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Abstract

We give a new construction of Ramanujan graphs using a generalized type of covering graph
called a weighted covering graph. For a given prime p the basic construction produces bipartite
Ramanujan graphs with 4p vertices and degrees 2N where roughly p+1−

√
2p < N ≤ p. We then

give generalizations to produce Ramanujan graphs of other sizes and degrees as well as general
results about base graphs which have weighted covers that satisfy their Ramanujan bounds. To do
the construction, we define weighted covering graphs and distinguish a subclass of Galois weighted
covers that allows for block diagonalization of the adjacency matrix. The specific construction
allows for easy computation of the resulting blocks. The Gershgorin Circle Theorem is then used
to compute the Ramanujan bounds on the spectra.
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1. Introduction

In this paper, we construct families of Ramanujan graphs using results from standard weighted
covering graph theory. Ramanujan graphs are an optimal type of expander graphs and have been
studied by many authors. For example, see [10], [7, 18], and [11, 12]. Our construction relies on
realizing the graphs as a special type of covering graph called weighted covering graphs which
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generalize standard covering graphs for simple graphs. Weighted covering graphs are similar in
structure to multi-edged covering graphs studied in [2, 4].

Covering graphs and digraphs have been well studied especially with respect to the zeta and
L-functions. See [2, 4, 8, 14] among others. While authors have considered zeta functions of both
weighted and standard covering graphs, the definitions we present here are different in the use
of weights. The edge weights of the base graph are allowed to “split” up to the covering graph
such that the sum of the edge weights of the pre-images under the projection map equals the edge
weights of its image. To create our Ramanujan graphs as covering graphs, we look at weighted
covering graphs whose edge weights are all 1.

We outline our work below. In Section 2, we begin by defining weighted covering graphs and
prove some basic properties about these graphs. We then define a subclass of these graphs called
weighted Galois covers for which we use block diagonalization techniques to study their adjacency
matrices.

In Section 3, we construct a weighted Galois cover as a function of an integerN whereN is the
edge weight of the base graph. We then prove that our Galois cover satisfies its Ramanujan bound
for sufficiently large N . Our proof involves explicitly constructing a block diagonalized form of
its adjacency matrix. We then use a lemma on the absolute value of sums of distinct roots of unity
along with the Gershgorin Circle Theorem to provide conditions that guarantee Ramanujan graphs.
Once we have this initial family of Galois covers, we generalize its construction to produce a larger
family of randomly generated covers that satisfy their Ramanujan bounds. Our Galois covers are
produced as weighted covering graphs over the complete bipartite base graph with 4 vertices K2,2.

In Section 4, we consider other weighted base graphs and prove a general theorem about
weighted base graphs with Galois covers that are also Ramanujan graphs. We conclude with further
possible constructions of this type and potential questions for future study. We note that although
we are investigating questions related to the spectrum of the adjacency matrix of a covering graph,
we can also use these techniques to investigate Laplacian matrices of graphs and other matrices
associated with graphs.

2. Basic Definitions and Properties of Weighted Covering Graphs

Let X be an undirected graph with weighted edges, no multiple edges, and no self-loops. De-
fine the vertices ofX as V (X), the edges ofX asE(X), and the weight functionwX : E(X)→ R.
We assume that if x1 and x2 are adjacent vertices ofX , denoted x1 ∼ x2, thenwX (x1, x2) > 0. We
extend wX to all vertex pairs (x1, x2) of X by wX (x1, x2) = 0 if x1 6∼ x2. Several publications on
covering graph theory have dealt with both the covering and base graphs having only unweighted
edges. See [1, 5, 6, 8, 13, 15, 16, 17]. We refer to this as standard unweighted covering graph
theory. In the standard unweighted definition, the cover is assumed to be locally isomorphic to the
base graph. To extend this to weighted graphs, we replace the usual local bijection requirement
on the vertices with locally equivalent sums of edge weights. In our work below, we use the usual
graph theory definitions of neighbors, adjacency, and connectedness. For a vertex v, let N(v) be
the set of neighbors of v. In other words, N(v) = {u | v ∼ u}.

