
www.ejgta.org

Electronic Journal of Graph Theory and Applications 5 (1) (2017), 7–20

Efficient maximum matching algorithms for trape-
zoid graphs
Phan-Thuan Doa, Ngoc-Khang Leb, Van-Thieu Vua

aDepartment of Computer Science, Hanoi University of Science and Technology, Vietnam
bLIP, ENS de Lyon, Lyon, France

thuan.dophan@hust.edu.vn, ngoc-khang.le@ens-lyon.fr, thieu.vuvan@hust.edu.vn

Abstract

Trapezoid graphs are intersection graphs of trapezoids between two horizontal lines. Many NP-
hard problems can be solved in polynomial time if they are restricted on trapezoid graphs. A
matching in a graph is a set of pairwise disjoint edges, and a maximum matching is a matching of
maximum size. In this paper, we first propose an O(n(log n)3) algorithm for finding a maximum
matching in trapezoid graphs, then improve the complexity toO(n(log n)2). Finally, we generalize
this algorithm to a larger graph class, namely k-trapezoid graphs. To the best of our knowledge,
these are the first efficient maximum matching algorithms for trapezoid graphs.

Keywords: trapezoid graphs, maximum matching
Mathematics Subject Classification : 05C70, 05D15
DOI:10.5614/ejgta.2017.5.1.2

1. Introduction

A graph G is a trapezoid graph if there exists a set of trapezoids between a pair of horizontal
lines such that each vertex vi of G corresponds to a trapezoid Ti and there is an edge (vi, vj) iff
Ti ∩ Tj 6= ∅. We call this family of trapezoids a trapezoid representation (or trapezoid model) for
G, see Figure 1 in Section 3 for an example. Trapezoid graphs were first introduced by Dagan,
Golumbic and Pinter in 1988 [6]. Corneil and Kamula independently introduced the same class
[5], but they refer to them as interval-interval (II for short) graphs. Felsner, Müller, and Wernisch

Received: 10 August 2016, Revised 14 January 2017, Accepted: 28 January 2017.

7



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

[9] introduced an equivalent box representation for trapezoid graphs. It is noticeable that we can
easily get the box representation from trapezoid model by mapping the lower and upper lines of
the model to the x-axis and y-axis in the box representation, respectively.

Trapezoid graphs are a class of cocomparability graphs that contains interval graphs and permu-
tation graphs as subclasses. Interval graphs are widely applied for modeling real world problems.
They appear in many different scientific domains such as biology, chemistry and archaeology [13].
On the other hand, trapezoid graphs are mainly applied in modeling channel routing problems in
VLSI circuit design [6]. Besides, they are very simple in the sense that many graph problems
that are NP-hard in general can be solved in polynomial time. For instance, in [9], some of the
most classical problems in graph theory such as finding chromatic number, maximum weighted
independent set, minimum clique cover and maximum weighted clique are solved in O(n log n)
time by using their box representation and sweeping line techniques. Recently, by exploring the
simplicity of this graph class, many well-known problems have a more efficient solution on trape-
zoid models, such as some O(n2) algorithms for several counting problems on vertex covers [20],
efficient algorithms onK-terminal residual reliability of d-trapezoid graphs [21, 26], anO(n log n)
algorithm for calculating the vertex connectivity [16].

Given a graph G = (V,E), a matching M in G is a set of pairwise disjoint edges; that is, no
two edges share a common vertex. A maximum matching is a matching that contains the largest
possible number of edges. For finding a maximum matching in general graphs, Even and Kariv
[8] presented an O(n2.5) algorithm; Micali and Vazirani [23] improved it to O(

√
nm), which is

proportional to the best-known algorithm for this problem in bipartite graphs [15]. Although a
maximum matching can be found in polynomial time in general, it is still interesting to improve
the time complexity of this problem for more restricted classes. As pointed out by Moitra and
Johnson in [24], there is a strong relationship between the maximum matching problem in a co-
comparability graph and the scheduling problem on its complement. Coffman and Graham [4]
propose an O(n + m) algorithm for the two-processors scheduling problem when the dependen-
cy graph among tasks is transitively closed, therefore we propose an algorithm for the maximum
matching problem on cocomparability graphs. Frank et al. [1] present an O(n(log n)2) algorithm
for finding a maximum matching in a permutation graph. Rhee and Liang [25] improved it to
O(n log log n). They also present an efficient O(n log n) maximum matching algorithm for inter-
val graphs and circular-arc graphs [19], which could be refined to O(n log log n) as claimed in
[25]. Ghosh and Pal [12] proposed an O(n2) maximum matching algorithm for trapezoid graphs
that usesO(n+m) space. Unfortunately, [17] shows that their algorithm turns out not to be correct
by giving a simple counterexample.

