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Abstract

For k ≥ 2, a modular k-coloring of a graph G without isolated vertices is a coloring of the vertices
ofGwith the elements in Zk having the property that for every two adjacent vertices ofG, the sums
of the colors of their neighbors are different in Zk. The minimum k for which G has a modular k-
coloring is the modular chromatic number ofG. In this paper, we determine the modular chromatic
number of join of two special graphs.
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1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. For a vertex v of a
graph G, let NG(v), the neighborhood of v, denote the set of vertices adjacent to v in G. For a
graph G without isolated vertices, let c : V (G) → Zk, k ≥ 2, be a vertex coloring of G where
adjacent vertices may be colored the same. The color sum σ(v) =

∑
u∈NG(v)

c(u) of a vertex v of G

is the sum of the colors of the vertices in NG(v). The coloring c is called a modular k-coloring of
G if σ(x) 6= σ(y) in Zk for all pairs x, y of adjacent vertices in G. The modular chromatic number
mc(G) of G is the minimum k for which G has a modular k-coloring. This concept was introduced
by Okamoto, Salehi and Zhang [2].
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Okamoto, Salehi and Zhang proved, in [2], that: every nontrivial connected graph G has a
modular k-coloring for some integer k ≥ 2 andmc(G)≥ χ(G), where χ(G) denotes the chromatic
number of G; for the cycle Cn of length n, mc(Cn) is 2 if n ≡ 0 mod 4 and it is 3 otherwise;
every nontrivial tree has modular chromatic number 2 or 3; for the complete multipartite graph G,
mc(G) = χ(G); for the cartesian product G = Kr�K2, mc(G) is r if r ≡ 2 mod 4 and it is
r + 1 otherwise; for the wheel Wn = Cn ∨K1, n ≥ 3, mc(Wn) = χ(Wn), where ∨ denotes the
join of two graphs; for n ≥ 3, mc(Cn ∨Kc

2) = χ(Cn ∨Kc
2), where Gc denotes the complement

of G; and for n ≥ 2, mc(Pn∨K2) = χ(Pn∨K2), where Pn denotes the path of length n− 1; and
in [3] that: for m,n ≥ 2, mc(Pm�Pn) = 2.

For graphs G1 and G2, their union G1 ∪ G2 is the graph with vertex set V (G1) ∪ V (G2) and
edge setE(G1)∪E(G2). For vertex-disjoint graphsG1 andG2, their joinG1∨G2 is the supergraph
of G1 ∪ G2 in which each vertex of G1 is adjacent to every vertex of G2 and both G1 and G2 are
induced subgraphs.

In this paper, we compute the modular chromatic number of join of two special graphs.

2. Join of two bipartite graphs

2.1. Sufficient condition for mc = 4

Let i, j, k ∈ Z4 with i 6= j. Set M i,j;k
4 = {G : G is a bipartite graph such that G has a

modular 4-coloring c with the property that for every v ∈ V (G), σ(v)(mod 4) ∈ {i, j} and∑
v∈V (G)

c(v) ≡ k mod 4 }.

Lemma 2.1. Let G and H be two vertex-disjoint nonempty bipartite graphs. If any one of the
following holds, then mc(G ∨H) = 4.

(1) G ∈M0,1;0
4 and H ∈M2,3;0

4 ;
(2) G ∈M0,1;1

4 and H ∈M2,3;1
4 ;

(3) G ∈M0,1;2
4 and H ∈M2,3;2

4 ;
(4) G ∈M0,1;3

4 and H ∈M2,3;3
4 ;

(5) G ∈M0,2;0
4 and H ∈M1,3;0

4 ;
(6) G ∈M0,2;1

4 and H ∈M1,3;1
4 ;

(7) G ∈M0,2;2
4 and H ∈M1,3;2

4 ;
(8) G ∈M0,2;3

4 and H ∈M1,3;3
4 ;

(9) G ∈M0,3;0
4 and H ∈M1,2;0

4 ;
(10) G ∈M0,3;1

4 and H ∈M1,2;1
4 ;