Definition 1. Let X and Y be two undirected connected weighted graphs with no multiple edges
and no self-loops. Then Y is a weighted covering graph of the weighted base graph X if there is a
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Figure 1. Example of a weighted covering graph

projection map π : V (Y )→ V (X) such that the following are true.
1. π is surjective and preserves adjacency.
2. For all x ∈ V (X) and y ∈ π−1 (x), the neighbors of y are mapped surjectively onto the

neighbors of x. Thus, π
∣∣
N(y) → N (x) is surjective for each y.

3. Let y ∈ V (Y ) and x = π (y) in X . For each neighbor of x, nx ∈ N(x),∑
v∈π−1(nx)

w (y, v) = w (x, nx) (1)

Throughout the remainder of this paper, we refer to covering and base graphs as covers and
bases, respectively.

In standard unweighted covering graph theory, Condition 3 above is replaced by requiring π to
be an injection on each neighborhood of Y . In the context of weighted covers, Condition 3 requires
that an edge weight in X equals the sum of the edge weights of its preimages with respect to π in
Y . These two concepts are equivalent in the case of unweighted X and Y . Thus, the definition
above generalizes the standard unweighted definitions.

In the case the edge weight function for X is integer valued, we may view Y as a cover for
a multi-edged base X where each edge of X has weight 1. To define a cover for a graph with a
multi-edged base it is necessary to extend the projection map π onto the edge sets as well. This
in turn makes all of the arguments involving the projection map more technical and cumbersome.
The edge weighted version allows for simpler arguments at the cost of a more subtle definition for
Galois covers presented below.

Figure 1 is an example of a cover Y over a weighted base X . Vertices x, y ∈ V (X) with
w (x, y) = 3. The projection map π : V (Y ) → V (X) removes the subscripts of V (Y ). The
dashed edges in Y have weight 1. The dotted edges in Y have weight 2.

We present standard structural results which allow us to define subsets of V (Y ) called sheets.
We say a graph is finite if it has finitely many vertices.

Lemma 2.1. Let Y be a finite weighted cover of X with projection map π. Let (x1, x2) be an edge
in E(X). Then |π−1 (x1)| = |π−1 (x2)|.
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Proof. Assume |π−1 (x1)| = k. From Condition 3, we have∑
u∈π−1(x1)

∑
v∈π−1(x2)

w(u, v) = kw (x1, x2) .

Beginning with the assumption that |π−1 (x2)| = m, we end with the same sum as the above
equaling mw (x1, x2). Since w (x1, x2) > 0 as x1 ∼ x2, we have k = m.

Since we are assuming all of our graphs are connected, we can inductively follow a spanning
tree in the base graph to argue all vertices in the base graph have the same number of preimages.

Theorem 2.1. Let Y be a finite weighted cover of X . Then |π−1 (x1)| = |π−1 (x2)| for all x1, x2 ∈
V (X).

The above theorem allows us to partition the vertices of Y into subsets or sheets consisting
of unique preimages of all vertices in X under the projection map. More precisely, we partition
V (Y ) into disjoint sheets S0, S1, . . . , Sd−1 where each Si contains exactly one element from each
π−1 (x0) , π

−1 (x1) , . . . , π
−1 (xn−1) and V (X) = {x0, x1, . . . , xn−1}. This definition and the com-

mon cardinality of Theorem 2.1 gives us the number of sheets of a weighted cover.
For the purposes of analyzing the spectrum of the adjacency matrix of Y , we require more

structure in the cover so that its adjacency matrix can be put in block diagonalized form. The
structure will allow us to use a particular set of sheets to construct this block diagonalization form.
Below we present the required structure on Y and this sheet construction. The structure will also
give a canonical way to label the sheets. Following standard unweighted covering graph theory we
define an appropriate notion of a weighted Galois covering graph.

To begin we define the automorphisms of Y over X in the context of weighted covers by
requiring that the maps preserve edge weights as well.

Definition 2. Let Y be a weighted cover of X with projection map π. We say a function α :
V (Y )→ V (Y ) is an automorphism of Y over X if:

(1) α is a bijection that preserves both adjacency and non-adjacency,
(2) For all y ∈ V (Y ), π(α(y)) = π(y). Thus, α preserves the projection map.
(3) For all y1, y2 ∈ V (Y ), w (α (y1) , α (y2)) = w (y1, y2). Thus, α preserves edge weights.
Denote the set of automorphisms of Y over X as Aut(Y/X).

