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Abstract

The signless Laplacian Estrada index of a graph G is defined as SLEE(G) =
∑n

i=1 e
qi where

q1, q2, . . . , qn are the eigenvalues of the signless Laplacian matrix of G. Following the previous
work in which we have identified the unique graphs with maximum signless Laplacian Estrada
index with each of the given parameters, namely, number of cut edges, pendent vertices, (vertex)
connectivity, and edge connectivity, in this paper we continue our characterization for two further
parameters: diameter and number of cut vertices.
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1. Introduction

Let G = (V,E) be a simple, finite, and undirected graph with vertex set V (G), the edge set
E(G), and |V (G)| = n. The adjacency matrix A = A(G) = [aij] of G is the binary matrix,
where the element aij is equal to 1 if vertices i and j are adjacent, and 0 otherwise. The matrices
L = D −A and Q = D + A, where D = diag(d1, d2, . . . , dn) is the diagonal matrix of vertex
degrees, are known as the Laplacian matrix and signless Laplacian matrix of G. The spectrum of
Q is denoted by (q1, q2, . . . , qn).
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Spectral graph theory is the study of properties of a graph in relationship to the eigenvalues
of matrix M associated with the graph. This theory is called M-theory (see [5–7]). The spectral
graph theory is widely used in various fields such as physics, chemistry, computer sciences, and
mathematics (see [2–5, 13–16, 18]). For some special graphs, Q-theory is equivalent to other
theories. For example, for regular graphs Q-theory is equivalent to A-theory and L-theory, or the
matrices L and Q are similar if and only if G is a bipartite graph [8, 9, 12]. For studying various
graph properties, some evidence is presented that the positive semi-definite matrix Q might be
better suited than the other graph matrices (see [9]).

For a graph G, Ayyaswamy et al. [1] introduced the innovative notion of the signless Laplacian
Estrada index as

SLEE(G) =
n∑

i=1

eqi .

They also established lower and upper bounds for SLEE in terms of the number of vertices and
edges. Previously in [10], we investigated the unique graphs with maximum SLEE among the
set of all graphs with given number of cut edges, pendent vertices, (vertex) connectivity and edge
connectivity. Moreover, we studied the signless Laplacian Estrada index of unicyclic and tricyclic
graphs in [11, 17].

In this paper, we continue our research by determining the unique graphs with maximum
SLEE according to two further parameters: diameter and number of cut vertices. Our main
results are the following two theorems:

Theorem 1.1. If G has maximum SLEE with diameter d, 2 < d < n − 1, then G ∼= Hd,1, (see
Figure 1).

Kn−d−1

v0 v1 v
d̂−1 v

d̂
v
d̂+1

vd−1 vd

Figure 1. Graph Hd,1.

Theorem 1.2. If G has maximum SLEE on n vertices with r cut vertices, 0 ≤ r ≤ n − 2, then
G ∼= Gr

n, where Gr
n is the graph obtained from Kn−r by attaching n − r pendent paths of orders

n1, n2, . . . , nn−r to its vertices; such that each vertex of Kn−r has exactly one pendent path and
also | ni − nj |≤ 1 for 1 ≤ i, j ≤ n − r. More precisely, each pendent path is of order b r

n−rc or
b r
n−rc+ 1. For example, the graphs Gr

6 with r = 0, 1, 2, 3, 4 are shown in Figure 2.
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Figure 2. The graphs Gr
6 with r = 0, 1, 2, 3, 4.

2. Preliminaries and Lemmas

In this section, initially, basic definitions, notations, and concepts used in the study are intro-
duced and some findings proved in [8, 10] are restated as well. Then, relevant propositions required
to prove the results reported in the next sections are given and proved.

Definition 2.1. [8] A semi-edge walk of length k in graph G is an alternating sequence W =
v1e1v2e2 . . . vkekvk+1, where v1, v2, . . . , vk, vk+1 ∈ V (G), and e1, e2, . . . , ek ∈ E(G) such that the
vertices vi and vi+1 are (not necessarily distinct) end points of edge ei, for any i = 1, 2, . . . , k. If
v1 = vk+1, then we say W is a closed semi-edge walk.

By following [10], we denote the k-th signless Laplacian spectral moment of the graph G by
Tk(G) , i.e., Tk(G) =

∑n
i=1 q

k
i .