(11) G ∈M0,3;2
4 and H ∈M1,2;2

4 ;
(12) G ∈M0,3;3

4 and H ∈M1,2;3
4 ;

(13) G ∈M0,1;0
4 and H ∈M0,1;2

4 ;
(14) G ∈M0,1;1

4 and H ∈M0,1;3
4 ;

(15) G ∈M0,3;0
4 and H ∈M0,3;2

4 ;
(16) G ∈M0,3;1

4 and H ∈M0,3;3
4 ;

(17) G ∈M1,2;0
4 and H ∈M1,2;2

4 ;
(18) G ∈M1,2;1

4 and H ∈M1,2;3
4 ;

(19) G ∈M2,3;0
4 and H ∈M2,3;2

4 ;
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(20) G ∈M2,3;1
4 and H ∈M2,3;3

4 ;
(21) G ∈M0,2;0

4 and H ∈M0,2;1
4 ;

(22) G ∈M0,2;1
4 and H ∈M0,2;2

4 ;
(23) G ∈M0,2;2

4 and H ∈M0,2;3
4 ;

(24) G ∈M0,2;3
4 and H ∈M0,2;0

4 ;
(25) G ∈M1,3;0

4 and H ∈M1,3;1
4 ;

(26) G ∈M1,3;1
4 and H ∈M1,3;2

4 ;
(27) G ∈M1,3;2

4 and H ∈M1,3;3
4 ;

(28) G ∈M1,3;3
4 and H ∈M1,3;0

4 ;
(29) G ∈M0,1;0

4 and H ∈M0,3;1
4 ;

(30) G ∈M0,1;1
4 and H ∈M0,3;2

4 ;
(31) G ∈M0,1;2

4 and H ∈M0,3;3
4 ;

(32) G ∈M0,1;3
4 and H ∈M0,3;0

4 ;
(33) G ∈M0,1;0

4 and H ∈M1,2;3
4 ;

(34) G ∈M0,1;1
4 and H ∈M1,2;0

4 ;
(35) G ∈M0,1;2

4 and H ∈M1,2;1
4 ;

(36) G ∈M0,1;3
4 and H ∈M1,2;2

4 ;
(37) G ∈M0,2;0

4 and H ∈M1,3;2
4 ;

(38) G ∈M0,2;1
4 and H ∈M1,3;3

4 ;
(39) G ∈M0,2;2

4 and H ∈M1,3;0
4 ;

(40) G ∈M0,2;3
4 and H ∈M1,3;1

4 ;
(41) G ∈M0,3;0

4 and H ∈M2,3;1
4 ;

(42) G ∈M0,3;1
4 and H ∈M2,3;2

4 ;
(43) G ∈M0,3;2

4 and H ∈M2,3;3
4 ;

(44) G ∈M0,3;3
4 and H ∈M2,3;0

4 ;
(45) G ∈M1,2;0

4 and H ∈M2,3;3
4 ;

(46) G ∈M1,2;1
4 and H ∈M2,3;0

4 ;
(47) G ∈M1,2;2

4 and H ∈M2,3;1
4 ;

(48) G ∈M1,2;3
4 and H ∈M2,3;2

4 .

Proof. Clearly, mc(G ∨H) ≥ χ(G ∨H) = χ(G) + χ(H) = 4. We prove (48) and the proofs
of (1) to (47) are similar. G ∈ M1,2;3

4 implies that G has a modular 4-coloring c′ such that for
every v ∈ V (G), σ′(v)(mod 4) ∈ {1, 2} and

∑
v∈V (G)

c′(v) ≡ 3 mod 4 and H ∈ M2,3;2
4 implies

that H has a modular 4-coloring c′′ such that for every v ∈ V (H), σ′′(v)(mod 4) ∈ {2, 3} and∑
v∈V (H)

c′′(v) ≡ 2 mod 4. Define c : V (G ∨ H) → Z4 by c(v) = c′(v) for v ∈ V (G) and

c(v) = c′′(v) for v ∈ V (H). Then, for every v ∈ V (G), σ(v)(mod 4) = 3⇔ σ′(v)(mod 4) =
1, and σ(v)(mod 4) = 0 ⇔ σ′(v)(mod 4) = 2; and for every v ∈ V (H), σ(v)(mod 4) = 1
⇔ σ′′(v)(mod 4) = 2, and σ(v)(mod 4) = 2 ⇔ σ′′(v)(mod 4) = 3. Hence, c is a modular
4-coloring of G ∨H. Consequently, mc(G ∨H) ≤ 4.

