

Electronic Journal of Graph Theory and Applications

Modular colorings of join of two special graphs

N. Paramaguru^a, R. Sampathkumar^b

^aMathematics Wing, Directorate of Distance Education, Annamalai University, Annamalainagar 608 002, India ^bMathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India

npguru@gmail.com, sampathmath@gmail.com

Abstract

For $k \ge 2$, a modular k-coloring of a graph G without isolated vertices is a coloring of the vertices of G with the elements in \mathbb{Z}_k having the property that for every two adjacent vertices of G, the sums of the colors of their neighbors are different in \mathbb{Z}_k . The minimum k for which G has a modular kcoloring is the modular chromatic number of G. In this paper, we determine the modular chromatic number of join of two special graphs.

Keywords: modular coloring; modular chromatic number; join of two graphs Mathematics Subject Classification : 05C15, 05C76

1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. For a vertex v of a graph G, let $N_G(v)$, the *neighborhood of* v, denote the set of vertices adjacent to v in G. For a graph G without isolated vertices, let $c : V(G) \to \mathbb{Z}_k$, $k \ge 2$, be a vertex coloring of G where adjacent vertices may be colored the same. The *color sum* $\sigma(v) = \sum_{u \in N_G(v)} c(u)$ of a vertex v of G

is the sum of the colors of the vertices in $N_G(v)$. The coloring c is called a *modular* k-coloring of G if $\sigma(x) \neq \sigma(y)$ in \mathbb{Z}_k for all pairs x, y of adjacent vertices in G. The *modular chromatic number* mc(G) of G is the minimum k for which G has a modular k-coloring. This concept was introduced by Okamoto, Salehi and Zhang [2].

Received: 07 June 2013, Revised: 15 July 2014, Accepted: 03 August 2014.

Okamoto, Salehi and Zhang proved, in [2], that: every nontrivial connected graph G has a modular k-coloring for some integer $k \ge 2$ and $mc(G) \ge \chi(G)$, where $\chi(G)$ denotes the chromatic number of G; for the cycle C_n of length n, $mc(C_n)$ is 2 if $n \equiv 0 \mod 4$ and it is 3 otherwise; every nontrivial tree has modular chromatic number 2 or 3; for the complete multipartite graph G, $mc(G) = \chi(G)$; for the cartesian product $G = K_r \Box K_2$, mc(G) is r if $r \equiv 2 \mod 4$ and it is r + 1 otherwise; for the wheel $W_n = C_n \lor K_1$, $n \ge 3$, $mc(W_n) = \chi(W_n)$, where \lor denotes the join of two graphs; for $n \ge 3$, $mc(C_n \lor K_2^c) = \chi(C_n \lor K_2^c)$, where G^c denotes the complement of G; and for $n \ge 2$, $mc(P_n \lor K_2) = \chi(P_n \lor K_2)$, where P_n denotes the path of length n - 1; and in [3] that: for $m, n \ge 2$, $mc(P_m \Box P_n) = 2$.

For graphs G_1 and G_2 , their union $G_1 \cup G_2$ is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. For vertex-disjoint graphs G_1 and G_2 , their *join* $G_1 \vee G_2$ is the supergraph of $G_1 \cup G_2$ in which each vertex of G_1 is adjacent to every vertex of G_2 and both G_1 and G_2 are induced subgraphs.

In this paper, we compute the modular chromatic number of join of two special graphs.

2. Join of two bipartite graphs

2.1. Sufficient condition for mc = 4

Let $i, j, k \in \mathbb{Z}_4$ with $i \neq j$. Set $M_4^{i,j;k} = \{G : G \text{ is a bipartite graph such that } G \text{ has a modular 4-coloring } c \text{ with the property that for every } v \in V(G), \sigma(v)(mod 4) \in \{i, j\} \text{ and } \sum_{v \in V(G)} c(v) \equiv k \mod 4 \}.$

Lemma 2.1. Let G and H be two vertex-disjoint nonempty bipartite graphs. If any one of the following holds, then $mc(G \lor H) = 4$.

$$\begin{array}{l} (1) \ G \in M_4^{0,1;0} \ and \ H \in M_4^{2,3;0}; \\ (2) \ G \in M_4^{0,1;1} \ and \ H \in M_4^{2,3;1}; \\ (3) \ G \in M_4^{0,1;2} \ and \ H \in M_4^{2,3;2}; \\ (4) \ G \in M_4^{0,1;3} \ and \ H \in M_4^{2,3;2}; \\ (5) \ G \in M_4^{0,2;0} \ and \ H \in M_4^{1,3;0}; \\ (6) \ G \in M_4^{0,2;1} \ and \ H \in M_4^{1,3;1}; \\ (7) \ G \in M_4^{0,2;2} \ and \ H \in M_4^{1,3;2}; \\ (8) \ G \in M_4^{0,2;3} \ and \ H \in M_4^{1,3;2}; \\ (9) \ G \in M_4^{0,3;0} \ and \ H \in M_4^{1,2;0}; \\ (10) \ G \in M_4^{0,3;1} \ and \ H \in M_4^{1,2;2}; \\ (11) \ G \in M_4^{0,3;3} \ and \ H \in M_4^{1,2;2}; \\ (12) \ G \in M_4^{0,3;3} \ and \ H \in M_4^{1,2;3}; \\ (13) \ G \in M_4^{0,1;1} \ and \ H \in M_4^{0,1;2}; \\ (14) \ G \in M_4^{0,3;0} \ and \ H \in M_4^{0,3;2}; \\ (15) \ G \in M_4^{0,3;0} \ and \ H \in M_4^{0,3;2}; \\ (16) \ G \in M_4^{0,3;0} \ and \ H \in M_4^{0,3;2}; \\ (17) \ G \in M_4^{1,2;0} \ and \ H \in M_4^{1,2;3}; \\ (17) \ G \in M_4^{1,2;0} \ and \ H \in M_4^{1,2;3}; \\ (18) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{1,2;3}; \\ (19) \ G \in M_4^{2,3;0} \ and \ H \in M_4^{2,3;2}; \\ (19) \ G \in M_4^{2,3;0} \ and \ H \in M_4^{2,3;2}; \\ (19) \ G \in M_4^{2,3;0} \ and \ H \in M_4^{2,3;2}; \\ \end{array}$$