Theorem 2.1. [8] For a graph G, the signless Laplacian spectral moment Tk is equal to the number
of closed semi-edge walks of length k.

Note that, by Taylor expansions, we have

SLEE(G) =
∑
k≥0

Tk(G)

k!
.

Bearing this relation in mind, one can find that for two n-vertex graphs G and H , if Tk(G) ≥ Tk(H)
for all k ≥ 0, then SLEE(G) ≥ SLEE(H). So, to compare the signless Laplacian Estrada
indices of two graphs, we can compare their signless Laplacian spectral moments.

By (G; v, u) �s (G
′; v′, u′) we mean |SWk(G; v, u)| ≤ |SWk(G

′; v′, u′)|, for any k ≥ 0. More-
over, if (G; v, u) �s (G′; v′, u′) and there exists some k0 such that we have |SWk0(G; v, u)| <
|SWk0(G

′; v′, u′)|, then we write (G; v, u) ≺s (G
′; v′, u′). Let SWk(G; v) = SWk(G; v, v). Simi-

larly, we may define (G; v) �s (G
′; v′) and (G; v) ≺s (G

′; v′). By the above notations, we have

Tk(G) =
∑

v∈V (G)

|SWk(G; v)|.

The notation G �s G
′ means that Tk(G) ≤ Tk(G

′), for each k ≥ 0. If G �s G
′ and for some k0,

Tk0(G) < Tk0(G
′), then we use the notation G ≺s G

′. Also, if Tk(G) = Tk(G
′), for each k ≥ 0,

then we write G =s G
′.
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Lemma 2.1. [10] Let G be a graph. If an edge e does not belong to E(G), then G ≺s G+ e, thus
SLEE(G) < SLEE(G+ e).

Lemma 2.2. [10] Let G be a graph and v, u, w1, w2, . . . , wr ∈ V (G). Suppose that Ev = {e1 =
vw1, . . . , er = vwr} and Eu = {e′1 = uw1, . . . , e

′
r = uwr} are subsets of edges of the complement

of G. Let Gu = G + Eu and Gv = G + Ev. If (G; v) ≺s (G;u) and (G;wi, v) �s (G;wi, u) for
each i = 1, 2, . . . , r, then Gv ≺s Gu, thus SLEE(Gv) < SLEE(Gu).

For a vertex v and an edge e, let SWk(G; v, [e]) be the set of all closed semi-edge walks of
length k in the graph G, starting at vertex v and containing e.

Lemma 2.3. Let G be a graph and H = G + e, such that e = uv ∈ E(G). If (G; v) �s (G;u),
then (H; v) �s (H;u). Moreover, if (G; v) ≺s (G;u), then (H; v) ≺s (H;u).

Proof. We know that for each z ∈ {u, v} and k ≥ 0,

|SWk(H; z)| = |SWk(G; z)|+ |SWk(H; z, [e])|.

Since (G; v) �s (G;u), |SWk(G; v)| ≤ |SWk(G;u)|, for each k ≥ 0. Thus, there is a bijection
fk : SWk(G; v)→ Ak ⊆ SWk(G;u), for each k ≥ 0. It is enough to show that |SWk(H; v, [e])| ≤
|SWk(H;u, [e])|, for each k ≥ 0. Let W ∈ SWk(H; v, [e]). We can uniquely decompose W to
W = W1eW2e . . . eWr, such that Wi ∈ SWki(G;x, y), where x, y ∈ {u, v}, ki ≥ 0 and 1 ≤ i ≤ r.
Note that Wi is a semi-edge walk in G and does not contain e, thus the decomposition is unique.
For each Wi , exactly one of the following cases occurs:

1) Wi ∈ SWki(G; v, v). In this case, we set h(Wi) = fki(Wi). Thus, h(Wi) ∈ Aki ⊆
SWki(G;u, u).

2) Wi ∈ Aki ⊆ SWki(G;u, u). In this case, set h(Wi) = f−1ki
(Wi) ∈ SWki(G; v, v).

3) Wi ∈ SWki(G;u, u) \ Aki , or Wi ∈ SWki(G;u, v), or Wi ∈ SWki(G; v, u). We consider
h(Wi) = Wi for the first case, and h(Wi) = W−1

i for the last two cases.

