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Abstract

We introduce a modular irregularity strength of graphs as modification of the well-known irreg-
ularity strength. We obtain some estimation on modular irregularity strength and determine the
exact values of this parameter for five families of graphs.
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1. Introduction

By a labeling we mean any mapping that maps a set of graph elements to a set of numbers
(usually positive integers), called labels. If the domain is the vertex-set or the edge-set, the label-
ings are called respectively vertex labelings or edge labelings. Other domains are possible. Graph
theory terminology not included here can be found in [15] and recent survey of graph labeling is
[10].

A graph or multigraph is called irregular if no two of its vertices have the same degree. It is
well-known (see [4]) that no simple graph can have each vertex bearing a distinct degree. Multi-
graphs however can display this property. In [6], it is shown that for every graph G, having at most
one isolate and no component isomorphic to K2, there exists an irregular multigraph H containing
G as its underlying graph. Then the strength of irregular multigraph H is the maximum number of
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edges that join some pair of vertices. In many research papers is investigated the minimum strength
of an irregular multigraph that contains a given graph G as the underlying graph.

Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba in [6] introduced labelings of the edges
of a graph G with positive integers such that the sum of the labels of edges incident with a vertex is
different for all the vertices. Such labelings were called irregular assignments and the irregularity
strength of a graph G, denoted by s(G), is known as the minimum k for which G has an irregular
assignment using labels at most k.

Thus the irregularity strength s(G) can be interpreted as the smallest integer k for which graph
G can be turned into a multigraph H by replacing each edge by a set of at most k parallel edges,
such that the degrees of the vertices in multigraph H are all different.

It is easy to see that irregularity strength s(G) of a graphG is defined only for graphs containing
at most one isolated vertex and no connected component of order 2.

The lower bound of the parameter s(G) is given in [6] by the following inequality

s(G) ≥ max
1≤i≤∆

{
ni + i− 1

i

}
, (1)

where ni denotes the number of vertices of degree i and ∆ is the maximum degree of graph G. In
the case of d-regular graphs of order n it reduces to

s(G) ≥ n+d−1
d

.

The conjecture stated in [6] says that the value of s(G) is for every graph equal to the above lower
bound plus some constant not depending on G.

In [1] is proved that if G is a connected graph of order n then s(G) ≤ n− 1, and s(G) ≤ n+ 1
otherwise. Later Nierhoff [13] showed that for all graphs different from K3 with finite irregularity
strength, s(G) ≤ n− 1. This bound is tight. It can be seen e.g. for stars.

For upper bound of the irregularity strength Faudree and Lehel [8] showed that if G is d-
regular, d ≥ 2, then s(G) ≤

⌈
n
2

⌉
+ 9, and they conjectured that s(G) ≤

⌈
n
d

⌉
+ c for some constant

c. Przybylo in [14] proved that s(G) ≤ 16n
d

+ 6. Kalkowski, Karonski and Pfender [11] showed
that s(G) ≤ 6n

δ
+ 6, where δ is the minimum degree of graph G. Currently Majerski and Przybylo

[12] proved that s(G) ≤ (4 + o(1))n
δ

+ 4 for graphs with minimum degree δ ≥
√
n lnn. Other

interesting results on the irregularity strength can be found in [3, 5, 9].
Inspired by the irregularity strength of the graph we introduce a new graph parameter, a modu-

lar irregularity strength. The modular irregularity strength of graph naturally arise in the study of
modular version of irregularity strength.

Let G = (V,E) be a graph of order n with no component of order 2. An edge k-labeling
ψ : E(G) → {1, 2, . . . , k} is called modular irregular k-labeling of the graph G if there exists a
bijective weight function σ : V (G)→ Zn defined by

σ(x) =
∑

ψ(xy)

called modular weight of the vertex x, where Zn is the group of integers modulo n and the sum is
over all vertices y adjacent to x.
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The minimum k for which the graph G admits a modular irregular k-labeling is called the
modular irregularity strength of a graphG and denoted by ms(G). If there does not exist a modular
irregular k-labeling for G, we define ms(G) =∞.

In this paper we establish a lower bound of the modular irregularity strength and determine the
exact values of this parameter for five families of graphs.

2. Results

Directly from the definition of modular irregular k-labeling it follows:

Lemma 2.1. Let G = (V,E) be a graph with no component of order 2. Every modular irregular
k-labeling of G is also its irregular assignment.