$$\begin{array}{l} (20) \ G \in M_4^{2,3;1} \ and \ H \in M_4^{2,3;3}; \\ (21) \ G \in M_4^{0,2;0} \ and \ H \in M_4^{0,2;1}; \\ (22) \ G \in M_4^{0,2;1} \ and \ H \in M_4^{0,2;2}; \\ (23) \ G \in M_4^{0,2;3} \ and \ H \in M_4^{0,2;0}; \\ (24) \ G \in M_4^{0,2;3} \ and \ H \in M_4^{0,2;0}; \\ (25) \ G \in M_4^{1,3;0} \ and \ H \in M_4^{1,3;2}; \\ (26) \ G \in M_4^{1,3;2} \ and \ H \in M_4^{1,3;2}; \\ (27) \ G \in M_4^{1,3;3} \ and \ H \in M_4^{1,3;6}; \\ (28) \ G \in M_4^{1,3;3} \ and \ H \in M_4^{1,3;6}; \\ (29) \ G \in M_4^{0,1;0} \ and \ H \in M_4^{0,3;1}; \\ (30) \ G \in M_4^{0,1;1} \ and \ H \in M_4^{0,3;2}; \\ (31) \ G \in M_4^{0,1;3} \ and \ H \in M_4^{0,3;2}; \\ (32) \ G \in M_4^{0,1;3} \ and \ H \in M_4^{0,3;2}; \\ (33) \ G \in M_4^{0,1;3} \ and \ H \in M_4^{1,2;3}; \\ (34) \ G \in M_4^{0,1;2} \ and \ H \in M_4^{1,2;3}; \\ (35) \ G \in M_4^{0,1;2} \ and \ H \in M_4^{1,2;2}; \\ (37) \ G \in M_4^{0,2;1} \ and \ H \in M_4^{1,3;2}; \\ (38) \ G \in M_4^{0,2;3} \ and \ H \in M_4^{1,3;2}; \\ (38) \ G \in M_4^{0,2;3} \ and \ H \in M_4^{1,3;2}; \\ (40) \ G \in M_4^{0,3;0} \ and \ H \in M_4^{1,3;2}; \\ (41) \ G \in M_4^{0,3;3} \ and \ H \in M_4^{2,3;2}; \\ (42) \ G \in M_4^{0,3;3} \ and \ H \in M_4^{2,3;2}; \\ (43) \ G \in M_4^{0,3;3} \ and \ H \in M_4^{2,3;2}; \\ (43) \ G \in M_4^{0,3;3} \ and \ H \in M_4^{2,3;3}; \\ (44) \ G \in M_4^{0,3;3} \ and \ H \in M_4^{2,3;3}; \\ (46) \ G \in M_4^{1,2;0} \ and \ H \in M_4^{2,3;3}; \\ (46) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{2,3;2}; \\ (47) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{2,3;3}; \\ (46) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{2,3;3}; \\ (46) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{2,3;3}; \\ (46) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{2,3;3}; \\ (46) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{2,3;2}; \\ (48) \ G \in M_4^{1,2;3} \ and \ H \in M_4^{2,3;2}. \\ \end{array}$$

Proof. Clearly, $mc(G \lor H) \ge \chi(G \lor H) = \chi(G) + \chi(H) = 4$. We prove (48) and the proofs of (1) to (47) are similar. $G \in M_4^{1,2;3}$ implies that G has a modular 4 coloring c' such that for every $v \in V(G)$, $\sigma'(v)(mod \ 4) \in \{1,2\}$ and $\sum_{v \in V(G)} c'(v) \equiv 3 \mod 4$ and $H \in M_4^{2,3;2}$ implies that H has a modular 4 coloring c'' such that for every $v \in V(H)$, $\sigma''(v)(mod \ 4) \in \{2,3\}$ and $\sum_{v \in V(H)} c''(v) \equiv 2 \mod 4$. Define $c : V(G \lor H) \to \mathbb{Z}_4$ by c(v) = c'(v) for $v \in V(G)$ and c(v) = c''(v) for $v \in V(H)$. Then, for every $v \in V(G)$, $\sigma(v)(mod \ 4) = 3 \Leftrightarrow \sigma'(v)(mod \ 4) = 1$, and $\sigma(v)(mod \ 4) = 0 \Leftrightarrow \sigma'(v)(mod \ 4) = 2$; and for every $v \in V(H)$, $\sigma(v)(mod \ 4) = 1$ $\Leftrightarrow \sigma''(v)(mod \ 4) = 2$, and $\sigma(v)(mod \ 4) = 2 \Leftrightarrow \sigma''(v)(mod \ 4) = 3$. Hence, c is a modular 4 coloring of $G \lor H$. Consequently, $mc(G \lor H) \le 4$.

Using Lemma 2.1, we compute $mc(G \vee H)$ for some special graphs G and H.

2.2. Join of two paths

Theorem 2.1. For $m \ge 2$ and $n \ge 2$, $mc(P_m \lor P_n) = 4$.

Proof. Case 1. $n \not\equiv 1 \mod 4$.

First, we claim that $P_m \in M_4^{0,2;0} \cup M_4^{0,2;2}$. To see this, for $m \equiv 0 \mod 4$, label the vertices of P_m by $0, 0, 2, 0, 0, 0, 2, 0, \ldots, 0, 0, 2, 0$ in order; for $m \equiv 1 \mod 4$, label the vertices of P_m by $0, 0, 2, 0, 0, 0, 2, 0, \ldots, 0, 0, 2, 0$ in order; for $m \equiv 2 \mod 4$, label the vertices of P_m by $2, 0, 0, 0, 2, 0, \ldots, 2, 0, 0, 0, 2, 0$ in order; and for $m \equiv 3 \mod 4$, label the vertices of P_m by $0, 0, 2, 0, 0, 0, \ldots, 2, 0, 0, 0, 2, 0$ in order; and for $m \equiv 3 \mod 4$, label the vertices of P_m by $0, 0, 2, 0, 0, 0, 2, 0, \ldots, 0, 0, 2, 0, 0, 0, 2$ in order.