Now, it is easy to show that the map hk : SWk(H; v, [e]) → SWk(H;u, [e]) by the rule hk(W ) =
hk(W1eW2e . . .Wr) = h(W1)eh(W2)e . . . eh(Wr) is an injection.

Note that if there exists k0 such that |SWk0(G; v)| < |SWk0(G;u)|, then fk0 is not surjective.
Thus, hk0 is not a surjection and we have

|SWk0(H; v, [e])| < |SWk0(G;u, [e])|

which implies that (H; v) ≺s (H;u).

Lemma 2.4. Let G be a graph and H = G + e, such that e = uv ∈ E(G) and (G; v) �s (G;u).
If there exists a vertex x ∈ V (G) such that (G;x, v) �s (G;x, u), then (H;x, v) �s (H;x, u).
Moreover, if (G; v) ≺s (G;u) or (G;x, v) ≺s (G;x, u), then (H;x, v) ≺s (H;x, u).

193



www.ejgta.org

On maximum SLEE of graphs with given parameters II | R. Nasiri et al.

Proof. Since (G; v) �s (G;u), there is a bijection fk : SWk(G; v) → Ak ⊆ SWk(G;u), for each
k ≥ 0. Similarly, since (G;x, v) �s (G;x, u), for each k ≥ 0, there is a bijection

gk : SWk(G;x, v)→ Bk ⊆ SWk(G;x, u).

It is obvious that for each k ≥ 0,

|SWk(H;x, z)| = |SWk(G;x, z)|+ |SWk(H;x, z, [e])|

where z ∈ {v, u}. It is enough to show that for each k ≥ 0,

|SWk(H;x, v, [e])| ≤ |SWk(H;x, u, [e])|.

Let W ∈ SWk(H;x, v, [e]). W can be decomposed uniquely to W1eW2e . . . eWr, where Wi is a
semi-edge walk of length ki in G. Three cases will be considered as follows for W1:

1) If W1 ∈ SWk1(G;x, v), set h1(W1) = gk1(W1) ∈ Bk1 ⊆ SWk1(G;x, u).

2) If W1 ∈ Bk1 ⊆ SWk1(G;x, u), set h1(W1) = g−1k1
(W1) ∈ SWk1(G;x, v).

3) If W1 ∈ SWk1(G;x, u) \Bk1 , set h1(W1) = W1.

If 1 < i ≤ r, then three cases will be considered as follows for Wi:

1) If Wi ∈ SWki(G; v), then set hi(Wi) = fki(Wi) ∈ Aki .

2) If Wi ∈ Aki ⊆ SWki(G;u), then set hi(Wi) = f−1ki
(Wi) ∈ SWki(G; v).

3) If Wi ∈ SWki(G;u) \ Aki , Wi ∈ SWki(G; v, u) or Wi ∈ SWki(G;u, v), then set hi(Wi) =
Wi for the first case, and hi(Wi) = W−1

i for the last two cases.

One can easily see that the map hk : SWk(H;x, v, [e])→ SWk(H;x, u, [e]) by the rule hk(W ) =
hk(W1eW2e . . .Wr) = h1(W1)eh2(W2)e . . . ehr(Wr) is injective.

The second part of the lemma is clear.

3. The proof of Theorem 1.1

For x ∈ V (G), the eccentricity e(x) of x is defined as e(x) = max{d(x, y) : y ∈ V (G)}.
The diameter d(G) is the maximum eccentricity over all vertices, whereas the radius r(G) is the
minimum eccentricity. Also, x is a central vertex if e(x) = r(G) and a diametrical path is a
shortest path between two vertices whose distance is equal to d(G). For the sake of convenience,
we denote dd

2
e by d̂, which is the smallest integer number greater than d

2
. It is obvious that Kn is

the unique graph with diameter 1. Also, the path on n vertices Pn is the unique graph with diameter
n − 1. Furthermore, Kn − e is the graph with the greatest signless Laplacian spectral moments,
and so the maximum SLEE, with diameter 2, where e is an edge of Kn.