The rest of the paper is organized as follows. In Section 2, we present some data structures and
a known algorithm which solves the problem for cocomparability graphs. In Section 3, we define
S-Range tree and propose an O(n(log n)3) maximum matching algorithm for trapezoid graphs.
This approach is inspired by the range tree method used in [1]. In section 4, we refine the previous
algorithm to O(n(log n)2) by introducing C-Range tree and generalize it for k-trapezoid graphs.
We give some remarks and open questions in the last section. To the best of our knowledge, these
are the first efficient maximum matching algorithms for trapezoid graphs.

8



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

2. Preliminaries

We first present some data structures and a prior result about the maximum matching algorithm
for cocomparability graphs, which will be used later in our algorithms.

2.1. Segment tree
The segment tree was discovered by Bentley [2] in 1977; this is a data structure to store in-

tervals, or segments. Let A be an array of n elements. By considering each element in A as an
elementary interval in a normal segment tree, and each internal node contains a maximum element
corresponding to its interval, a segment tree can be used to answer the problem of Range Maxi-
mum Query (RMQ for short). This data structure uses O(n) storage and can be built in O(n) time.
It supports the following basic operations:

• Given i and j, where 1 ≤ i ≤ j ≤ n, find the maximum element in the interval [i, j] of array
A in O(log n) time.

• Update the value of an element in array A in O(log n) time.

2.2. CRMQ
This data structure was introduced in [11] to answer RMQ in constant time. Its time-efficiency

is achieved thanks to Cartesian tree [27] and the lowest common ancestor query [14]. For conve-
nience, we call this data structure CRMQ (constant-time RMQ) throughout this paper. It can be
constructed in O(n) time, uses O(n) storage and answers RMQ optimally in O(1). However, the
only disadvantage of CRMQ compared to the segment tree is that it does not support the update
operation.

2.3. Range tree
The range tree is a data structure to hold a list of points. It allows to report all points in a given

range efficiently, and can be used in two or higher dimensions. Range tree was separately intro-
duced by different people [3, 18, 22, 29]. In this paper, we first use 2D range trees while working on
trapezoid graphs and use k-dimensional range trees later to apply for k-trapezoid graphs. The range
tree of dimension k (with k ≥ 2) can be built in O(n(log n)k−1) time and uses O(n(log n)k−1) s-
torage. It allows to report all points in a k-dimensional region given by a range (for both closed and
open regions) in O((log n)k−1 +m) time, where n is the number of points stored in the tree and m
is the number of points reported in a given query. In the 2D case, the query region is a rectangular
region of the form [x1, x2] × [y1, y2] and the corresponding query time is O(log n + m). We refer
to [7] for more details about both segment trees and range trees.

2.4. Maximum matching algorithm for cocomparability graphs
The maximum matching algorithm for cocomparability graph is derived from the following

result.

Theorem 2.1. ([10]) Given a directed acyclic and transitively closed graph G with n vertices,
then there is a two processors scheduling for G of length ` iff there is a matching of size n − ` in
the undirected complement graph G′.

9



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

It is noticeable that G′ is a cocomparability graph and a matching in G′ can be obtained from
the schedule by simply matching all pairs of vertices that are assigned to the same time unit. The
two processors scheduling problem is solved efficiently in [4]. Now, we describe briefly their idea
to find a maximum matching in a cocomparability graph. The algorithm uses a vertex-labeling that
assigns numbers from 1, 2, . . . , n to n vertices of graph G. Given two vertices u, v of G, we say
that v is a successor of u if there is a directed edge from u to v in G. Let L(u) be the label of
vertex u and N(u) be the label-list (L(v1),L(v2), . . . ,L(vk)) of the successors of u in G such that
N(u) is sorted in decreasing order. First, we label the outdegree-zero vertices starting by 1 in an
arbitrary order. Suppose that the labels from 1 to k − 1 have already been assigned, then a vertex
u is labeled by k if:

1. all successors of u are labeled, and
2. N(u) is the smallest list in lexicographic order among all vertices that satisfy the condition 1.