Next, we claim that $P_n \in M_4^{1,3,0}$. To see this, for $n \equiv 0 \mod 4$, label the vertices of P_n by $0, 1, 3, 0, 0, 1, 3, 0, \ldots, 0, 1, 3, 0$ in order; for $n \equiv 2 \mod 4$, label the vertices of P_n by $1, 3, 0, 0, 1, 3, 0, 0, \ldots, 1, 3, 0, 0, 1, 3$ in order; and for $n \equiv 3 \mod 4$, label the vertices of P_n by $0, 1, 3, 0, 0, \ldots, 0, 1, 3, 0, 0, 1, 3$ in order; and for $n \equiv 3 \mod 4$, label the vertices of P_n by $0, 1, 3, 0, 0, \ldots, 0, 1, 3, 0, 0, 1, 3$ in order.

Finally, apply Lemma 2.1 (5) and (39).

Now, by symmetry, assume that both m and n are $\equiv 1 \mod 4$. Again, by symmetry, it is enough if we consider the following cases.

Case 2. $m \equiv 1 \mod 16$ and $n \equiv 1 \mod 16$.

First, we claim that $P_m \in M_4^{0,3;0}$. To see this, label the vertices of P_m by $0, 0, 3, 0, 0, 0, 3, 0, \dots$, 0, 0, 3, 0, 0 in order. Next, we claim that $P_n \in M_4^{0,1;3}$. To see this, label the vertices of P_n by $3, 0, 2, 0, 3, 0, 2, 0, \dots, 3, 0, 2, 0, 3$ in order. Finally, apply Lemma 2.1 (32). Case 3. $m \equiv 1 \mod 16$ and $n \equiv 9 \mod 16$.

First, we claim that $P_m \in M_4^{0,3;1}$. To see this, label the vertices of P_m by 1, 0, 2, 0, 1, 0, 2, 0, \dots , 1, 0, 2, 0, 1 in order. Next, we claim that $P_n \in M_4^{0,3;3}$. To see this, label the vertices of P_n by 1, 0, 2, 0, 1, 0, 2, 0, \dots , 1, 0, 2, 0, 1 in order. Finally, apply Lemma 2.1 (16). *Case 4.* $m \equiv 5 \mod 16$ and $n \equiv 5 \mod 16$.

First, we claim that $P_m \in M_4^{0,3;2}$. To see this, label the vertices of P_m by $0, 0, 3, 0, 0, 0, 3, 0, \dots$, 0, 0, 3, 0, 0 in order. Next, we claim that $P_n \in M_4^{0,1;1}$. To see this, label the vertices of P_n by $3, 0, 2, 0, 3, 0, 2, 0, \dots, 3, 0, 2, 0, 3$ in order. Finally, apply Lemma 2.1 (30). Case 7. $m \equiv 13 \mod 16$ and $n \equiv 13 \mod 16$.

First, we claim that $P_m \in M_4^{0,1;0}$. To see this, label the vertices of P_m by 1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0, 1 in order. Next, we claim that $P_n \in M_4^{0,3;1}$. To see this, label the vertices of P_n by 0, 0, 3, 0, 0, 0, 3, 0, ..., 0, 0, 3, 0, 0 in order. Finally, apply Lemma 2.1 (29). Cases 8.1. $m \equiv 1 \mod 16$ and $n \equiv 5 \mod 16$;

8.2. $m \equiv 13 \mod 16$ and $n \equiv 1 \mod 16$;

8.3. $m \equiv 5 \mod 16$ and $n \equiv 9 \mod 16$;

8.4. $m \equiv 9 \mod 16$ and $n \equiv 13 \mod 16$.

First, label the vertices of P_m by $3, 0, 2, 0, 3, 0, 2, 0, \ldots, 3, 0, 2, 0, 3$ in order. This shows that $P_m \in M_4^{0,1;3}$ if $m \equiv 1 \mod 16$, $P_m \in M_4^{0,1;0}$ if $m \equiv 5 \mod 16$, $P_m \in M_4^{0,1;1}$ if $m \equiv 9 \mod 16$, and $P_m \in M_4^{0,1;2}$ if $m \equiv 13 \mod 16$.

Next, label the vertices of P_n by $0, 0, 1, 0, 0, 0, 1, 0, \dots, 0, 0, 1, 0, 0$ in order. This implies that $P_n \in M_4^{0,1;0}$ if $n \equiv 1 \mod 16$, $P_n \in M_4^{0,1;1}$ if $n \equiv 5 \mod 16$, $P_n \in M_4^{0,1;2}$ if $n \equiv 9 \mod 16$, and $P_n \in M_4^{0,1;3}$ if $n \equiv 13 \mod 16$.

If $m \equiv 13 \mod 16$ and $n \equiv 1 \mod 16$ or if $m \equiv 5 \mod 16$ and $n \equiv 9 \mod 16$, then apply Lemma 2.1 (13). If $m \equiv 1 \mod 16$ and $n \equiv 5 \mod 16$, or if $m \equiv 9 \mod 16$ and $n \equiv 13 \mod 16$, then apply Lemma 2.1 (14).

2.3. Join of a path and an even cycle

Theorem 2.2. For $m \ge 2$ and $n \ge 2$, $mc(P_m \lor C_{2n}) = 4$.

Proof. First, label the vertices of C_{2n} , $n \equiv 0 \mod 2$, by $0, 1, 3, 0, 0, 1, 3, 0, \ldots, 0, 1, 3, 0$ in cyclic order. This shows that $C_{2n} \in M_4^{1,3,0}$ if $n \equiv 0 \mod 2$.

Next, label the vertices of C_{2n} , $n \equiv 1 \mod 2$, by 1, 0, 1, 0, 1, 0, 1, 0, ..., 1, 0, 1, 0, 1, 0 in cyclic order. This shows that $C_{2n} \in M_4^{0,2;1}$ if $n \equiv 1 \mod 4$ and $C_{2n} \in M_4^{0,2;3}$ if $n \equiv 3 \mod 4$.

Finally, for $m \equiv 0 \mod 4$, label the vertices of P_m by $0, 0, 2, 0, 0, 0, 2, 0, \ldots, 0, 0, 2, 0$ in order; for $m \equiv 1 \mod 4$, label the vertices of P_m by $0, 0, 2, 0, 0, 0, 2, 0, \ldots, 0, 0, 2, 0, 0$ in order; for $m \equiv 2 \mod 4$, label the vertices of P_m by $2, 0, 0, 0, 2, 0, 0, 0, \ldots, 2, 0, 0, 0, 2, 0$ in order; and for $m \equiv 3 \mod 4$, label the vertices of P_m by $0, 0, 2, 0, 0, 0, \ldots, 2, 0, 0, 0, 2, 0$ in order. This shows that $P_m \in M_4^{0,2;0} \cup M_4^{0,2;2}$.