Lemma 3.1. Let G be a graph with diameter d and Pd+1 = v0v1 . . . vd be a diametrical path in G.
If d ≥ 2 and x ∈ V (G) \ V (Pd+1), then x has at most 3 neighbors in V (Pd+1).
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Proof. Suppose that x has neighbors vi1 , vi2 , . . . , vir in Pd+1, where r > 3 and i1 < i2 < . . . < ir.
Since ir−i1 > 2, the path P ′ = v0v1 . . . vi1xvirvir+1 . . . vd from v0 to vd has a length d−ir+i1+2 <
d, which is a contradiction.

Let n > 4, 2 < d < n− 1, and 1 ≤ j ≤ d̂. We denote by Hd,j the set of all graphs Hd,j; each
of these members are constructed from Kn−1−d and Pd+1 = v0v1 . . . vd by attaching each vertex of
Kn−d−1 to exactly 3 vertices of Pd+1, such that for each x ∈ V (Kn−d−1) there exists an index i,
where d̂− j ≤ i ≤ d̂+ j− 2, and x is attached to vi, vi+1, and vi+2. Therefore, none of vertices vi,
where 0 ≤ i < d̂− j or d̂ + j < i ≤ d, has a neighbor in Kn−d−1. Note that vd̂ is a central vertex
of the path Pd+1. For example, all graphs H4,2 with n = 7 are shown in Figure 3.

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

Figure 3. All graphs H4,2 with n = 7.

Lemma 3.2. Let n > 4, 2 < d < n − 1, and 2 ≤ j ≤ d̂. If Hj ∈ Hd,j , then either Hj ∈ Hd,j−1,
or there exists a graph, say Hj−1 ∈ Hd,j−1, such that Hj ≺s Hj−1, resulting SLEE(Hj) <
SLEE(Hj−1).

Proof. Let Hj ∈ Hd,j and NK(vi) = N(vi) ∩ V (Kn−1−d), where 0 ≤ i ≤ d and N(vi) is the set
of vertices that are adjacent to vi. For a better understanding of the proof, our argument is divided
into two parts; that is, first we discuss NK(vd̂−j) and then, proceed to NK(vd̂+j

). Let Hj 6∈ Hd,j−1.
If NK(vd̂−j) = ∅, then we set H ′j−1 = Hj . In this case, we have H ′j−1 =s Hj . Let NK(vd̂−j) 6= ∅.
For convenience, suppose that v = v

d̂−j , y = v
d̂−j+1

, z = v
d̂−j+2

, and u = v
d̂−j+3

. By the
definition of Hd,j , it is obvious that NK(v) ⊆ NK(y) ⊆ NK(z) and NK(v) ∩ NK(u) = ∅. Let
E = {vx : x ∈ NK(v)}, E ′ = {ux : x ∈ NK(v)}, H ′j = Hj − E, and H ′j−1 = H ′j + E ′. By
Lemma 2.2, in order to show that Hj ≺s H

′
j−1, it is enough to prove the following statements:

1) (H ′j; v) ≺s (H
′
j;u).

2) (H ′j;x, v) �s (H
′
j;x, u), for each x ∈ NK(v).

In order to prove (1), we begin with the following claim:
Claim. (H ′j; y) �s (H

′
j; z):
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To prove the claim, let W ∈ SWk(H
′
j − e; y), where e = yz and k ≥ 0. We can decompose

W to W = W1W2W3, where W1 and W3 are as long as possible and consist of just the vertices
v0, v1, . . . , y and edges in {vtvt+1 : 0 ≤ t ≤ d̂ − j} ∪ {yx : x ∈ NK(y)}; where also W2 ∈
SWk2(H

′
j − e;x,w), such that x,w ∈ NK(y) ⊆ NK(z). Suppose that W ′

i is obtained from Wi,
for i = 1, 3, by replacing each vertex vt with va, each edge vtvt+1 with vava−1, and each edge
yx with zx; where x ∈ NK(y) and a = 2d̂ − 2j − t + 3 (in fact the distance between vertices
vt and y is equal to the distance between vertices va and z in Pd+1). It is easy to show that the
map f ′k : SWk(H

′
j − e; y) → SWk(H

′
j − e; z), defined by the rule f ′k(W1W2W3) = W ′

1W2W
′
3, is

injective; thus, (H ′j − e; y) �s (H
′
j − e; z). Now, the claim follows from Lemma 2.3.