Once the vertex-labeling process is complete, the matching can be found in a greedy manner: start
from the highest-label vertex, match it with the highest-possible-label vertex that remains, then
delete these two vertices from the graph and repeat this process. This yields an O(n2) time al-
gorithm for finding a maximum matching in the cocomparability graph G′. It is noticeable that
a trapezoid graph is also a cocomparability graph, therefore we wish to apply this procedure on
trapezoid graphs to get a more efficient maximum matching algorithm based on their special struc-
ture.

3. An O(n(logn)3) maximum matching algorithm on trapezoid graphs

In this section, we present ourO(n(log n)3) maximum matching algorithm for trapezoid graph-
s. Let G be a trapezoid graph with n vertices, and its trapezoid model is given, as in Figure 1. Each
vertex u in G is associated with its four endpoints in the trapezoid model, which are denoted by
au, bu, cu, du for coordinates of the top-left, top-right, bottom-left, bottom-right of its correspond-
ing trapezoid, respectively. In the box representation (Figure 2), each vertex corresponds to a box
(a rectangular region), and we consider only the coordinate of the bottom-left (cu, au) and the top-
right (du, bu) endpoints of that box. As described in Section 2.4 above, our maximum matching
algorithm has two main steps: (1) labeling the vertices of the complement graph G′ (comparability
graph), and (2) finding a maximum matching ofG by the above greedy method. We use the notions
of L(u) and N(u) as defined in Section 2.4.

1 2 1 2 3 4 4 3 5 5 6 7 7 6 8 8

3 3 2 2 1 1 5 5 4 6 8 4 8 7 7 6

Figure 1. A trapezoid model.

10



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

Since G′ is the complement of G, two vertices of G′ are adjacent iff their two corresponding
trapezoids do not intersect in the trapezoid model, i.e. one lies entirely to the right of the other (e.g.
vertices 1 and 5 in Figure 1). We orient the edges of G′ from the vertex corresponding to the left
trapezoid to the vertex corresponding to the right one.

Definition 1. The level of a vertex v of G′ is the length of the longest path from v to an outdegree-
zero vertex.

For the labeling purpose, we first put the vertices into levels. We denote the level of vertex u
by `u. For example, in Figure 1, `1 = 2 because one longest path from 1 to an outdegree-zero
vertex in G′ is 1-4-7 with length 2. Let k be the maximum level among all the vertices and Li be
the set of vertices of level i (0 ≤ i ≤ k). This putting-into-levels step can be done in O(n log n)
time by the technique of finding maximum independent set in [17]. The algorithm uses a dynamic
process. We assign a number for each vertex while scanning the upper line of the trapezoid model.
This number is the length of the longest chain ending at that vertex in the context of maximum
independent set. It is the level of that vertex if we scan in the reverse direction. It is noticeable
that for every i (0 ≤ i ≤ k), Li is a clique in G and is an independent set in G′. By the definition,
the level of every successor of a vertex u in G′ is always lower than `u. We prove by induction the
following lemma:

Lemma 3.1. If level of vertex u is higher than level of vertex v, then L(u) > L(v).

Proof. The lemma is true for every vertex whose level is 0 or 1. This is because the level-0 vertices
are exactly the outdegree-zero vertices (i.e. do not have any successor). They are always labeled
from the beginning of the algorithm. Hence their labels are smaller than any level-1 vertex. Assume
that the lemma is true for every vertex whose level is below i (i ≥ 2), we show that it is also true
for level i. Let u be any level-i vertex and v be any vertex having level `v less than i. By the
definition of level above, u must have at least one successor of level (i− 1). Since `v < i, the level
of any successor of v is less than (i− 1). Therefore, by the induction hypothesis, N(v) < N(u) in
lexicographic order, hence v is always labeled before u, thus L(v) < L(u).