Definition 3. Let Y be a finite weighted cover of X where Y has d sheets. Then Y is a weighted
Galois cover of X if there exists a subgroup G ⊂ Aut(Y/X) such that |G| = d and the non-
identity elements of G have no fixed vertices. We call G a Galois group of Y over X and denote
such a subgroup as Gal(Y/X).

Some remarks are required about the above definition. In the case of unweighted covering
graphs, it can be shown that non-identity automorphisms of the cover have no fixed vertices. Thus
the size of Aut(Y/X) is bounded by the number of sheets of Y . In this case we say the cover
is Galois if it has the maximal number of automorphisms as a cover of its base graph. However
for weighted covering graphs, it is possible to see the appearance of “extra” automorphisms of the
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cover. For example assume X is a single edge (u, v) with weight 3 and Y is the cover with vertices
ui and vi for i = 0, 1, 2. The projection map π : Y → X maps ui to u and vi to v. Connect
each ui to each vj by an edge of weight 1 so that Y is isomorphic to the complete bipartite graph
K3,3. It is easy to see Aut(Y/X) = S3 × S3. However for purposes of analyzing the spectrum,
we select a Galois subgroup such as Gal(Y/X) = {id, α1, α2} where αk (ui) = ui+k mod 3 and
αk (vi) = vi+k mod 3 for k = 1, 2. In this case, there is a choice in the specific subgroup chosen for
the Galois group but any such subgroup is sufficient to give extra structure to the adjacency matrix
of the cover. We could equivalently require the Galois group to act freely on V (Y ) such that the
quotient graph Y/Gal(Y/X) is isomorphic to X as in [14]. In general, determining necessary and
sufficient conditions for the existence of these “extra” automorphisms of a weighted cover seems
very subtle. We note that in the multi-edge version of these covering graphs the projection maps are
required to be local isomorphisms at each vertex in the cover. Thus the number of automorphisms
of the cover would be bounded by the number of sheets and the Galois definition would be more
natural.

The importance of the definition of a weighted Galois cover is that it forces structure on the
adjacency matrix AY of Y . It also gives a canonical way to label the sheets of the cover and forces
a simpler block form for AY .

Let Y be a weighted d-sheeted Galois cover of X with Galois group G = Gal(Y/X), |G| = d,
with projection map π : Y → X . Let X be composed of the vertices V (X) = {x0, x1, . . . , xm−1}
and T an unweighted spanning tree of X . Define y(id)0 to be any preimage of x0 under π. We label
the sheets of Y by its Galois group elements. We begin by determining an identity sheet of Y . Since
π is locally surjective we take a preimage Sid of T under π that contains y(id)0 such that Sid ∼= T

ignoring edge weights. We label the vertices in Sid as {y(id)i | π(y
(id)
i ) = xi, for each i = 0, 1, ...,

m − 1}. The other sheets are now defined as the images of the identity sheet under the action
of the Galois group. In particular, we let Sg = g (Sid) for g ∈ G. Extend the above notation by

letting g
(
y
(id)
i

)
= y

(g)
i for each i and g. The definition of a weighted Galois cover now gives the

following.

Lemma 2.2. Let Y be a weighted Galois cover of X with sheets Sg for g ∈ Gal(Y/X) defined as
above. These sheets partition the vertices on Y . In particular, any two sheets are disjoint.

Proof. Assume g, h ∈ Gal(Y/X) and let vertex v ∈ Sg∩Sh. Since Sid contains a unique preimage

of each vertex in X and both g and h preserve π, there is a vertex y
(id)
i such that g

(
y
(id)
i

)
=

h
(
y
(id)
i

)
= v. Hence y(id)i = g−1

(
h
(
y
(id)
i

))
. Since g−1 ◦ h has a fixed vertex, it must be the

identity. Hence g = h and Sg = Sh. The sheets cover V (Y ) by a simple counting argument and
the lemma follows.

In order to simplify the adjacency matrix AY for Y , we set some notation. For each g ∈ G,
define the m×m matrix A (g) with entries

(A (g))i,j = w
(
y
(id)
i , g

(
y
(id)
j

))
= w

(
y
(id)
i , y

(g)
j

)
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where w ≥ 0 is the weight of the edge from y
(id)
i to g(y

(id)
j ). Loosely speaking, A (g) records the

weights of the edges that originate at the vertices of sheet Sid and terminate at the vertices of the
sheet Sg. With this notation we can now describe the required structure in the adjacency matrix
which motivates the definition of a weighted Galois cover.