If $n \equiv 0 \mod 2$, then apply Lemma 2.1 (5) and (39). If $n \equiv 1 \mod 4$, then apply Lemma 2.1 (21) and (22). If $n \equiv 3 \mod 4$, then apply Lemma 2.1 (23) and (24).

2.4. Join of a path and a complete bipartite graph

Theorem 2.3. For integers $n \geq 2, r \geq 1$, and $s \geq 1, mc(P_n \vee K_{r,s}) = 4$.

Proof. Let $P_n := u_1 u_2 \dots u_n$, $X = \{x_1, x_2, \dots, x_r\}$, $Y = \{y_1, y_2, \dots, y_s\}$, and the bipartition of $K_{r,s}$ be (X, Y). We consider four cases.

Case 1. $n \equiv i \mod 16, i \in \{1, 2, 3, 4, 5\}.$

Case 2. $n \equiv i \mod 16, i \in \{6, 7, 8\}$.

First, we claim that $K_{r,s} \in M_4^{0,3;3}$. To see this, label the vertex y_1 of $K_{r,s}$ by 3 and all other vertices of $K_{r,s}$ by 0. Next, we claim that $P_n \in M_4^{0,1;2}$. To see this, for $n \equiv 6 \mod 16$, label the vertices of P_n by 0, 1, 0, 0, 0, 1, 0, 0, ..., 0, 1, 0, 0, 0, 1 in order; for $n \equiv 7 \mod 16$, label the

vertices of P_n by $0, 1, 0, 0, 0, 1, 0, 0, \dots, 0, 1, 0, 0, 0, 1, 0$ in order; for $n \equiv 8 \mod 16$, label the vertices of P_n by $0, 1, 0, 0, 0, 1, 0, 0, \dots, 0, 1, 0, 0$ in order. Finally, apply Lemma 2.1 (31). *Case 3.* $n \equiv i \mod 16, i \in \{9, 10, 11, 12, 13\}$.

First, we claim that $K_{r,s} \in M_4^{0,1;1}$. To see this, label the vertex y_1 of $K_{r,s}$ by 1 and all other vertices of $K_{r,s}$ by 0. Next, we claim that $P_n \in M_4^{0,1;3}$. To see this, for $n \equiv 9 \mod 16$, label the vertices of P_n by 1,0,0,0, 1,0,0,0, ..., 1,0,0,0, 1 in order; for $n \equiv 10 \mod 16$, label the vertices of P_n by 1,0,0,0, 1,0,0,0, ..., 1,0,0,0, 1,0 in order; for $n \equiv 11 \mod 16$, label the vertices of P_n by 1,0,0,0, 1,0,0,0, ..., 1,0,0,0, 1,0,0 in order; for $n \equiv 12 \mod 16$, label the vertices of P_n by 0,0,1,0,0,0,1,0, ..., 0,0,1,0 in order; for $n \equiv 13 \mod 16$, label the vertices of P_n by 0,0,1,0,0,0,1,0, ..., 0,0,1,0,0 in order; for $n \equiv 13 \mod 16$, label the vertices of P_n by 0,0,1,0,0,0,1,0, ..., 0,0,1,0,0 in order. Finally, apply Lemma 2.1 (14). *Case 4.* $n \equiv i \mod 16, i \in \{0, 14, 15\}$.

First, we claim that $K_{r,s} \in M_4^{1,2;3}$. To see this, label the vertex x_1 of $K_{r,s}$ by 1, the vertex y_1 of $K_{r,s}$ by 2 and all other vertices of $K_{r,s}$ by 0. Next, we claim that $P_n \in M_4^{0,1;0}$. To see this, for $n \equiv 14 \mod 16$, label the vertices of P_n by 0, 1, 0, 0, 0, 1, 0, 0, ..., 0, 1, 0, 0, 0, 1 in order; for $n \equiv 15 \mod 16$, label the vertices of P_n by 0, 1, 0, 0, 0, 1, 0, 0, ..., 0, 1, 0, 0, 0, 1, 0 in order; for $n \equiv 0 \mod 16$, label the vertices of P_n by 0, 1, 0, 0, 0, 1, 0, 0, ..., 0, 1, 0, 0, 0, 1, 0 in order; for $n \equiv 0 \mod 16$, label the vertices of P_n by 0, 1, 0, 0, 0, 1, 0, 0, ..., 0, 1, 0, 0 in order. Finally, apply Lemma 2.1 (33).

2.5. Join of an even cycle and a complete bipartite graph

Let $X = \{x_1, x_2, ..., x_r\}, Y = \{y_1, y_2, ..., y_s\}$, and the bipartition of $K_{r,s}$ be (X, Y).

Theorem 2.4. For integers $n \ge 1$, $r \ge 1$, and $s \ge 1$, $mc(C_{4n} \lor K_{r,s}) = 4$.

Proof. Let $C_{4n} := u_1 u_2 \dots u_{4n} u_1$. Label the vertices of C_{4n} by $1, 0, 0, 0, 1, 0, 0, 0, \dots, 1, 0, 0, 0$ in cyclic order. We consider four cases.

Case 1. $n \equiv 1 \mod 4$.

 $C_{4n} \in M_4^{0,1;1}$ and by the proof of Theorem 2.3, $K_{r,s} \in M_4^{2,3;1}$. Apply Lemma 2.1 (2). *Case 2.* $n \equiv 2 \mod 4$.

 $C_{4n} \in M_4^{0,1;2}$ and by the proof of Theorem 2.3, $K_{r,s} \in M_4^{0,3;3}$. Apply Lemma 2.1 (31). Case 3. $n \equiv 3 \mod 4$.

 $C_{4n} \in M_4^{0,1;3}$ and by the proof of Theorem 2.3, $K_{r,s} \in M_4^{0,1;1}$. Apply Lemma 2.1 (14). Case 4. $n \equiv 0 \mod 4$.

 $C_{4n} \in M_4^{0,1;0}$ and by the proof of Theorem 2.3, $K_{r,s} \in M_4^{1,2;3}$. Apply Lemma 2.1 (33).