For each k ≥ 0, let fk : SWk(H
′
j; y) → SWk(H

′
j; z) be an injection. If W ∈ SWk(H

′
j; v),

then W can be decomposed to W = W1W2W3, where W2 ∈ SWk2(H
′
j; y) is as long as possible.

Let W ′
i be obtained form Wi for each i = 1, 3; by replacing each vertex vt with va and each edge

vtvt+1 with vava−1, where a = 2d̂−2j− t+3. The map gk : SWk(H
′
j; v)→ SWk(H

′
j;u), defined

by the rule gk(W1W2W3) = W ′
1fk2(W2)W

′
3, is injective. Note that if j > 2 or d is even, then

the path v0v1 . . . v is a proper subgraph of the path vdvd−1 . . . u. Also, if d is odd and j = 2, then
NK(u) 6= ∅, which implies that degH′

j
(v) = 2 < degH′

j
(u). Therefore, (H ′j; v) ≺s (H

′
j;u), which

is (1).
We use a similar procedure to prove statement (2): First, we claim that:

Claim. For each x ∈ NK(v), (H ′j;x, y) �s (H
′
j;x, z).

In order to prove the claim, let x ∈ NK(v) and W ∈ SWk(H
′
j − e;x, y), where e = yz. We

can decompose W to W = W1W2, such that W1 ∈ SWk1(H
′
j − e;x,w) is as long as possible,

where w ∈ NK(y) and W2 ∈ SWk2(H
′
j − e;w, y). Suppose that W ′

2 is obtained from W2 by
replacing each vertex vt with va, the edge wy with wz and each edge vtvt+1 with vava−1, where
a = 2d̂−2j− t+3. One can easily see that the map h′k : SWk(H

′
j−e;x, y)→ SWk(H

′
j−e;x, z),

defined by the rule h′k(W1W2) = W1W
′
2, is injective. Resulting, (H ′j − e;x, y) �s (H

′
j − e;x, z).

Now, the claim is obtained from Lemma 2.4.
Consider hk : SWk(H

′
j;x, y) → SWk(H

′
j;x, z) is an injective map for each k ≥ 0. Let

W ∈ SWk(H
′
j;x, v). We can decompose W to W = W1W2, where W1 ∈ SWk1(H

′
j;x, y)

and is as long as possible; where also W2 ∈ SWk2(H
′
j; y, v). Let W ′

2 be obtained from W2 by
replacing each vertex vt with va and each edge vtvt+1 with vava−1, where a = 2d̂ − 2j − t + 3.
It is elementary to show that the map lk : SWk(H

′
j : x, v) → SWk(H

′
j;x, u), defined by the rule

lk(W1W2) = hk1(W1)W
′
2, is an injection. Thus, (H ′j;x, v) �s (H

′
j;x, u) for each x ∈ NK(v), from

which statement (2) follows. Now, by the above discussion and lemma 2.2, we have Hj �s H
′
j−1,

with equality if and only if H ′j−1 ∼= Hj . The first part of the argument ends here.
If NK(vd̂+j

) is empty or d is odd and j = 2, then H ′j−1 ∈ Hd,j−1. In this case, set Hj−1 = H ′j−1
and of course Hj−1 =s H

′
j−1. Let H ′j−1 6∈ Hd,j−1, then NK(vd̂+j

) is not empty. By repeating the
above discussion for v = v

d̂+j
, y = v

d̂+j−1, z = v
d̂+j−2, and u = v

d̂+j−3, we get the graph
Hj−1 = H ′j−1 − E + E ′, such that Hj−1 ∈ Hd,j−1 and H ′j−1 ≺s Hj−1. Therefore,

Hj �s H
′
j−1 �s Hj−1 ∈ Hd,j−1,

these equalities hold if and only if graphs are isomorphic.
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Now, we may prove the main result of this section.

Proof of Theorem 1.1. Suppose that G is a graph, having the greatest signless Laplacian spectral
moments, and so the maximum SLEE, with diameter d. Let Pd+1 = v0v1 . . . vd be a diametrical
path in G, and H be the graph obtained from G by adding some edges such that:

(a) For each x ∈ V (G) \ V (Pd+1), x is a neighbor of exactly 3 vertices of Pd+1 in H , say vi,
vi+1 and vi+2.