According to Lemma 3.1, after putting into levels, the rest of the labeling process is to sort and
label the vertices in each level, from the lowest to the highest level. We do this by using the box
representation of the trapezoid graph.

We denote byDomReg(u) the upper right quadrant of an axis aligned coordinate system whose
origin is at point (du, bu), or DomReg(u) = (du,+∞) × (bu,+∞). Therefore, a vertex v is not
adjacent to u in trapezoid graph G and has lower level than u iff (cv, av) ∈ DomReg(u). Let
Reg(u) be the subregion of DomReg(u) which shares no point with DomReg(v), or Reg(u) =
DomReg(u) \ DomReg(v). We define Reg(v) similarly (see Figure 2). Let Max(R) be the
maximum label of all points in R, where R is any region in the plane. Max(R) is defined to be
zero if R contains no point. In the plane, each vertex is represented by only the bottom-left point
of its box in the box representation of the trapezoid graph (i.e. we discard all points of the form
(du, bu)). Moreover, we label the bottom-left point of each vertex by its label. The next lemma is
very important in our algorithm:

Lemma 3.2. If Max(Reg(u)) > Max(Reg(v)), then L(u) > L(v).

11



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

Reg(u)

Reg(v)

u

v

Figure 2. Box representation and the regions Reg(u), Reg(v).

Proof. Note that we consider the complement graph G′ of the trapezoid graph in the labeling
process. A vertex u′ has its corresponding point in DomReg(u) iff u′ is a successor of u. Hence,
each point inDomReg(u)∩DomReg(v) is a common successor of u and v. Therefore, to compare
N(u) andN(v), we only need to consider the remaining points inReg(u) andReg(v). The lemma
is then followed.

The comparison in Lemma 3.2 is a critical operation that will be used in our algorithm for
sorting vertices in each level from L0 to Lk. So, we need a data structure which allows to query the
maximum label in a given rectangular region, i.e. 2D range maximum query, and allows to update
the label of a point efficiently.

3.1. S-Range tree
We use a range tree data structure to store only the bottom-left points of vertices in their box

representation (the point at coordinate (cu, au) for each vertex u, see black points in Figure 2).
Recall that a range tree can be constructed by using the fractional cascading technique [22, 28]
as follows. First, sort the points with respect to the increasing x-coordinate, and build a binary
search tree over them. Second, at each internal node, sort the points in its subtree with respect to
the y-coordinate by using the merge sort method. Each element in the point list of any internal
node always has two pointers that point to the appropriate element in the list of its left child and
right child. Specifically, an element α has both a pointer to the element corresponding to the same
point in a child and a pointer to the element in the other one having smallest y-coordinate that is
bigger than the y-coordinate of α. The goal of these pointers is to indicate the exact segment to
query while searching for points in a given rectangular region. For querying the maximum label
and updating labels, we add a segment tree over the labels of points at each internal node (see

12



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

x

τ

x

τ

x

τ

n/4 n/4 n/4 n/4

Figure 3. S-Range tree of n points.

the construction of segment trees in Section 2.1). We call this modified range tree S-Range tree.
As we can see in Figure 3, S-Range tree has a recursive structure: an S-Range tree of n points is
formed by its root node and two S-Range trees of n

2
points. Each node contains a key x serving for

searching by x-coordinate like a binary search tree, a list of its corresponding points sorted by y-
coordinate and a segment tree τ built over the labels of these points. Note that S-Range tree is very
similar to the data structure introduced in Section 3 of [11], which they called a kind of scaling
tree. It is also used to answer efficiently RMQ in any dimension. For convenience, we call their
data structure C-Range tree for dimension 2 and multidimensional C-Range tree in general. The
only difference between S-Range tree and C-Range tree is that instead of a segment tree, C-Range
tree uses CRMQ (introduced in Section 2.2) at each node. Therefore, they differ a bit in the time
complexity and supported operations, that we will discuss more in Section 4.