Theorem 2.2. Assume as above that Y is a d-sheeted weighted Galois cover of X with Galois
group G = {g0, g1, . . . , gd−1} where g0 is the identity element of G. Then the adjacency matrix AY
for Y can be written in the following form.

AY =


A (g0) A (g1) A (g2) . . . A (gd−1)
A
(
g−11

)
A (g0) A

(
g−11 g2

)
. . . A

(
g−11 gd−1

)
A
(
g−12

)
A
(
g−12 g1

)
A (g0) . . . A

(
g−12 gd−1

)
...

A
(
g−1d−1

)
A
(
g−1d−1g1

)
A
(
g−1d−1g2

)
. . . A (g0)


Proof. We label the vertices of Y in sheets Sg as above. For ga, gb ∈ G define the m×m matrix

(A (ga, gb))i,j = w
(
ga

(
y
(id)
i

)
, gb

(
y
(id)
j

))
= w

(
y
(ga)
i , y

(gb)
j

)
.

Thus A (ga, gb) records the edges which contain one vertex of sheet Sga and one vertex of sheet
Sgb . If we order the vertices of Y by its sheets, this matrix will represent the (ga, gb) block of AY .
Now we note that since automorphisms preserve edge weights we have that

w
(
ga

(
y
(id)
i

)
, gb

(
y
(id)
j

))
= w

(
y
(id)
i , g−1a

(
gb

(
y
(id)
j

)))
=

w

(
y
(id)
i , y

(g−1
a gb)

j

)
.

Hence A (ga, gb) = A (g−1a gb).

Example. LetX = K2,2(3) be the complete bipartite graph with 2 vertices in each partition and
every edge has weight 3. Let Y be the cover of X with Galois group G ≈ Z/5Z = {0, 1, 2, 3, 4}.
Thus our theorem gives us

AY =


A(0) A(1) A(2) A(3) A(4)
A(4) A(0) A(1) A(2) A(3)
A(3) A(4) A(0) A(1) A(2)
A(2) A(3) A(4) A(0) A(1)
A(1) A(2) A(3) A(4) A(0)


where each A(i) is a 4× 4 matrix with non-negative entries and

0 3 0 3
3 0 3 0
0 3 0 3
3 0 3 0

 = A(0) + A(1) + A(2) + A(3) + A(4).
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The left hand side of the equality is the adjacency matrixAX ofX . We are free to define the entries
of A(i) in a manner of our choice provided we satisfy the above sum. Since we are primarily
concerned with constructing undirected graphs with no self-loops and no multiple edges, we can
set

A(0) =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , A(1) =


0 1 0 0
0 0 0 0
0 1 0 1
1 0 0 0



and A(2) =


0 0 0 1
1 0 0 0
0 1 0 1
0 0 0 0


and A(3) = A(2)Tr, A(4) = A(1)Tr. The result is an undirected, connected, 6-regular graph Y
realized as a weighted Galois cover of K2,2 with edge weights equal to 3 and Galois group Z/5Z.

3. Ramanujan Graphs Constructed as Weighted Covers

In this section we construct finite families of Ramanujan graphs as Galois covers of bases with
constant integral edge weights. We begin with a specific Ramanujan construction that allows for
simple analysis of the resulting spectrum then argue that the construction can be generalized to
produce more general Ramanujan graphs. We then consider various generalizations and conse-
quences for further constructions. To begin we first record the definition of a regular Ramanujan
graph. We define a simple graph as an undirected graph with no multiple edges and no self-loops.

Definition 4. Let X be a k-regular simple graph where Spec(X) is the set of eigenvalues of the
adjacency matrix of X . Let λ = max {|µ| : µ ∈ Spec(X), |µ| 6= k}. Then X is a Ramanujan
graph if λ ≤ 2

√
k − 1.

As mentioned in the introduction, such graphs are optimal expander graphs and have many
applications. Simple examples include complete graphs and complete bipartite graphs but not
many other families of examples are known. See [11, 12] which present the best recent results. We
give a new simple method for constructing Ramanujan graphs with fixed number of vertices and
varying degree and note that the construction can be adjusted to fix the degree and vary the number
of vertices.