(b) H − V (Pd+1) is a complete graph on n− 1− d vertices.

By Lemma 3.1, such a graph H exists. Obviously, we have H ∈ Hd,j for some j, where 1 ≤ j ≤ d̂
and G �s H , with equality if and only if G ∼= H . If j > 1, then by Lemma 3.2, we may get a
sequence of graphs, say Hd,j−1, Hd,j−2, . . . , Hd,1, such that for each t, Hd,t ∈ Hd,t and

G �s H �s Hd,j−1 �s Hd,j−2 �s . . . �s Hd,1,

these equalities hold if and only if the graphs are isomorphic. Since the diameter of Hd,1 is d and
G has the greatest signless Laplacian spectral moments among the set of all graphs with diameter
d, G =s Hd,1 which implies that G ∼= Hd,1, as expected. �

4. The proof of Theorem 1.2

A cut vertex of a graph is a vertex whose removal increases the number of components of the
graph. Let G be a connected graph and x be a vertex of G. A block of G is defined to be a maximal
subgraph without cut vertices. A pendent path at x in a graph G is a path in which no vertex other
than x is incident with any edge of G outside the path, where degG(x) ≥ 3. In particular, we
consider a vertex x as a pendent path at x of length zero in G only when x is neither a pendent
vertex nor a cut vertex of G. Let G and H be two vertex-disjoint connected graphs, such that
x ∈ V (G) and y ∈ V (H). We denote the coalescence of G and H by G(x) ◦ H(y), which is
obtained by identifying the vertex x of G with the vertex y of H .

Lemma 4.1. Let H1 and H2 be two graphs, Ps = y0y1 . . . ys−1 be a path on s vertices, u ∈ V (H2),
and xy ∈ E(H1) such that x 6= y. Let G =

(
H1(y) ◦ Ps(y0)

)
(x) ◦ H2(u). If H2 contains a path

Qs+2 = ux1x2 . . . xs+1, then G ≺s G− Ey + Ex1 – thus SLEE(G) < SLEE(G− Ey + Ex1) –
where Ey =

{
yw : w ∈ NH1(y) \ {x}

}
, Ex1 =

{
x1w : w ∈ NH1(y) \ {x}

}
, and NH1(y) is the set

of vertices of H1 that are neighbors of y (see Figure 4).

Proof. Let G′ = G − Ey. By Lemma 2.2, it is enough to show that (G′; y) ≺s (G′;x1) and
(G′;w, y) �s (G′;w, x1), for each w ∈ NH1(y) \ {x}. Let P ′s+1 = xy0y1 . . . ys−1, Ak =
SWk(G

′; y) \ SWk(P
′
s+1; y), and Bk = SWk(G

′;x1) \ SWk(Qs+2;x1). Since P ′s+1 is a proper
subgraph of Qs+2, it is easy to show that |SWk(p

′
s+1; y)| ≤ |SWk(Qs+2;x1)| and inequality is

strict for some k = k0 ≥ s. Let W ∈ Ak. We can decompose W to W1W2W3, such that
W2 ∈ SWk2(G

′;x) and is as long as possible; also W1 ∈ SWk1(G
′; y, x),W3 ∈ SWk3(G

′;x, y)
and k = k1 + k2 + k3. Let W ′

j be obtained from Wj by replacing each yi with xi+1, where j = 1, 3
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x2

xs

xs+1

ys−1 ys−2 y1 y x
x1

. . .

G

x2

xs

xs+1

ys−1 ys−2 y1 y x
x1

. . .

G− Ey + Ex1

Figure 4. An illustration of graphs in Lemma 4.1.

and i = 0, 1, . . . , s− 1. The map f : Ak → Bk, defined by the rule f(W1W2W3) = W ′
1W2W

′
3, is

injective, and thus, |Ak| ≤ |Bk|. Therefore, |SWk(G
′; y)| ≤ |SWk(G

′;x1)| and for some k = k0
the inequality is strict. Hence, (G′; y) ≺s (G

′;x1).
Let w ∈ NH1(y) \ {x} and W ∈ SWk(G

′;w, y). We can decompose W uniquely to W1W2,
such that W1 ∈ SWk1(G

′;w, x) is as long as possible. Let W ′
2 be obtained from W2 by replacing

each yi with xi+1, where W2 ∈ SWk2(G
′;x, y), k = k1 + k2, and i = 0, 1, . . . , s − 1. The map

gw,k : SWk(G
′;w, y) → SWk(G

′;w, x1), defined by the rule gw,k(W1W2) = W1W
′
2, is injective.