The construction of S-Range tree takesO(n log n) time as a normal range tree since the building
time for a segment tree at each internal node is just O(n′), where n′ is the number of points in that
node. So, given a rectangular region, we need to traverse through O(log n) nodes in the S-Range
tree. At each node, querying the maximum label by a segment tree takes O(log n). Hence the
total time for querying the maximum label in any given rectangular region is O((log n)2). For
the update operation, we only need to follow the sequence of pointers corresponding to the point
whose label needs to be updated. Therefore, this takes O((log n)2) time for updating, similar to
the time complexity for searching for the maximum label.

3.2. Algorithm
We can summarize the whole vertex-labeling process as follows:

1. Put the vertices into levels L0, L1, . . . , Lk.
2. Initialize the label of every vertex to zero.

13



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

3. Label the vertices in L0 starting from 1 in an arbitrary order.
4. Construct the S-Range tree as described above.
5. For each i from 1 to k:

(a) Sort the vertices in Li in the increasing order of labels based on the comparison in
Lemma 3.2.

(b) Label the vertices in Li in increasing order from (Maximum label in Li−1) + 1.
(c) Update the segment tree in each internal node of the S-range tree with respect to the

new labels.

8(1)

6(2)

7(3)

4(4)

5(5)

3(6)

2(7)

1(8)

Figure 4. The comparability graph corresponding to the trapezoid graph in Figure 1 with the reduced edge set (consider
only the edges between two consecutive levels) and an appropriate vertex labeling.

Recall that operations 1) and 4) take O(n log n) time, operations 2) and 3) trivially take O(n)
time. Suppose that the set Li has ni vertices. Since the comparison takes O((log n)2) time, the
sorting operation in 5a) takes O((log n)2ni log ni) time (by using any kind of O(n log n) sorting
algorithm). Operation 5b) simply takes O(ni) time and operation 5c) takes O((log n)2ni) time
since there are ni vertices to be updated. Since

∑k
i=1 ni log ni < n log n, operation 5) for all k sets

takes O(n(log n)3) time. Therefore, the overall time for the labeling process is O(n(log n)3).
After labeling every vertex, all that remains is to perform a greedy matching step in trapezoid

graph G. The S-Range tree constructed in the above step is still useful for the matching purpose.
Recall that DomReg(u) is a region that contains only the points corresponding to vertices that are
not adjacent and have a lower level than u. We denote by MaxLabel(u) the maximum label of the
vertices in the whole plane that is outside DomReg(u), or inside the region (0,+∞)× (0,+∞) \
DomReg(u). We can compute MaxLabel(u) efficiently by dividing the query region into two
rectangular regions (e.g. region (0, du)× (0,+∞) and (du,+∞)× (0, bu)), and use the range tree
structure above to find the maximum label in these two regions. Obviously, this MaxLabel(u)
query takes O((log n)2) time. Our matching step can be described as follows:

14



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

We go through every set from Lk to L0. At each set, visit from the highest-label vertex to the
lowest one, and for each vertex u:

• If L(u) = 0, do nothing and continue with the next vertex, since u was already matched with
a higher-label vertex.

• If L(u) > 0, update the label of u to 0 and do the MaxLabel(u) query:

– If MaxLabel(u) = 0, then u has no free adjacent vertex, so u is not matched.

– If MaxLabel(u) > 0, then match u with the vertex v having that MaxLabel, and
update the label of v to 0.

Lemma 3.3. Our greedy matching step for trapezoid graph works correctly with respect to the
greedy matching step for cocomparability graph stated in Section 2.4.

Proof. Note that the region in query MaxLabel(u) contains only two kinds of points: one is
adjacent to u, and the other is not adjacent to u that must have a higher level and must be updated
to the label of 0 before u. So, MaxLabel(u) always gives the vertex having the highest label
that is adjacent to u, or returns 0 if no such vertex exists. Hence, our greedy algorithm works
correctly.

The algorithm goes through every vertex. For each vertex, we use at most two update operations
and one MaxLabel query that both take O((log n)2) time. The total time for greedy matching
step is then O(n(log n)2). For example, from the vertex-labeling showed in Figure 4, the greedy
matching step produces a maximum matching of the trapezoid graph in Figure 1 consisting of three
edges: (1, 2), (3, 4) and (6, 7).

Theorem 3.1. A maximum matching in a trapezoid graph can be found in O(n(log n)3) time.