In general, the converse of Lemma 2.1 does not hold. Moreover, it is easy to see the following:

Lemma 2.2. Let G = (V,E) be a graph with no component of order ≤ 2 and let s(G) = k. If
there exists an irregular assignment of G with edge values at most k, where weights of vertices
constitute a set of consecutive integers, then

s(G) = ms(G) = k.

For the star on 4 vertices, the irregularity strength is 3. On the other hand, the modular irreg-
ularity strength of K1,3 is 4 with edge values 1,2 and 4. Thus s(K1,3) = 3 < ms(K1,3) = 4. For
the path P3 the irregularity strength is equal to the modular irregularity strength with edge values
1 and 2.

According to Lemmas 2.1 and 2.2 we get a lower bound on the modular irregularity strength.

Theorem 2.1. Let G = (V,E) be a graph with no component of order ≤ 2. Then

s(G) ≤ ms(G).

Theorem 2.2. If G is a graph of order n, n ≡ 2 (mod 4), then G has no modular irregular
k-labeling i.e., ms(G) =∞.

Proof. Let G be a graph of order n. Suppose n ≡ 2 (mod 4), then n = 4k+ 2 for some integer
k. Assume that G has a modular irregular k-labeling and let e1, e2, e3, ..., em be the edge labels of
G. Now∑

σ(x) ≡ 0 + 1 + 2 + ...+ (n− 1) (mod n)

≡ n(n−1)
2

(mod n)

≡ (4k+2)(4k+1)
2

(mod n)
≡ (2k + 1)(4k + 2− 1) (mod 4k + 2)
≡ (2k + 1)(−1) (mod 4k + 2)

≡ (2k + 1) (mod 4k + 2). (2)

Further more,∑
σ(x) ≡ 2(e1 + e2 + e3 + ...+ em) (mod n)

Which is a contraction to equation (2).
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In [6] it is shown that if Pn is the path of order n then

s(Pn) =


n
2
, if n ≡ 0 (mod 4),

n+1
2
, if n ≡ 1, 3 (mod 4),

n+2
2
, if n ≡ 2 (mod 4).

(3)

The next theorem gives the precise value of the modular irregularity strength for paths Pn.

Theorem 2.3. Let Pn be a path of order n ≥ 3. Then

ms(Pn) =

{⌈
n
2

⌉
, if n 6≡ 2 (mod 4),

∞, if n ≡ 2 (mod 4).

Proof. Let V (Pn) = {vi : i = 1, 2, . . . , n} be the vertex set and E(Pn) = {ei = vivi+1 : i =
1, 2, . . . , n− 1} be the edge set of the path Pn.

Case (i). Suppose that n ≡ 0, 3 (mod 4) and construct the edge labeling ψ1 : E(Pn) →
{1, 2, . . . , dn/2e} such that

ψ1(ei) = i, if 1 ≤ i ≤
⌈n

2

⌉
,

ψ1(en−i) =

{
i+ 1, if i is odd, 1 ≤ i ≤

⌊
n
2

⌋
− 1,

i, if i is even, 2 ≤ i ≤
⌊
n
2

⌋
− 1.

It is easy to check that the edge values under the labeling ψ1 are at most dn/2e and the weights
of vertices constitute the set of consecutive integers {1, 2, . . . , n}. With respect to (3) and Lemma
2.2, s(Pn) = ms(Pn) = dn/2e.

Case (ii). Let n ≡ 1 (mod 4). Define the edge labeling ψ2 : E(Pn) → {1, 2, . . . , dn/2e} such
that

ψ2(ei) =

{
2, if i = 1,

i, if 2 ≤ i ≤
⌈
n
2

⌉
,

ψ2(en−i) =

{
i+ 2, if i is odd, 1 ≤ i ≤

⌊
n
2

⌋
− 1,

i+ 1, if i is even, 2 ≤ i ≤
⌊
n
2

⌋
− 1.

By direct computation, we obtain that the weights of vertices constitute the sequence of consecutive
integers {2, 3, . . . , n+ 1}. Again according to (3) and Lemma 2.2, s(Pn) = ms(Pn) = dn/2e. By
theorem 2, ms(Pn) =∞, n ≡ 2 (mod 4).
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Amar and Togni [2] proved that the irregularity strength s(T ) of any tree T with no vertex
of degree 2 is equal to its number of leaves. Thus for stars K1,n on n + 1 vertices we have that
s(K1,n) = n. The next theorem gives the modular irregularity strength for K1,n, n ≥ 2.