Many of the graphs to follow have edge weights all with the same value. If a graph has edge
weights all equal to a single value N then we say the graph has edge weights N .

3.1. Basic Construction
The outline of the basic construction of our Ramanujan graph is as follows. We fix the base

graph to be bipartite graph K2,2 with edge weights N ∈ Z+ and Galois group Z/pZ for prime p.
We consider Galois covers of X with a particular form as a function of N . These specializations
give the adjacency matrix for Y a simple form. We then use a block diagonalization theorem to
block diagonalize the adjacency matrix of Y . The Gershgorin Circle Theorem is used to evaluate
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the entries of these blocks. The result is a bound on the eigenvalues of the blocks as a function of
N . Finally the values of N are chosen to ensure the graphs satisfy the Ramanujan bound.

We let X = K2,2(N) denote the bipartite graph with edge weights N and partition its vertices
as {x0, x2} and {x1, x3}. Hence the adjacency matrix of X is

AX =


0 N 0 N
N 0 N 0
0 N 0 N
N 0 N 0

 .

Note that since the eigenvalues ofK2,2 are±2 and 0 with multiplicity 2, the eigenvalues ofK2,2(N)
are ±2N and 0 with multiplicity 2.

For simplicity we fix a prime p > N and consider a Galois cover Y of X with Galois group
G(Y/X) = Z/pZ. We define a particular cover Y whose adjacency matrix AY has the following
form. For each k ∈ Gal(Y/X) ≈ Z/pZ, define the entries of matrix A(k) as follows.

A(k) =


0 a

(k)
0,1 0 a

(k)
0,3

a
(k)
1,0 0 a

(k)
1,2 0

0 a
(k)
2,1 0 a

(k)
2,3

a
(k)
3,0 0 a

(k)
3,2 0


where

a
(k)
0,1 = a

(k)
0,3 = a

(k)
1,2 = a

(k)
2,3 =

{
1, if 0 ≤ k ≤ N − 1,
0, if N ≤ k < p.

a
(k)
1,0 = a

(k)
2,1 = a

(k)
3,0 = a

(k)
3,1 =

{
1, if p−N < k ≤ p,
0, if 1 ≤ k ≤ p−N.

These matrices compose AY as described in Theorem 2.2. Define B as the adjacency matrix
for K2,2, C the matrix whose upper triangular part is the same as B but with 0 below its di-
agonal, D = Ct, and O the 4 × 4 zero matrix. Then the first block row of AY has the form
(B C C C . . . O O O . . . D D D . . .) if N < p/2 and (B C C C . . . B B B . . . D D D . . .)
otherwise. Note that Y is an undirected graph with edge weights 1. Also Y has no self-loops and
no multiple edges where the degree of each vertex is 2N . Since the Galois group is Z/pZ, we can
write (AY )i,j as a 4 × 4 block where (AY )i,i = B and (AY )i,j = (AY )0,j−i = A(j − i) for i 6= j
and i, j taken modulo p.

We now show that for N large enough, Y is a Ramanujan graph.

Theorem 3.1. Let X = K2,2(N) be the bipartite graph with edge weights N ∈ Z+, p prime with
p > N , and Y the Galois cover of base X constructed above. Let

αp =
p2

p2 − π2/3!
.

Then Y is a Ramanujan graph for all N such that

p+
1−

√
(2p− 1)α2

p + 1

α2
p

< N ≤ p. (2)
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Note that αp > 0 for all primes p. Also αp → 1 as p → ∞. Thus asymptotically we need
N greater than p + 1 −

√
2p. Note that in the construction we are taking p as fixed and letting N

vary. However we can fix N and let p vary to satisfy the bound in the theorem to get families of
Ramanujan graphs with fixed degree 2N . Although each family will be finite in size, the size of
the families goes to infinity as N increases to infinity.

To prove Theorem 3.1, we use a generalization of the block diagonalization theorem in [13].
The proof of the theorem relies on decomposing the right regular representation into irreducible
components. The entries of the adjacency matrix play no role in the theorem. Thus the proof given
in [13] can be generalized to show the following result.