Thus, |SWk(G
′;w, y)| ≤ |SWk(G

′;w, x1)| for each k. Therefore, (G′;w, y) �s (G′;w, x1) for
each w ∈ NH1(y) \ {x}.

Now, we get to the most important proof of this section.

Proof of Theorem 1.2. Since Pn = Gn−2
n is the unique graph with n − 2 cut vertices, the case

r = n−2 is obvious. If r = 0, then by Lemma 2.1, Kn = G0
n is the unique graph on n vertices with

the greatest signless Laplacian spectral moments, and also maximum SLEE. Let 1 ≤ r ≤ n − 3
and G be a graph with the greatest signless Laplacian spectral moments among all graphs on n
vertices with r cut vertices. First, we prove that G is connected, for if G is not connected and x
is a cut vertex of G, then x is also a cut vertex of a component, say G1 of G. Let G2 be another
component of G. If G2 has a cut vertex, say y, then set G′ = G + {xy}. If G2 has no cut vertex,
then suppose that G′ is the graph obtained from G by attaching x to each vertex of G2. It is easy
to show that in both cases G′ is a graph with r cut vertices and G ≺s G

′, a contradiction. Thus, G
is connected.

By Lemma 2.1, every block of G is complete. Let x be a cut vertex contained in at least 3
blocks, say B1, B2 and B3. Assume that B1 and B3 are disjointed if the vertex x is removed. Let
G′ be the graph obtained from G by attaching each vertex of B1 to each vertex of B2. Obviously,
G′ has r cut vertices, and by Lemma 2.1 G ≺s G′, a contradiction. Thus, each cut vertex of G
is contained in exactly two blocks. Suppose that G has at least one block with at least 3 vertices.
Otherwise, since each block of G has 2 vertices, G is a tree with maximum degree 2. Thus, G ∼= Pn

and r = n−2, a contradiction. Let Ps be a pendent path with minimum length in G at x. Obviously,
x lies in a block of G, say B, with at least 3 vertices. Note that if s = 1, then x is not a cut vertex.
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For each y ∈ V (B), let Hy be the component of G−E(B) which contains y. Obviously, Hx = Ps.
Let y ∈ V (B) such that y 6= x. Let H be the component of G−

(
E(Hx) ∪ E(Hy)

)
containing y.

We have G ∼=
(
H(x) ◦Hx(x)

)
(y) ◦Hy(y). Suppose that Hy is not a path. Since Ps has minimum

length, there is a pendent path on at least s vertices at a vertex in Hy, say z, where z 6= y. Thus,
Hy contains a path on at least s + 2 vertices with an end vertex y. Note that since Hy is not a
path, we can choose some vertices of Hy and construct the path of length at least s + 2 with an
end vertex y. By Lemma 4.1, we may get another graph on n vertices with r cut vertices, which
has greater signless Laplacian spectral moments, a contradiction. Therefore, Hy is a pendent path,
say Pt at y. Bearing in mind the choice of Ps, we have t ≥ s. If t ≥ s + 2, then by Lemma 4.1,
we can obtain another graph on n vertices with r cut vertices, which has greater signless Laplacian
spectral moments than G, a contradiction. Therefore, for each y ∈ V (B), Hy

∼= Ps or Ps+1.
Hence, G ∼= Gr

n. �

5. Concluding Remarks

In this paper and [10], we have studied the Q-spectral moments and signless Laplacian Estrada
index (SLEE) of graphs. More precisely, we have determined graphs with greatest Q-spectral
moments, thus maximum SLEE, through the set of all n-vertex graphs with a given parameter,
namely, the number of cut edges, cut vertices, pendent vertices, (vertex) connectivity, edge con-
nectivity, and diameter.

It would be of interest to investigate the behavior of these quantities on other classes of graphs
such as chemical, c-cyclic, cactus graphs and linear polymers. Also, one might continue our work,
by considering some other given parameters and finding their corresponding extremal graphs.
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