Theorem 2.4. Let K1,n be a star of order n+ 1, n ≥ 2. Then

ms(K1,n) =


n, if n ≡ 0, 2 (mod 4),

n+ 1, if n ≡ 3 (mod 4),

∞, if n ≡ 1 (mod 4).

Proof. Let V (K1,n) = {u, v1, v2, . . . , vn} and E(K1,n) = {uv1, uv2, . . . , uvn} be the vertex set
and edge set of the star K1,n respectively.

Case (i). If n ≡ 0, 2 (mod 4) then we define the edge labeling ϕ1 : E(K1,n) → {1, 2, . . . , n}
such that

ϕ1(uvi) = i, for 1 ≤ i ≤ n.

Then under the labeling ϕ1 the weights of vertices vi successively attain the values 1, 2, 3, . . . , n
and weight of the vertex u is wϕ1(u) = n(n+1)

2
≡ 0 (mod n + 1). Thus modular weights are

0, 1, 2, . . . , n which implies that ms(K1,n) = n, n ≥ 2.

Case (ii). If n ≡ 3 (mod 4) then we construct the edge labeling ϕ2 : E(K1,n)→ {1, 2, . . . , n+1}
such that

ϕ2(uvi) =

{
i, if 1 ≤ i ≤ n and i 6= n+1

4
,

n+ 1, if i = n+1
4
.

It is true that wϕ2(vi) = i for 1 ≤ i ≤ n and i 6= n+1
4

, wϕ2(v(n+1)/4) = n + 1 and wϕ2(u) =
(n+1)(2n+3)

4
≡ n+1

4
(mod n + 1). Hence modular weights are 0, 1, 2, . . . , n and this implies that

ms(K1,n) = n+ 1, n ≥ 3. By theorem 2, ms(K1,n) =∞,when n ≡ 1 (mod 4).

A triangular graph Tn, n ≥ 2, is a graph constructed from the path on n vertices by replacing
each edge of the path by a triangle C3. Let V (Tn) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n− 1} and
E(Tn) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi, uivi+1 : 1 ≤ i ≤ n− 1} be the vertex set and edge set
of Tn respectively. The next theorem gives the exact values of the modular irregularity strength for
the triangular graph.

Theorem 2.5. Let Tn be a triangular graph of order 2n− 1, n ≥ 2. Then

ms(Tn) =

{
n+4

2
, if n is even,

n+3
2
, if n is odd.
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Proof. Let us distinguish two cases.

Case (i). Assume that n is odd. For n = 3 define an edge labeling µ1 in the following way:

µ1(uivi) = 1, for i = 1, 2,

µ1(uivi+1) = 2i− 1, for i = 1, 2,

µ1(vivi+1) = 2, for i = 1, 2.

One can see that the edge values under the labeling µ1 are 1, 2 and 3 and the weights of vertices
are 2, 3, 4, 5 and 6. According to Lemma 2.2, s(T3) = ms(T3) = 3.

For n ≥ 5 we construct the following edge labeling µ2:

µ2(vivi+1) =


n+3

2
, if i is odd 1 ≤ i ≤ n,

n−3
2
, if i = 2,

n−1
2
, if i is even 4 ≤ i ≤ n− 3,

n+1
2
, if i = n− 1,

µ2(uivi) =

{
n+3−2i

2
, if 1 ≤ i ≤ n+1

2
,

2i−n−1
2

, if n+3
2
≤ i ≤ n− 1,

µ2(uivi+1) =

{
n+3−2i

2
, if 1 ≤ i ≤ n+1

2
,

2i−n+1
2

, if n+3
2
≤ i ≤ n− 1.

The weights of vertices are all distinct and constitute the set of consecutive integers {2, 3, 4, . . . , 2n}.
Since 2n − 1 ≡ 0 (mod 2n − 1) and 2n ≡ 1 (mod 2n − 1) then the modular weights
are 0, 1, 2, . . . , 2n − 2. One can observe that the labeling µ2 is the requested modular irregular
(n+ 3)/2-labeling.

Case (ii). Suppose that n is even. Define an edge labeling µ3 such that

µ3(vivi+1) =

{
n+4

2
, if i is odd 1 ≤ i ≤ n− 1,

n−2
2
, if i is even 2 ≤ i ≤ n,

µ3(uivi) =

{
n+2−2i

2
, if 1 ≤ i ≤ n

2
,

2i−n+2
2

, if n+2
2
≤ i ≤ n− 1,

µ3(uivi+1) =

{
n+2−2i

2
, if 1 ≤ i ≤ n−2

2
,

2i−n+4
2

, if n
2
≤ i ≤ n− 1.

