set. Further as β(Ck) = 2, there are no
singleton r-sets implies that the above set S is a minimal N?r-set, lN?r(Ck) = 2. Also, S̄ contains
at least 3 vertices if k > 4 and 2 adjacent vertices if k = 4. So, by Theorem 3.1 and Remark 3.1,
S̄ is an r-set. Therefore, S is also an N?r?-set of minimum cardinality, so lN?r?(Ck) = 2 for all
k ≥ 4.

Lemma 3.3. Let S be a minimal n-set of a graph G with ∆(G)=2 and H=〈S〉. Then ∆(H) < 2.

Proof. If possible, let S be a minimal n-set of G and ∆(H) = 2. Then there exists a, b, c ∈ S,
Such that ab, bc ∈ E(G). Consider the set S ′

= S − {b}. Since ∆(G) = 2, we have degG(b) = 2
and hence b is adjacent to only a and c. Therefore, S ′ covers all the edges of G incident with b
as well as other edges of G (Since other edges covered by S). This shows that S ′ is an n-set, a
contradiction to the minimality of S.

Theorem 3.4. For any integer k > 4, lNr(Ck) = lNr?(Ck) = dk+1
2
e. Also, lNr(C4) = 3.

Proof. Let S be a minimal Nr-set of cycle Ck, k > 4. Then S is an n-set, therefore by The-
orem 1.5, |S| ≥ dk

2
e and by Lemma 3.3 the induced subgraph 〈S〉 has no two adjacent edges

of G (i.e deg〈S〉(v) ≤ 1,∀v ∈ S). So, if k is even and |S| = dk
2
e, then in the view of Lemma

3.2, we have, S̄ is an n-set, a contradiction to the fact that S is an N -set. Thus, |S| ≥ dk+1
2
e

implies that lNr(Ck) ≥ dk+1
2
e and lNr?(Ck) ≥ dk+1

2
e. On the other hand, consider the set

S = {v1, v3, v5, . . . , v2d k+1
2
e−3}

⋃
{vk−1}. The set S is an n-set with |S| = dk+1

2
e and |S̄| =

bk−1
2
c < dk

2
e and hence S̄ is not an n-set implies that S is an N -set. Finally, as k > 4, we have

|S| > 3. Hence by Theorem 3.1, S is also an r-set. Thus, lNr(Ck) ≤ dk+1
2
e. Further when k = 5,

it is easy to see that S̄ contains an adjacent pair of vertices and when k > 5, the set S̄ has at least
3 vertices. Hence by Remark 3.1 and the 3.1, the set S is also an r?-set. Hence it also follows that
lNr?(Ck) ≤ dk+1

2
e. Lastly, the case k = 4 follows easily.

Remark 3.2. When k = 3, it is easy to see that for every nr-set S of C3, the set S̄ is also an n-set
and no N -set exists.

Theorem 3.5. For any integer k > 4, lnr?(Ck) = dk
2
e

Proof. Follows immediately by Theorem 1.4 and Theorem 3.1, as lnr?(Ck) = ln(Ck) = dk
2
e for

all k > 4.
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Remark 3.3. Since β(Ck) = 2, every r-set of Ck should have at least 2 elements. Therefore, for
the existence of an r? set of a cycle Ck, k should be at least 5. Further when k = 3 or 4, it is easy
to see that for every nr-set S of Ck we get |S̄| = 1, and hence S is not an r?-set.

Theorem 3.6. For any integer k ≥ 4, lNR(Ck) = lnR(Ck) =

{
k − 2, when k is even and k 6= 4,
k − 1, otherwise.

Proof. Since β(Ck) = 2, any two vertices of Ck resolves Ck except the case k is even and the
vertices are diagonally opposite. Therefore, for k > 4, every R-set S should have minimum of
k − 1 vertices whenever k is odd and k − 2 if k is even. In either of the cases, the subgraph⋃

v∈S N [v] ∼= Ck for every R-set S and
⋃

v∈S N [v] 6= Ck for k 6= 4 and hence S is an n-set as well
as an N -set. When k=4, every N -set should have at least 3 elements and such a set S with |S| = 3
is always an R-set.

Theorem 3.7. For every integer k ≥ 3, ln?r?(C2k) = ln?r(C2k) = k.

Proof. Let S be an n?-set. Then S and S both are edge covering of C2k. Since edge covering
number of C2k is k, |S| = |S̄| = k. Also, both S and S̄ are r-sets (since k ≥ 3). Finally, every
maximal independent set S is an n?r?-set as well as n?r-set. Hence the result.

Remark 3.4. For an odd cycle, no n?-set exists as each n-set contains both end vertices of an edge
(so S̄ is not an n-set, by Lemma 3.2).
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