Theorem 2.5. For integers $n \ge 1, r \ge 1$, and $s \ge 1, mc(C_{4n+2} \lor K_{r,s}) = 4$.

Proof. Label the vertex x_1 of $K_{r,s}$ by 2 and all other vertices of $K_{r,s}$ by 0. This shows that $K_{r,s} \in M_4^{0,2;2}$. Let $C_{4n+2} := u_1 u_2 \dots u_{4n+2} u_1$. Label the vertices of C_{4n+2} by 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ..., 1, 0,

If
$$n \equiv 1 \mod 2$$
, then $C_{4n+2} \in M_4^{0,2;3}$. Now apply Lemma 2.1 (23).
If $n \equiv 0 \mod 2$, then $C_{4n+2} \in M_4^{0,2;1}$. Now apply Lemma 2.1 (22).

2.6. Join of two regular bipartite graphs

Theorem 2.6. Let G be a k-regular bipartite graph with $k \equiv 1 \mod 2$ and let H be an ℓ -regular bipartite graph with $\ell \equiv 1 \mod 2$. We have $mc(G \lor H) = 4$.

Proof. Let (X, Y) be the bipartition of G with |X| = |Y| = m, and let (U, V) be the bipartition of H with |U| = |V| = n. Define $c : V(G \lor H) \to \mathbb{Z}_4$ by c(x) = 0 for $x \in X$, c(y) = 2 for $y \in Y$, c(u) = 1 for $u \in U$, c(v) = 3 for $v \in V$. Then, $\sigma(x) = (n + 3n + 2k) \pmod{4} = 2$ for $x \in X$ and $\sigma(y) = (n + 3n) \pmod{4} = 0$ for $y \in Y$. We consider 2 cases.

Case 1. Either $m \equiv 0 \mod 2$ and $\ell \equiv 1 \mod 4$ or $m \equiv 1 \mod 2$ and $\ell \equiv 3 \mod 4$.

In this case, $\sigma(u) = (2m + 3\ell) \pmod{4} = 3$ for $u \in U$ and $\sigma(v) = (2m + \ell) \pmod{4} = 1$ for $v \in V$.

Case 2. Either $m \equiv 0 \mod 2$ and $\ell \equiv 3 \mod 4$ or $m \equiv 1 \mod 2$ and $\ell \equiv 1 \mod 4$.

In this case, $\sigma(u) = (2m + 3\ell) \pmod{4} = 1$ for $u \in U$ and $\sigma(v) = (2m + \ell) \pmod{4} = 3$ for $v \in V$.

Theorem 2.7. Let G be a k-regular bipartite graph with $k \equiv 2 \mod 4$ and let H be an ℓ -regular bipartite graph with $\ell \equiv 1 \mod 2$. We have $mc(G \lor H) = 4$.

Proof. Let (X, Y) be the bipartition of G with |X| = |Y| = m, and let (U, V) be the bipartition of H with |U| = |V| = n. We consider two cases. *Case 1.* $m \equiv 1 \mod 2$.

Define $c : V(G \lor H) \to \mathbb{Z}_4$ by c(x) = 0 for $x \in X$, c(y) = 1 for $y \in Y$, c(u) = 0 for $u \in U$, c(v) = 2 for $v \in V$. Then, $\sigma(x) = (2n+k) \pmod{4} = (2n+2) \pmod{4}$ for $x \in X$, $\sigma(y) = 2n \mod 4$ for $y \in Y$, $\sigma(u) = (m+2\ell) \pmod{4} = (m+2) \pmod{4}$ for $u \in U$ and $\sigma(v) = m \mod 4$ for $v \in V$. Note that $\{2n, 2n+2\} \pmod{4} = \{0, 2\}$ and as $m \equiv 1 \mod 2$, $\{m, m+2\} \pmod{4} = \{1, 3\}$.

Case 2. $m \equiv 0 \mod 2$.

Define $c: V(G \vee H) \to \mathbb{Z}_4$ by c(x) = 0 for $x \in X$, c(y) = 1 for $y \in Y$, c(u) = 1 for $u \in U$, c(v) = 3 for $v \in V$. Then, $\sigma(x) = (4n+k)(mod 4) = 2$ for $x \in X$, $\sigma(y) = 4n \mod 4 = 0$ for $y \in Y$, $\sigma(u) = (m+3\ell)(mod 4)$ for $u \in U$ and $\sigma(v) = (m+\ell)(mod 4)$ for $v \in V$.

Note that (i) if either $m \equiv 0 \mod 4$ and $\ell \equiv 1 \mod 4$ or $m \equiv 2 \mod 4$ and $\ell \equiv 3 \mod 4$, then $\sigma(u) = 3$ for $u \in U$ and $\sigma(v) = 1$ for $v \in V$, (ii) if either $m \equiv 2 \mod 4$ and $\ell \equiv 1 \mod 4$ or $m \equiv 0 \mod 4$ and $\ell \equiv 3 \mod 4$, then $\sigma(u) = 1$ for $u \in U$ and $\sigma(v) = 3$ for $v \in V$. \Box

We propose:

Problem 1. Let G be a k-regular bipartite graph with $k \equiv 0 \mod 4$ and let H be an ℓ -regular bipartite graph with $\ell \equiv 1 \mod 2$. Find $mc(G \lor H)$.

Problem 2. Let G be a k-regular bipartite graph with $k \equiv 0 \mod 2$ and let H be an ℓ -regular bipartite graph with $\ell \equiv 0 \mod 2$. Find $mc(G \lor H)$.

2.7. Join of two even cycles

Theorem 2.8. For $m \ge 1$ and $n \ge 1$, $mc(C_{4m} \lor C_{4n}) = 4$.

Proof. First, label the vertices of C_{4m} by $0, 0, 2, 0, 0, 0, 2, 0, \ldots, 0, 0, 2, 0$ in cyclic order. This shows that $C_{4m} \in M_4^{0,2;0} \cup M_4^{0,2;2}$. Next, label the vertices of C_{4n} by $1, 3, 0, 0, 1, 3, 0, 0, \ldots, 1, 3, 0, 0$ in cyclic order. This implies that $C_{4n} \in M_4^{1,3;0}$. Finally, apply Lemma 2.1 (5) and (39).

Theorem 2.9. For $m \ge 1$ and $n \ge 1$, $mc(C_{4m} \lor C_{4n+2}) = 4$.