Definition 5. Let A = (ai,j) and B be matrices. Then the tensor product of A and B, A⊗B, is

A⊗B =

 a1,1B a1,2B · · ·
a2,1B a2,2B · · ·

...
... . . .

 .

Theorem 3.2. [13] Let Y be a d-sheeted weighted Galois cover ofX withGal(Y/X) = {g1, g2, . . . , gd}.
The adjacency matrix for Y can be block diagonalized into blocks of the form

Mπ =
∑

g∈Gal(Y/X)

dππ(g)⊗ A(g), (3)

where π runs through the irreducible representations of Gal(Y/X), dπ is the degree of the repre-
sentation π, and the matrices A(g) described in Theorem 2.2.

We are ready to prove Theorem 3.1.

Proof. (to Theorem 3.1) In the construction we have Gal(Y/X) = Z/pZ. Hence all of the repre-
sentations are the one-dimensional characters χk(g) = exp (2πigk/p) for k mod p. Applying our
block diagonalization theorem above with Mχk = Mk denoting the k-th 4× 4 diagonal block, we
have

Mk =
∑

j mod p

χk(j)A(j).

Due to the way we created Y , each Mk has the form

Mk =


0 ak 0 ak
bk 0 ak 0
0 bk 0 ak
bk 0 bk 0,


where ak and bk are sums of roots of unity. We see that a0 = b0 = N and in general, the ak and bk
have the form

ak =
N−1∑
j=0

exp(2πijk/p), bk =
N−1∑
j=0

exp(−2πijk/p),
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for k mod p. There is a formula for such sums. Thus

ak =
sin(πNk/p)

sin(πk/p)
e
πi(N−1)k

p , bk = −āk,

since sin(−x) = −sin(x).
We look for conditions on N in order that AY satisfies the Ramanujan bound. In particular if

λ is an eigenvalue of AY with λ 6= ±2N we require |λ| ≤ 2
√

2N − 1. Note that M0 = AX which
has eigenvalues ±2N and 0. For the eigenvalues of the other Mks, we use the Gershgorin Circle
Theorem which says that the eigenvalues of Mk are bounded by 2 |ak| = 2 |bk|. Thus we seek to
bound |ak|. In particular we seek conditions on N such that 2

∣∣∣ sin(πNk/p)sin(πk/p)

∣∣∣ ≤ 2
√

2N − 1 for all
k = 1, 2, . . . , p− 1.

We claim that if the inequality is true for k = 1 then it is true for all other k. In fact we prove
a more general result about sums of distinct p-th roots of unity and provide an upper bound on the
absolute value of the sum of r distinct p-th roots of unity.

Lemma 3.1. Let p be a positive integer and Sr,p a sum of any r distinct p-th roots of unity where
0 < r < p. Then

|Sr,p| ≤

∣∣∣∣∣
r−1∑
j=0

e2πij/p

∣∣∣∣∣ .
More generally the absolute value of Sr,p is bounded by the absolute value of the sum of any r
consecutive p-th roots of unity.

Proof. The lemma follows from noting the length of a sum of vectors is the sum of their projections
onto the resulting sum. More precisely, assume z1, z2, ..., zk are the roots of unity where we denote
each zj = eiθj . Let v =

∑
j

zj = reiφ with r > 0. Then

|v|2 = v · v =

(
k∑
j=1

zj

)
re−iφ = r2.

Hence we have

r =
k∑
j=1

ei(θj−φ).

Since r is real the sine terms vanish and

r =
k∑
j=1

cos(θj − φ).

Thus to maximize r we need to maximize each of the individual cosine terms by taking the roots
of unity as close as possible to the resultant vector and the result follows.
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We note that the above argument can easily be generalized to a finite number of repetitions in
the sum. In particular if we allow up to t repeating p-th roots of unity in our sum of r roots, the
absolute value is bounded by t times the absolute value of the sum of the first d r

t
e p-th roots of

unity. This result would allow us to extend these techniques to more general finite abelian Galois
groups.

Returning to the proof of Theorem 3.1, Lemma 3.1 allows us to assume k = 1. Thus we want
a bound on ∣∣∣∣sin (πN/p)

sin(π/p)

∣∣∣∣ .
We note sin (x) < x for all x > 0 and sin (π/p) > π

p
− π3

p33!
. Further |sin (πx)| = |sin (π (1x))|.