The edge labels under the labeling µ3 are at most (n + 4)/2 and weights of vertices successively
attain the values 3, 4, 5, . . . , 2n + 1. Thus modular weights are 0, 1, 2, . . . , 2n − 2 and µ3 is a
modular irregular labeling having the required property.
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In [7] Faudree et. al., determined the irregularity strength of cycle Cn of order n as follows:

s(Cn) =

{⌈
n
2

⌉
, if n ≡ 1 (mod 4),⌈

n
2

⌉
+ 1, otherwise.

(4)

The next theorem gives the exact value of the modular irregularity strength for cycle Cn.

Theorem 2.6. Let Cn be a cycle of order n, n ≥ 3. Then

ms(Cn) =


⌈
n
2

⌉
, if n ≡ 1 (mod 4),⌈

n
2

⌉
+ 1, if n ≡ 0, 3 (mod 4),

∞, if n ≡ 2 (mod 4).

Proof. Let V (Cn) = {vi : 1 ≤ i ≤ n} and E(Cn) = {vivi+1 : 1 ≤ i ≤ n} where vn+1 = v1, be
the vertex set and edge set of the cycle Cn respectively.

Then we define the edge labeling α : E(Cn) → {1, 2, . . . , k} where k =
⌈
n
2

⌉
when n ≡ 1

(mod 4) and k =
⌈
n
2

⌉
+ 1 when n ≡ 0, 3 (mod 4), such that

α(vivi+1) = i, for 1 ≤ i ≤
⌈n

2

⌉
.

α(vn−i+1vn−i+2) =

{
2
⌊
i
2

⌋
+ 1, if n ≡ 0, 1 (mod 4),

2
⌈
i
2

⌉
+ 1, if n ≡ 3 (mod 4),

for 1 ≤ i ≤
⌊n

2

⌋
.

Under the labeling α, we obtain that the weights of vertices of Cn are consecutive integers
{2, 3, . . . , n + 1} when n ≡ 0, 1 (mod 4) and {3, 4, . . . , n + 2} when n ≡ 3 (mod 4). Again
according to (4) and Lemma 2.2, s(Cn) = ms(Cn), n 6≡ 2 (mod 4). By theorem 2, ms(Cn) =
∞,when n ≡ 2 (mod 4).

For n ≥ 3, a gear graph Gn, is a graph constructed from the cycle Cn by replacing each edge
of the cycle by a triangle C3. Let V (Gn) = {ui, vi : 1 ≤ i ≤ n} and E(Gn) = {vivi+1 : 1 ≤ i ≤
n− 1} ∪ {uivi, uivi+1 : 1 ≤ i ≤ n− 1} ∪ {unvn, vnv1, unv1} be the vertex set and edge set of Gn

respectively . The following theorem gives the exact values of the modular irregularity strength for
the gear graph.

Theorem 2.7. Let Gn be a gear graph of order 2n, n ≥ 3. Then

ms(Gn) =

{
n+2

2
, if n is even,

∞, if n is odd.

Proof. Assume that n is even, n ≥ 4. We define the edge labeling β : E(Gn)→ {1, 2, . . . , n
2

+ 1},
such that

β(viui) =

{
1, for i = 1,

i− 1, for 2 ≤ i ≤ n
2

+ 1.
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β(uivi+1) = i, for 1 ≤ i ≤ n

2
+ 1.

β(un+1−ivn+1−i) = i+ 1, for 1 ≤ i ≤ n

2
− 1.

β(un−ivn+1−i) = i+ 2, for 1 ≤ i ≤ n

2
− 2.

β(unv1) = 2.

β(vivi+1) =
n

2
, for 1 ≤ i ≤ n.

Under the labeling β the weights of vertices ui, 1 ≤ i ≤ n are 2, 3, . . . , n + 1 and weights of
the vertices vi, 1 ≤ i ≤ n are n + 2, n + 3, . . . , 2n + 1, here wβ(vn

2
+1) = 2n ≡ 0 (mod 2n),

wβ(vn
2

+2) = 2n+ 1 ≡ 1 (mod 2n). Thus β is a desired modular irregular (n
2

+ 1)-labeling of Gn.
By theorem 2, ms(Gn) =∞, when n is odd.

There are many families of graphs for which modular irregularity strength is not known. We
conclude with the following open problems for further investigation.

Problem 1. Determine the modular irregularity of complete graph Kn, n ≥ 3.

Problem 2. Characterize the graph for which modular irregularity strength is strictly greater than
the irregularity strength.
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