Proof. By the proof of Theorem 2.3, $C_{4m} \in M_4^{0,2;0} \cup M_4^{0,2;2}$. Labelling the vertices of C_{4n+2} by 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 in cyclic order shows that $C_{4n+2} \in M_4^{0,2;1} \cup M_4^{0,2;3}$. Application of Lemma 2.3 (21), (22), (23) and (24) completes the proof.

Lemma 2.2. Let $\ell \geq 1$. If $C_{4\ell+2} \in M_4^{i,j;k}$, then $\{i, j\} = \{0, 2\}$ and $k \in \{1, 3\}$.

Proof. Let $C_{4\ell+2} = z_1 z_2 \dots z_{4\ell+2} z_1$. $C_{4\ell+2} \in M_4^{i,j;k}$ implies $C_{4\ell+2}$ has a modular 4 coloring c such that $\sigma(z_{2p-1}) = i$ and $\sigma(z_{2p}) = j$ for $p \in \{1, 2, \dots, 2\ell+1\}$, and $\sum_{q=1}^{4\ell+2} c(z_q) \equiv k \mod 4$. We consider four cases

consider four cases.

Case 1. i = 0 and j = 1.

The σ -value 1 for the vertices $z_2, z_4, z_6, \ldots, z_{4\ell}$ in order implies $(c(z_1), c(z_3), c(z_5), c(z_7), \ldots, c(z_{4\ell+1}))$ is one of the following: $(0, 1, 0, 1, \ldots, 0), (1, 0, 1, 0, \ldots, 1), (2, 3, 2, 3, \ldots, 2), (3, 2, 3, 2, \ldots, 3)$. But then $\sigma(z_{4\ell+2}) \neq 1$, a contradiction. *Case 2.* $i \in \{0, 2\}$ and j = 3.

The σ -value 3 for the vertices $z_2, z_4, z_6, \ldots, z_{4\ell}$ in order implies $(c(z_1), c(z_3), c(z_5), c(z_7), \ldots, c(z_{4\ell+1}))$ is one of the following: $(0, 3, 0, 3, \ldots, 0), (3, 0, 3, 0, \ldots, 3), (1, 2, 1, 2, \ldots, 1), (2, 1, 2, 1, \ldots, 2)$. But then $\sigma(z_{4\ell+2}) \neq 3$, a contradiction. *Case 3.* i = 1 and $j \in \{2, 3\}$.

The σ -value 1 for the vertices $z_3, z_5, z_7, \ldots, z_{4\ell+1}$ in order implies $(c(z_2), c(z_4), c(z_6), c(z_8), \ldots, c(z_{4\ell+2}))$ is one of the following: $(0, 1, 0, 1, \ldots, 0), (1, 0, 1, 0, \ldots, 1), (2, 3, 2, 3, \ldots, 2), (3, 2, 3, 2, \ldots, 3)$. But then $\sigma(z_1) \neq 1$, a contradiction. *Case 4.* i = 0 and j = 2.

The σ -value 0 for the vertices $z_3, z_5, z_7, \ldots, z_{4\ell+1}$ in order implies $(c(z_2), c(z_4), c(z_6), c(z_8), \ldots, c(z_{4\ell+2}))$ is one of the following: $(0, 0, 0, 0, \ldots, 0), (2, 2, 2, 2, \ldots, 2), (1, 3, 1, 3, \ldots, 1), (3, 1, 3, 1, \ldots, 3), \sigma(z_1) = 0$ implies that $(c(z_2), c(z_4), c(z_6), c(z_8), \ldots, c(z_{4\ell+2})) = (0, 0, 0, 0, \ldots, 0)$ or $(2, 2, 2, 2, \ldots, 2).$

The σ -value 2 for the vertices $z_2, z_4, z_6, \ldots, z_{4\ell}$ in order implies $(c(z_1), c(z_3), c(z_5), c(z_7), \ldots, c(z_{4\ell+1}))$ is one of the following: $(0, 2, 0, 2, \ldots, 0), (2, 0, 2, 0, \ldots, 2), (1, 1, 1, 1, \ldots, 1), (3, 3, 3, 3, \ldots, 3), \sigma(z_{4\ell+2}) = 2$ implies that $(c(z_1), c(z_3), c(z_5), c(z_7), \ldots, c(z_{4\ell+1})) = (1, 1, 1, 1, \ldots, 1)$ or $(3, 3, 3, 3, \ldots, 3)$.

Hence the *c*-values for the vertices $z_1, z_2, \ldots z_{4\ell+2}$ in cyclic order are: $0, 1, 0, 1, \ldots, 0, 1; 0, 3, 0, 3, \ldots, 0, 3; 2, 1, 2, 1, \ldots, 2, 1; 2, 3, 2, 3, \ldots, 2, 3$.

Theorem 2.10. For $m \ge 1$ and $n \ge 1$, $mc(C_{4m+2} \lor C_{4n+2}) = 5$.

Proof. Let $C_{4m+2} = x_1 x_2 \dots x_{4m+2} x_1$ and $C_{4n+2} = y_1 y_2 \dots y_{4n+2} y_1$. Define $c : V(C_{4m+2} \lor C_{4n+2}) \to \mathbb{Z}_5$ by $c(x_{2p}) = 1$ and $c(x_{2p-1}) = 4$ for $p \in \{1, 2, \dots, 2m+1\}$ and $c(y_{2q}) = 2$ and $c(y_{2q-1}) = 3$ for $q \in \{1, 2, \dots, 2n+1\}$. Then, $\sigma(x_{2p}) = 3$ and $\sigma(x_{2p-1}) = 2$ for $p \in \{1, 2, \dots, 2m+1\}$ and $\sigma(y_{2q}) = 1$ and $\sigma(y_{2q-1}) = 4$ for $q \in \{1, 2, \dots, 2n+1\}$. Hence c is a modular 5-coloring and therefore $mc(C_{4m+2} \lor C_{4n+2}) \leq 5$.