Proof. Our maximum matching algorithm on a trapezoid graph is correct because its two main
steps are right with respect to the maximum matching algorithm for cocomparability graph de-
scribed in Section 2.4. Since the time complexity of the labeling step is O(n(log n)3), and the
greedy matching step takes O(n(log n)2), the total time for our algorithm is O(n(log n)3).

4. Improved algorithm and generalization

4.1. Improved algorithm by using C-Range trees
In this section, we describe an O(n(log n)2) maximum matching algorithm for trapezoid graph

by improving the complexity of the labeling step to O(n(log n)2).
In the labeling process, the most important operation which affects the complexity of the al-

gorithm is sorting the vertices in each level based on the label-comparison in Lemma 3.2. The
previous algorithm used an S-Range tree to perform this comparison in O((log n)2). In this im-
proved algorithm, we introduce C-Range tree to execute this comparison only in O(log n) time,
based on the idea of CRMQ. The construction of a C-Range tree is analogous to an S-Range tree.
Due to the similarity of the segment tree and CRMQ, we provide some comparisons for the oper-
ations performed by these two types of range tree in Table 1.

15



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

Table 1. Operations supported by S-Range tree and C-Range tree

S-Range tree C-Range tree

Construction time O(n log n) O(n log n)

Query maximum label in a O((log n)2) O(log n)

given rectangular region

Update the label of a point O((log n)2) Not supported

To gain the efficiency in the maximum label query, we need to change the algorithm by means
of ignoring the update operations. Unlike the previous algorithm that uses only one S-Range tree,
in this algorithm we need to construct (k + 2) C-Range trees including:

• A lvl-C-Range tree to query the maximum level of the points in a given rectangular region.
Since the levels of points are fixed after putting into levels, this data structure can be built
from the beginning of the algorithm.

• (k+1) C-Range trees to query the maximum label in each level (denoted by C-Range tree-0,
C-Range tree-1,. . . , C-Range tree-k). C-Range tree-i stores only the points corresponding to
the level-i vertices, and will be constructed after knowing every label of the vertices in that
level. We use C-Range tree-i to compare the labels of the higher-level vertices.

We need to use many C-Range trees since the label of every vertex is not known from the
beginning, it is obtained based on the labels of other lower-label vertices. To be able to apply in
our algorithm, querying the maximum label in a given rectangular region must be divided into two
sub-operations:

1. Find the maximum level of the points in this region; denote this level by t (it is obvious that
the maximum-label point also has the maximum level).

2. Query the maximum label in this region using C-Range tree-t.

Since these two sub-operations take O(log n) time, querying the maximum label in a given
rectangular region takes only O(log n) time. We can summarize the entire improved labeling
process as follows:

1. Put the vertices into levels L0, L1, . . . , Lk.
2. Construct a lvl-C-Range tree to query the maximum level in a rectangular region.
3. Label the vertices in L0 starting from 1 in an arbitrary order.
4. Construct the C-Range tree-0 to query the maximum label of level 0.
5. For each i from 1 to k:

(a) Sort the vertices in Li in an increasing label order based on the comparison as described
above.

(b) Label the vertices in Li in increasing order from (Maximum label in Li−1) + 1.

16



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

(c) Construct C-Range tree-i to serve for the label-comparisons of higher-level vertices.

Suppose that Li has ni vertices, operations 1) and 2) take O(n log n) time, operation 3) takes
O(n0) time, operation 4) takes O(n0 log n0) time. Since the comparison described above takes
O(log n) time, operation 5a) takes O((log n)ni log ni) time, operation 5b) takes O(ni) and opera-
tion 5c) takes O(ni log ni) time. Hence, entire operation 5) for all k sets takes O(n(log n)2) time,
and it is also the time complexity of the whole improved labeling process. The remaining step of
our algorithm - the greedy matching step, is still implemented as in the previous algorithm since
the updating operations here cannot be ignored. Therefore, the overall time complexity of our
algorithm is O(n(log n)2). So we have the following theorem:

Theorem 4.1. A maximum matching in a trapezoid graph can be found in O(n(log n)2) time.