Hence ∣∣∣∣sin (πN/p)

sin(π/p)

∣∣∣∣ =

∣∣∣∣sin (π (p−N) /p)

sin(π/p)

∣∣∣∣ < π (p−N) /p

π/p− π3/ (p33!)
=

(p−N) p2

p2 − π2/3!
.

Let αp = p2

p2−π2/3!
. Thus the Ramanujan bound becomes

(p−N)αp ≤
√

2N − 1.

Solving the inequality we get the bound on N ,

N ≥ p+
1−

√
(2p− 1)α2

p + 1

α2
p

.

Letting p go to infinity and thus αp → 1, we have

N ≥ p+ 1−
√

2p.

Hence for all N ≥ p +
1−
√

(2p−1)α2
p+1

α2
p

, the Gershgorin radii of the blocks corresponding to
the non-trivial characters are less than the Ramanujan bound. Hence the construction yields a
Ramanujan graph. Note that N ≤ p to avoid edge weights other than 0 and 1 in the adjacency
matrix of the cover.

3.2. Numerical Results
We present computational data to illustrate the lower bound of Theorem 3.1. For fixed p, let

NT be our theoretical lower bound on N ,

NT = p+
1−

√
(2p− 1)α2

p + 1

α2
p

,

where αp = p2/ (p2 − π2/3!). For each N , define λ2 as the second largest eigenvalue of the
resulting cover and the Ramanujan bound asRAM = 2

√
2N − 1. LetGERSH be the Gershgorin

bound on λ2 which is twice the bound in Lemma 3.1.
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N 85 86 87 88 89 90
λ2 29.63 28.03 26.39 24.70 22.97 21.20

RAM 26 26.15 26.30 26.45 26.60 26.75
GERSH 30.70 28.93 27.13 25.30 23.45 21.58

Figure 2. Computational data for p = 101

N 1172 1173 1174 1175 1176 1177
λ2 101.48 99.51 97.54 95.56 93.59 91.61

RAM 96.80 96.85 96.89 96.93 96.97 97.01
GERSH 101.71 99.73 97.74 95.76 93.77 91.79

Figure 3. Computational data for p = 1223

For p = 101, we compute NT = 87.71. Table 2 presents λ2, RAM , and GERSH for N near
NT .

For p = 1223, we compute NT = 1174.52. Table 3.2 presents λ2, RAM , and GERSH for N
near NT .

Note that the data shows our bounds on N appearing in Theorem 3.1 are sharp for p = 101 and
1223. We also note that the bounds of λ2 arising from the Gershgorin bound appear quite sharp
also.

3.3. Generalizing the Construction
A question to ask is: To what extent can the above calculations be generalized to produce

more Ramanujan graphs as weighted Galois covers? Although our cover construction is special it
is possible to construct other families of Ramanujan graphs. In particular we show that given a
Galois cover Y of K2,2(N) with N as in the above theorem and Galois group Z/pZ, Y is also a
Ramanujan graph.

Theorem 3.3. Let Y be a simple weighted Galois cover with edge weights 1 over base X =

K2,2(N) where N ≥ p +
1−
√

(2p−1)α2
p+1

α2
p

, and Gal(Y/X) = Z/pZ with p prime. Then Y is a
Ramanujan graph.

Proof. Suppose Y is a weighted Galois cover of X = K2,2(N) and Gal(Y/X) = Z/pZ for prime
p, whose edge weights are all 1. As above we select one pre-image of every vertex in the base
graph as our initial sheet Sid. Define the other sheets S(g) as the images of Sid under the action
of g ∈ Gal(Y/X). Since Y is a Galois cover, by Theorem 2.2 we can write the adjacency matrix
of Y in blocks A(g). Since all of the non-zero edge weights of Y are 1, the entries of each of
the A(g) matrices are in {0, 1}. Using the block diagonalization theorem we have that AY can be
block diagonalized into blocks of the form

Mχ =
∑

g∈Gal(Y/X)

χ(g)⊗ A(g)

134



www.ejgta.org

Ramanujan graphs arising as weighted Galois covering graphs | M. Minei and H. Skogman

where χ is a character modulo p. As above M0 = AX and thus has eigenvalues 0,±2N . For each
of the non-trivial characters χ, the entries of Mχ are either zero or a sum of N distinct p-th roots
of unity. Thus by Lemma 3.1 each of the non-zero entries is bounded by the norm of the sum of
the first N p-th roots of unity. Hence the Gershgorin bounds arising for Y are bounded by those
arising in our construction above. Thus the same lower bound on N ensures that Y is a Ramanujan
graph.