Suppose there exists a modular 4-coloring c for $C_{4m+2} \vee C_{4n+2}$. This induces a modular 4-coloring $c' = c|_{\{x_1, x_2, \dots, x_{4m+2}\}}$ such that $\sigma'(x_{2p-1}) = i'$ and $\sigma'(x_{2p}) = j'$ for $p \in \{1, 2, \dots, 2m+1\}$, and $\sum_{q=1}^{4m+2} c'(x_q) \equiv k' \pmod{4}$ for some i', j', k'; and a modular 4-coloring $c'' = c|_{\{y_1, y_2, \dots, y_{4n+2}\}}$

such that $\sigma''(y_{2p-1}) = i''$ and $\sigma''(y_{2p}) = j''$ for $p \in \{1, 2, ..., 2n+1\}$, and $\sum_{q=1}^{4n+2} c''(y_q) \equiv k'' \pmod{4}$ for some i'', j'', k''.

By the proof of Lemma 2.2, both the sequences $\{c'(x_p)\}_{p=1}^{4m+2}$ and $\{c''(y_p)\}_{p=1}^{4n+2}$ are in $\{(0, 1, 0, 1, \dots, 0, 1), (0, 3, 0, 3, \dots, 0, 3), (2, 1, 2, 1, \dots, 2, 1), (2, 3, 2, 3, \dots, 2, 3)\}$. If $\{c'(x_p)\}_{p=1}^{4m+2} = \{c''(y_p)\}_{p=1}^{4n+2}$ is one of: $(0, 1, 0, 1, \dots, 0, 1), (0, 3, 0, 3, \dots, 0, 3), (0, 1, 1, 1, 1)\}$.

If $\{c'(x_p)\}_{p=1}^{4m+2} = \{c''(y_p)\}_{p=1}^{4n+2}$ is one of: $(0, 1, 0, 1, \dots, 0, 1), (0, 3, 0, 3, \dots, 0, 3), (2, 1, 2, 1, \dots, 2, 1), (2, 3, 2, 3, \dots, 2, 3),$ then $\{\sigma(x_p)\}_{p=1}^{4m+2} = \{\sigma(y_p)\}_{p=1}^{4n+2} = (1, 3, 1, 3, \dots, 1, 3),$ a contradiction.

If $\{\{c'(x_p)\}_{p=1}^{4m+2}, \{c''(y_p)\}_{p=1}^{4n+2}\} \in \{\{(0, 1, 0, 1, \dots, 0, 1), (0, 3, 0, 3, \dots, 0, 3)\}, \{(0, 1, 0, 1, \dots, 0, 1), (2, 1, 2, 1, \dots, 2, 1)\}, \{(0, 1, 0, 1, \dots, 0, 1), (2, 3, 2, 3, \dots, 2, 3)\}, \{(0, 3, 0, 3, \dots, 0, 3), (2, 1, 2, 1, \dots, 2, 1)\}, \{(0, 3, 0, 3, \dots, 0, 3), (2, 3, 2, 3, \dots, 2, 3)\}, \{(2, 1, 2, 1, \dots, 2, 1), (2, 3, 2, 3, \dots, 2, 3)\}, \text{then } \{\sigma(x_p)\}_{p=1}^{4m+2} = \{\sigma(y_p)\}_{p=1}^{4n+2} = (1, 3, 1, 3, \dots, 1, 3), again a contradiction.$

From these two contradictions, we have $mc(C_{4m+2} \vee C_{4n+2}) \geq 5$.

2.8. Join of a regular bipartite graph and an empty graph

Okamoto, Salehi and Zhang [2] have shown that for any integer $n \ge 3$, $mc(C_n \lor K_1) = \chi(C_n \lor K_1)$. Using the proof technique of this result, we prove Theorem 2.11.

Theorem 2.11. Let G be an r-regular bipartite graph with $r \equiv 1$ or 2 (mod 3). Then, for any positive integer s, $mc(G \lor sK_1) = 3$.

Proof. Let (X, Y) be the bipartition of G. Construct $G \vee sK_1$ from G by joining new vertices w_1, w_2, \ldots, w_s to every vertex of G. Define $c : V(G \vee sK_1) \to \mathbb{Z}_3$ by $c(w_i) = 0$ for $i \in \{1, 2, \ldots, s\}$, c(x) = 1 if $x \in X$ and c(y) = 2 if $y \in Y$. Then, for $i \in \{1, 2, \ldots, s\}$, $\sigma(w_i) = |X| + 2|Y| = |X| + 2|X| \equiv 0 \mod 3$; for $x \in X$, $\sigma(x) = 2r$ is 2 if $r \equiv 1 \mod 3$ and it is 1 if $r \equiv 2 \mod 3$; for $y \in Y$, $\sigma(y) = r$ is 1 if $r \equiv 1 \mod 3$ and it is 2 if $r \equiv 2 \mod 3$. Hence, c is a modular 3-coloring of G, and therefore $mc(G \vee sK_1) \leq 3$. But, $mc(G \vee sK_1) \geq \chi(G \vee sK_1) = 3$.

Remark 2.1. Let G be an r-regular bipartite graph with $r \equiv 0 \mod 3$ and let (X, Y) be the bipartition of G. Suppose there exist partitions $\{X_1, X_2\}$ of X and $\{Y_1, Y_2\}$ of Y and integers t' and t" both not congruent to $0 \mod 3$ such that t' is not congruent to $t'' \pmod{3}$, the subgraph induced by $X_1 \cup Y_1$ is t'-regular and the subgraph induced by $X_2 \cup Y_2$ is t"-regular, then $mc(G \lor sK_1) = 3$.

To see this, define $c: V(G \vee sK_1) \to \mathbb{Z}_3$ by $c(w_i) = 0$ for $i \in \{1, 2, ..., s\}$, c(x) = 1 if $x \in X_1$, c(x) = 2 if $x \in X_2$, c(y) = 2 if $y \in Y_1$, and c(y) = 1 if $y \in Y_2$. Then, for $i \in \{1, 2, ..., s\}$, $\sigma(w_i) = |X_1| + 2|X_2| + 2|Y_1| + |Y_2| = 3|X| = 0 \mod 3$; for $x \in X_1$, $\sigma(x) = 2t' + (r - t') = r + t'$; for $x \in X_2$, $\sigma(x) = t'' + 2(r - t'') = 2r - t''$; for $y \in Y_1$, $\sigma(y) = t' + 2(r - t') = 2r - t'$; and for $y \in Y_2$, $\sigma(y) = 2t'' + (r - t'') = r + t''$. By hypothesis, in \mathbb{Z}_3 , $0 \notin \{r + t', r + t'', 2r - t', 2r - t''\}$ and $\{r + t', 2r - t''\} \cap \{r + t'', 2r - t'\} = \phi$.