4.2. Generalization
A k-trapezoid graph (k ≥ 1) is an intersection graph of k-trapezoids between k parallel lines.

A k-trapezoids is a polygon formed by k intervals on each line by both joining the starting points
and joining the ending points of every consecutive interval. This generalization of trapezoid graph
was first proposed in [9]. Note that an interval graph is a 1-trapezoid graph and a trapezoid graph is
a 2-trapezoid graph. Since k-trapezoid graphs are cocomparability graphs (the complement of k-
trapezoid graphs are comparability graphs), we can apply the algorithm described in section 2.4 to
find a maximum matching in this graph class. Similar to trapezoid graph, a k-trapezoid graph also
has a box representation. Hence we only need to consider the coordinates of the bottom and top
points corresponding to each box. The bottom (top) point of a box is the point whose coordinate
is formed by k starting (ending) points of each interval in k-trapezoid representation. Since almost
all crucial operations of maximum matching algorithm on trapezoid graphs use a range tree of
dimension 2, we can easily extend our method to k-trapezoid graphs by using a multidimensional
range tree. Here are some specific details:

• Putting the vertices into levels: Instead of using [17], we apply the technique for solving
the maximum independent set or the minimum clique cover problem in a k-trapezoid graph
from [9]. Therefore, this process takes O(n(log n)k−1) time.

• Construction time for both k-dimensional S-Range tree and k-dimensional C-Range tree is
O(n(log n)k−1).

• Querying the maximum label in a rectangular region is extended to querying the maximum
label in a k-dimensional region. This operation takes O((log n)k) and O((log n)k−1) time on
the extended S-Range tree and C-Range tree, respectively.

• The update operation of an extended S-Range tree takes O((log n)k) time.

Therefore, by extending the dimension of the range trees, we can get anO(n(log n)k) algorithm
for finding a maximum matching in a k-trapezoid graph.

Theorem 4.2. A maximum matching in a k-trapezoid graph (k ≥ 2) can be found in O(n(log n)k)
time.

17



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

Remark that not only could our algorithm adapt to the larger graph class by extending the
dimension of trapezoid graphs, but it is also possible if we lower the dimension. If we consider
1-dimensional S-Range tree as a segment tree and 1-dimensional C-Range tree as a CRMQ, then
we could similarly obtain an O(n log n) algorithm for finding a maximum matching in 1-trapezoid
graphs, i.e interval graphs. Therefore, Theorem 4.2 is also true for k = 1. This does not mean
too much since we already had an O(n log log n) maximum matching algorithm for interval graph
from [19, 25]. However, it confirms the flexibility of our algorithm.

5. Conclusion

In this paper, we present an O(n(log n)2) algorithm for finding a maximum matching in a
trapezoid graph, and extend the result to obtain an O(n(log n)k) algorithm for k-trapezoid graphs.
To the best of our knowledge, these are the first efficient algorithms to solve the problem. Since we
do not know any lower bound of this problem except the trivial bound Ω(n), we believe that the
complexity we obtained is not optimal. One hypothesis is that if we can answer Range Maximum
Query in constant time on permutation or trapezoid models, there could be a linear maximum
matching algorithm for both of them. We leave the following conjecture as an open question.

Conjecture 1. There exists an O(n) algorithm to find a maximum matching in a trapezoid graph
given its trapezoid representation, where n is the number of vertices.

Acknowledgement

This research is funded by Vietnam Ministry of Education and Training (MOET) under grant
number B2015 - 01 - 90.

References

[1] F. Bauernöppel, E. Kranakis, D. Krizanc, A. Maheshwari, J.R. Sack, and J. Urrutia, An im-
proved maximum matching algorithm in a permutation graph, 1995.

[2] J.L. Bentley, Solutions to klees rectangle problems, Technical Report, Carnegie-Mellon Univ.,
Pittsburgh, PA, 1977.

[3] J.L. Bentley, Decomposable searching problems, Information Processing Letters 8 (5) (1979),
244–251.

[4] E.G. Coffman and R.L. Graham, Optimal scheduling for two-processor systems, Acta Infor-
matica 1 (3) (1972), 200–213.