Using Lemma 2.1, we compute mc(G ∨ H) for some special graphs G and H.
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2.2. Join of two paths
Theorem 2.1. For m ≥ 2 and n ≥ 2, mc(Pm ∨ Pn) = 4.

Proof. Case 1. n 6≡ 1mod 4.
First, we claim that Pm ∈ M0,2;0

4 ∪ M0,2;2
4 . To see this, for m ≡ 0mod 4, label the vertices

of Pm by 0, 0, 2, 0, 0, 0, 2, 0, . . . , 0, 0, 2, 0 in order; for m ≡ 1mod 4, label the vertices of Pm

by 0, 0, 2, 0, 0, 0, 2, 0, . . . , 0, 0, 2, 0, 0 in order; for m ≡ 2mod 4, label the vertices of Pm by
2, 0, 0, 0, 2, 0, 0, 0, . . . , 2, 0, 0, 0, 2, 0 in order; and for m ≡ 3mod 4, label the vertices of Pm by
0, 0, 2, 0, 0, 0, 2, 0, . . . , 0, 0, 2, 0, 0, 0, 2 in order.

Next, we claim that Pn ∈ M1,3;0
4 . To see this, for n ≡ 0mod 4, label the vertices of Pn

by 0, 1, 3, 0, 0, 1, 3, 0, . . . , 0, 1, 3, 0 in order; for n ≡ 2mod 4, label the vertices of Pn by
1, 3, 0, 0, 1, 3, 0, 0, . . . , 1, 3, 0, 0, 1, 3 in order; and for n ≡ 3mod 4, label the vertices of Pn

by 0, 1, 3, 0, 0, 1, 3, 0, . . . , 0, 1, 3, 0, 0, 1, 3 in order.
Finally, apply Lemma 2.1 (5) and (39).
Now, by symmetry, assume that bothm and n are≡ 1mod 4.Again, by symmetry, it is enough

if we consider the following cases.
Case 2. m ≡ 1mod 16 and n ≡ 1mod 16.

First, we claim that Pm ∈ M0,3;0
4 . To see this, label the vertices of Pm by 0, 0, 3, 0, 0, 0, 3, 0,

. . . , 0, 0, 3, 0, 0 in order. Next, we claim that Pn ∈ M0,1;3
4 . To see this, label the vertices of Pn

by 3, 0, 2, 0, 3, 0, 2, 0, . . . , 3, 0, 2, 0, 3 in order. Finally, apply Lemma 2.1 (32).
Case 3. m ≡ 1mod 16 and n ≡ 9mod 16.

First, we claim that Pm ∈ M0,3;1
4 . To see this, label the vertices of Pm by 1, 0, 2, 0, 1, 0, 2, 0,

. . . , 1, 0, 2, 0, 1 in order. Next, we claim that Pn ∈ M0,3;3
4 . To see this, label the vertices of Pn

by 1, 0, 2, 0, 1, 0, 2, 0, . . . , 1, 0, 2, 0, 1 in order. Finally, apply Lemma 2.1 (16).
Case 4. m ≡ 5mod 16 and n ≡ 5mod 16.

First, we claim that Pm ∈ M0,1;1
4 . To see this, label the vertices of Pm by 0, 0, 1, 0, 0, 0, 1, 0,

. . . , 0, 0, 1, 0, 0 in order. Next, we claim that Pn ∈ M0,3;2
4 . To see this, label the vertices of Pn

by 3, 0, 0, 0, 3, 0, 0, 0, . . . , 3, 0, 0, 0, 3 in order. Finally, apply Lemma 2.1 (30).
Case 5. m ≡ 5mod 16 and n ≡ 13mod 16.