Note that generalizing the techniques from standard unweighted covering graph theory found
in [1, 5, 6], we can explicitly write down all of these graphs.

4. Further Generalizations and Questions

First note that the Galois groups chosen above are done mostly for simplicity. We could look
at more general finite abelian groups without added complications. The main difference is the
bounds arising from Lemma 3.1 change since we may not have a sum of distinct roots of unity.
More general Galois groups make calculating the blocks for the adjacency matrix of the cover a
more difficult task.

Begin with a d-regular base graphX with edge weights 1. LetX(N) be the weighted version of
X where all of the edge weights areN . Let Y be a graph with edge weights 1 where Y is a weighted
Galois cover of X(N). Regardless of the Galois group, the block diagonal of AY corresponding
to the trivial representation is AX(N). Thus Spec(X(N)) = N ∗ Spec(X) ⊆ Spec(Y ). Let λX(N)

and λY be second largest eigenvalues in absolute value of AX(N) and AY , respectively. Then
λY ≥ λX(N) = NλX . In order for Y to be a Ramanujan graph we require

NλX ≤ λY ≤ 2
√
dN − 1 (4)

or

λX ≤ 2

√
d

N
− 1

N2
. (5)

Thus X must satisfy an even stronger condition than the Ramanujan condition on Y if Y is to be
a Ramanujan graph. The bound above forces conditions on the base graph and the weights of its
edges. In particular we have the following.

Theorem 4.1. Let Y be a weighted Galois cover of the weighted graph X(N) for some connected
d-regular graph X and edge weight N ∈ Z+, such that Y is a Ramanujan graph. Then

λX ≤ 2

√
dN − 1

N
= 2

√
d

N
− 1

N2
. (6)

If λX 6= 0 then

N ≤
2d+ 2

√
d2 − λ2X

λ2X
. (7)
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This explains the choice of the complete bipartite graph as a basis for our construction since
λK2,2 = 0 and thus λK2,2(N) = 0. Since the complete regular bipartite graphs all have λKm,m = 0,
they represent a family of potential base graphs for Ramanujan graphs Y . If we let our base graph
be X(N) = Km,m(N), we get the following general theorem.

Theorem 4.2. Let X = Km,m with edge weights N ∈ Z+, p prime with p > N , and αp as above.
Let Y be a Galois cover of X constructed as in Theorem 3.1 or 3.3. Then Y is a Ramanujan graph
if

p+
2− 2

√
(mp− 1)α2

p + 4
m2

mα2
p

≤ N ≤ p. (8)

This allows us to create families of Ramanujan graphs with 2mp vertices for a prime p and
degrees ranging over a shorter range.

Another reasonable choice of base graph is the complete graphs Km since λKm = 1. Applying
Theorem 4.1 gives the following.

Corollary 4.1. Let Y be a graph with weighted edges 1 and Y a Galois cover of X = Km(N). If
Y is a Ramanujan graph then

N ≤ 2(m− 1) + 2
√

((m− 1)2 − 1).

4.1. Further Questions
From a constructivist point of view, Theorem 4.1 gives explicit conditions for potential weighted

base graphs and potential weights from which to try and construct Ramanujan covers. One direc-
tion for future study is to try and generalize the constructions given here to other families of base
graphs. Another direction is to vary the Galois group. We outlined above how to generalize the
argument above to finite abelian Galois groups but it would be interesting to understand the non-
abelian case as well. The specific construction above was chosen primarily for ease of calculation.
It would be interesting to investigate more clever ways of assigning the edges between the sheets to
try and minimize the resulting character sums. Another possible construction involves base graphs
with non-constant edge weight. Finally, zeta functions and L-functions have been well studied in
the case of weighted graphs and as covering graphs. See [2, 8, 14, 15, 16, 17]. A natural question
to ask is how properties of the natural zeta and L-functions arising from these weighted covering
graphs compare to those in the above cases.
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