[5] D.G. Corneil and P.A. Kamula, Extensions of permutation and interval graphs, Congressus
Numerantium 58 (1987), 267–275.

[6] I. Dagan, M.C. Golumbic, and R.Y. Pinter, Trapezoid graphs and their coloring, Discrete
Appl. Math. 21 (1) (1988), 35–46.

18



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

[7] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Computational geometry: algo-
rithms and applications, Springer, 2008.

[8] S. Even and O. Kariv, AnO(n2.5) algorithm for maximum matching in general graphs, in 16th
Annual Symposium on Foundations of Computer Science (16th FOCS, berkeley, California,
1975), IEEE, New York (1975), 100–112.

[9] S. Felsner, R. Müller, and L. Wernisch, Trapezoid graphs and generalizations, geometry and
algorithms, Discrete Appl. Math. 74 (1) (1997), 13–32.

[10] M. Fujii, T. Kasami, and K. Ninomiya, Optimal sequencing of two equivalent processors,
SIAM Journal on Applied Mathematics 17 (4) (1969), 784–789.

[11] H.N. Gabow, J.L. Bentley, and R.E. Tarjan, Scaling and related techniques for geometry
problems, In Proceedings of the sixteenth annual ACM symposium on Theory of computing,
ACM (1984), 135–143.

[12] P.K. Ghosh and M. Pal, An algorithm to find a maximum matching of a trapezoid graph, The
journal of the Korean Society for Industrial and Applied Mathematics 9 (2) (2005), 13.

[13] M.C. Golumbic, Algorithmic graph theory and perfect graphs, Volume 57, North Holland,
2004.

[14] D. Harel and R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM Jour-
nal on Computing 13 (2) (1984), 338–355.

[15] J.E. Hopcroft and R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs,
SIAM Journal on Computing 2 (4) (1973), 225–231.

[16] A. Ilic, Efficient algorithm for the vertex connectivity of trapezoid graphs, Information Pro-
cessing Letters 113 (2013), 398–404.

[17] A. Ilic and A. Ilic, On vertex covers and matching number of trapezoid graphs, arXiv preprint
arXiv:1106.2351, 2011.

[18] D.T. Lee and C.K. Wong, Quintary trees: a file structure for multidimensional database sys-
tems, ACM Transactions on Database Systems (TODS) 5 (3) (1980), 339–353.

[19] Y.D. Liang and C. Rhee, Finding a maximum matching in a circular-arc graph, Information
Processing Letters 45 (4) (1993), 185–190.

[20] M.S. Lin and Y.J. Chen, Counting the number of vertex covers in a trapezoid graph, Informa-
tion Processing Letters 109 (2009), 1187–1192.

[21] M.S. Lin and C.C. Ting, A polynomial-time algorithm for computing K-terminal residual
reliability of d-trapezoid graphs, Information Processing Letters 115 (2015), 371–376.

19



www.ejgta.org

Efficient maximum matching algorithms for trapezoid graphs | Phan-Thuan Do et al.

[22] G.S. Lueker, A data structure for orthogonal range queries, In Foundations of Computer
Science 1978, 19th Annual Symposium, IEEE (1978), 28–34.

[23] S. Micali and V.V. Vazirani, AnO(
√
V E) algoithm for finding maximum matching in general

graphs, In Foundations of Computer Science, 1980, 21st Annual Symposium, IEEE (1980),
17–27.

[24] A. Moitra and R.C. Johnson, Parallel algorithms for maximum matching and other problems
on interval graphs, Technical Report, Cornell University, 1988.

[25] C. Rhee and Y.D. Liang, Finding a maximum matching in a permutation graph, Acta Infor-
matica 32 (8) (1995), 779–792.

[26] S. Roy, K. Daripa, and A.K. Datta, K-terminal reliability of d-trapezoid graphs, IEEE Trans-
actions on Reliability 65 (3) (2016), 1240–1247.

[27] J. Vuillemin, A unifying look at data structures, Communications of the ACM 23 (4) (1980),
229–239.

[28] D.E. Willard, Predicate-oriented database search algorithms, Technical Report, DTIC Doc-
ument, 1978.

[29] D.E. Willard, The super-B-tree algorithm, Technical Report, DTIC Document, 1979.

20