First, we claim that Pm ∈ M0,1;1
4 . To see this, label the vertices of Pm by 0, 0, 1, 0, 0, 0, 1, 0,

. . . , 0, 0, 1, 0, 0 in order. Next, we claim that Pn ∈ M0,3;2
4 . To see this, label the vertices of Pn

by 1, 0, 2, 0, 1, 0, 2, 0, . . . , 1, 0, 2, 0, 1 in order. Finally, apply Lemma 2.1 (30).
Case 6. m ≡ 9mod 16 and n ≡ 9mod 16.

First, we claim that Pm ∈ M0,3;2
4 . To see this, label the vertices of Pm by 0, 0, 3, 0, 0, 0, 3, 0,

. . . , 0, 0, 3, 0, 0 in order. Next, we claim that Pn ∈ M0,1;1
4 . To see this, label the vertices of Pn

by 3, 0, 2, 0, 3, 0, 2, 0, . . . , 3, 0, 2, 0, 3 in order. Finally, apply Lemma 2.1 (30).
Case 7. m ≡ 13mod 16 and n ≡ 13mod 16.

First, we claim that Pm ∈ M0,1;0
4 . To see this, label the vertices of Pm by 1, 0, 0, 0, 1, 0, 0, 0,

. . . , 1, 0, 0, 0, 1 in order. Next, we claim that Pn ∈ M0,3;1
4 . To see this, label the vertices of Pn

by 0, 0, 3, 0, 0, 0, 3, 0, . . . , 0, 0, 3, 0, 0 in order. Finally, apply Lemma 2.1 (29).
Cases 8.1. m ≡ 1mod 16 and n ≡ 5mod 16;

8.2. m ≡ 13mod 16 and n ≡ 1mod 16;
8.3. m ≡ 5mod 16 and n ≡ 9mod 16;
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8.4. m ≡ 9mod 16 and n ≡ 13mod 16.
First, label the vertices of Pm by 3, 0, 2, 0, 3, 0, 2, 0, . . . , 3, 0, 2, 0, 3 in order. This shows that

Pm ∈ M0,1;3
4 if m ≡ 1mod 16, Pm ∈ M0,1;0

4 if m ≡ 5mod 16, Pm ∈ M0,1;1
4 if m ≡ 9mod 16,

and Pm ∈ M0,1;2
4 if m ≡ 13mod 16.

Next, label the vertices of Pn by 0, 0, 1, 0, 0, 0, 1, 0, . . . , 0, 0, 1, 0, 0 in order. This implies that
Pn ∈ M0,1;0

4 if n ≡ 1mod 16, Pn ∈ M0,1;1
4 if n ≡ 5mod 16, Pn ∈ M0,1;2

4 if n ≡ 9mod 16,
and Pn ∈ M0,1;3

4 if n ≡ 13mod 16.
If m ≡ 13mod 16 and n ≡ 1mod 16 or if m ≡ 5mod 16 and n ≡ 9mod 16, then apply

Lemma 2.1 (13). If m ≡ 1mod 16 and n ≡ 5mod 16, or if m ≡ 9mod 16 and n ≡ 13mod 16,
then apply Lemma 2.1 (14).

2.3. Join of a path and an even cycle
Theorem 2.2. For m ≥ 2 and n ≥ 2, mc(Pm ∨ C2n) = 4.

Proof. First, label the vertices of C2n, n ≡ 0mod 2, by 0, 1, 3, 0, 0, 1, 3, 0, . . . , 0, 1, 3, 0 in cyclic
order. This shows that C2n ∈M1,3;0