3. Join of a path and a complete graph

Theorem 3.1. For integers $n \ge 3$ and $p \ge 3$, $mc(P_n \lor K_p) = p + 2$.

Proof. Let $P_n := u_1 u_2 \dots u_n$ and $V(K_p) = \{v_1, v_2, \dots, v_p\}$. Define $c : V(P_n \vee K_p) \to \mathbb{Z}_{p+2}$ as follows: Label the vertices of P_n , in order, by $0, 1, 0, 0, 0, 1, 0, 0, \dots, 0, 1, 0, 0$ for $n \equiv 0 \mod 4$; by $1, 0, 0, 0, 1, 0, 0, 0, \dots, 1, 0, 0, 0, 1$ for $n \equiv 1 \mod 4$; by $1, 0, 0, 0, 1, 0, 0, 0, \dots, 1, 0, 0, 0, 1$ for $n \equiv 2 \mod 4$; and by $1, 0, 0, 0, 1, 0, 0, 0, \dots, 1, 0, 0, 0, \dots, 1, 0, 0, 0, \dots, 1, 0, 0, 0, 1, 0, 0, 0, \dots, 0, 0, \dots, 1, 0, 0, 0, \dots, 0, \dots, 0, \dots, 0, \dots, 0, 0, \dots, 0$

$$\{0, 1, 2, \dots, p+1\} \setminus \{\left(\left\lceil \frac{n}{4} \right\rceil - 1\right) (mod (p+2)), \left\lceil \frac{n}{4} \right\rceil (mod (p+2))\}$$

The σ -values of the vertices of P_n in $P_n \vee K_p$ are, alternately, $(\frac{(p+1)(p+2)}{2} - 2\lceil \frac{n}{4} \rceil + 1) \pmod{(p+2)}$ and $(\frac{(p+1)(p+2)}{2} - 2\lceil \frac{n}{4} \rceil + 2) \pmod{(p+2)}$. The σ -values of the p vertices of K_p in $P_n \vee K_p$ are the p numbers in $\{(\frac{(p+1)(p+2)}{2} - \lceil \frac{n}{4} \rceil + 1 - i) \pmod{(p+2)} : i \in \{0, 1, 2, \dots, p+1\} \setminus \{(\lceil \frac{n}{4} \rceil - 1) \pmod{(p+2)}, \lceil \frac{n}{4} \rceil \pmod{(p+2)}\}$. Note that the σ -value of any vertex of P_n in $P_n \vee K_p$ is different from that of any vertex of K_p in $P_n \vee K_p$. This completes the proof. \Box

4. Join of an even cycle and a complete graph

Theorem 4.1. For integers $n \geq 2$ and $p \geq 3$, $mc(C_{2n} \vee K_p) = p + 2$.

Proof. Let $C_{2n} := u_1 u_2 \dots u_{2n} u_1$ and $V(K_p) = \{v_1, v_2, \dots, v_p\}$. Define $c : V(C_{2n} \vee K_p) \rightarrow \mathbb{Z}_{p+2}$ as follows: We consider two cases: *Case 1.* $n \equiv 0 \mod 2$.

Label the vertices of C_{2n} , in cyclic order, by $1, 0, 0, 0, 1, 0, 0, 0, \dots, 1, 0, 0, 0$. Label the p vertices of K_p by the p numbers in

$$\{0, 1, 2, \dots, p+1\} \setminus \{(\frac{n}{2}-1) (mod (p+2)), \frac{n}{2} (mod (p+2))\}.$$

The σ -values of the vertices of C_{2n} in $C_{2n} \vee K_p$ are, alternately, $(\frac{(p+1)(p+2)}{2} - n+1)(mod (p+2))$ and $(\frac{(p+1)(p+2)}{2} - n+2)(mod (p+2))$. The σ -values of the p vertices of K_p in $C_{2n} \vee K_p$ are the p numbers in $\{(\frac{(p+1)(p+2)}{2} - \frac{n}{2} + 1 - i)(mod (p+2)) : i \in \{0, 1, 2, \dots, p+1\} \setminus \{(\frac{n}{2} - 1)(mod (p+2)), \frac{n}{2}(mod (p+2))\}$. Observe that the σ -value of any vertex of C_{2n} in $C_{2n} \vee K_p$ is different from that of any vertex of K_p in $C_{2n} \vee K_p$. *Case 2.* $n \equiv 1 \mod 2$. Label the vertices of C_{2n} , in cyclic order, by $1, 0, 1, 0, 1, 0, 1, 0, \ldots, 1, 0, 1, 0$. Label the p vertices of K_p by the p numbers in $\{0, 1, 2, \ldots, p+1\} \setminus \{(n-2)(mod (p+2)), n \mod (p+2)\}$. The σ -values of the vertices of C_{2n} in $C_{2n} \vee K_p$ are, alternately, $(\frac{(p+1)(p+2)}{2} - 2n+2)(mod (p+2))$ and $(\frac{(p+1)(p+2)}{2} - 2n + 4)(mod (p+2))$. The σ -values of the p vertices of K_p in $C_{2n} \vee K_p$ are the p numbers in $\{(\frac{(p+1)(p+2)}{2} - n + 2 - i)(mod (p+2)) : i \in \{0, 1, 2, \ldots, p+1\} \setminus \{(n-2)(mod (p+2)), n \mod (p+2)\}$. Clearly, the σ -value of any vertex of C_{2n} in $C_{2n} \vee K_p$ is different from that of any vertex of K_p in $C_{2n} \vee K_p$.

This completes the proof.

5. Conclusion

We have seen that $mc(G \lor H) = \chi(G) + \chi(H)$ for every join graph $G \lor H$, except for the join graph $C_{4m+2} \lor C_{4n+2}$, that we have encountered in this paper.

References

- [1] R. Balakrishnan and K. Ranganathan, *A textbook of graph theory*, Second Edition, Springer-Verlag, New York, 2012.
- [2] F. Okamoto, E. Salehi and P. Zhang, A checkerboard problem and modular colorings of graphs, *Bull. Inst. Combin. Appl.* **58** (2010), 29–47.
- [3] F. Okamoto, E. Salehi and P. Zhang, A solution to the checkerboard problem, *J. Comput. Appl. Math.* **5** (2010), 447–458.