4 if n ≡ 0mod 2.
Next, label the vertices of C2n, n ≡ 1mod 2, by 1, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 1, 0, 1, 0 in cyclic

order. This shows that C2n ∈ M0,2;1
4 if n ≡ 1mod 4 and C2n ∈ M0,2;3

4 if n ≡ 3mod 4.
Finally, for m ≡ 0mod 4, label the vertices of Pm by 0, 0, 2, 0, 0, 0, 2, 0, . . . , 0, 0, 2, 0 in

order; for m ≡ 1mod 4, label the vertices of Pm by 0, 0, 2, 0, 0, 0, 2, 0, . . . , 0, 0, 2, 0, 0 in order;
for m ≡ 2mod 4, label the vertices of Pm by 2, 0, 0, 0, 2, 0, 0, 0, . . . , 2, 0, 0, 0, 2, 0 in order; and
for m ≡ 3mod 4, label the vertices of Pm by 0, 0, 2, 0, 0, 0, 2, 0, . . . , 0, 0, 2, 0, 0, 0, 2 in order.
This shows that Pm ∈ M0,2;0

4 ∪ M0,2;2
4 .

If n ≡ 0mod 2, then apply Lemma 2.1 (5) and (39). If n ≡ 1mod 4, then apply Lemma 2.1
(21) and (22). If n ≡ 3mod 4, then apply Lemma 2.1 (23) and (24).

2.4. Join of a path and a complete bipartite graph
Theorem 2.3. For integers n ≥ 2, r ≥ 1, and s ≥ 1, mc(Pn ∨ Kr,s) = 4.

Proof. Let Pn := u1u2 . . . un, X = {x1, x2, . . . , xr}, Y = {y1, y2, . . . , ys}, and the bipartition
of Kr,s be (X, Y ). We consider four cases.
Case 1. n ≡ imod 16, i ∈ {1, 2, 3, 4, 5}.

First, we claim that Kr,s ∈ M2,3;1
4 . To see this, label the vertex x1 of Kr,s by 2, the vertex

y1 of Kr,s by 3 and all other vertices of Kr,s by 0. Next, we claim that Pn ∈ M0,1;1
4 . To see this,

for n ≡ 1mod 16, label the vertices of Pn by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1 in order; for
n ≡ 2mod 16, label the vertices of Pn by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1, 0 in order; for
n ≡ 3mod 16, label the vertices of Pn by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1, 0, 0 in order;
for n ≡ 4mod 16, label the vertices of Pn by 0, 0, 1, 0, 0, 0, 1, 0, . . . , 0, 0, 1, 0 in order; for
n ≡ 5mod 16, label the vertices of Pn by 0, 0, 1, 0, 0, 0, 1, 0, . . . , 0, 0, 1, 0, 0 in order. Finally,
apply Lemma 2.1 (2).
Case 2. n ≡ imod 16, i ∈ {6, 7, 8}.

First, we claim that Kr,s ∈ M0,3;3
4 . To see this, label the vertex y1 of Kr,s by 3 and all other

vertices of Kr,s by 0. Next, we claim that Pn ∈ M0,1;2
4 . To see this, for n ≡ 6mod 16, label the

vertices of Pn by 0, 1, 0, 0, 0, 1, 0, 0, . . . , 0, 1, 0, 0, 0, 1 in order; for n ≡ 7mod 16, label the
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vertices of Pn by 0, 1, 0, 0, 0, 1, 0, 0, . . . , 0, 1, 0, 0, 0, 1, 0 in order; for n ≡ 8mod 16, label the
vertices of Pn by 0, 1, 0, 0, 0, 1, 0, 0, . . . , 0, 1, 0, 0 in order. Finally, apply Lemma 2.1 (31).
Case 3. n ≡ imod 16, i ∈ {9, 10, 11, 12, 13}.

First, we claim that Kr,s ∈ M0,1;1
4 . To see this, label the vertex y1 of Kr,s by 1 and all other

vertices of Kr,s by 0. Next, we claim that Pn ∈ M0,1;3
4 . To see this, for n ≡ 9mod 16, label

the vertices of Pn by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1 in order; for n ≡ 10mod 16, label the
vertices of Pn by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1, 0 in order; for n ≡ 11mod 16, label the
vertices of Pn by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1, 0, 0 in order; for n ≡ 12mod 16, label the
vertices of Pn by 0, 0, 1, 0, 0, 0, 1, 0, . . . , 0, 0, 1, 0 in order; for n ≡ 13mod 16, label the vertices
of Pn by 0, 0, 1, 0, 0, 0, 1, 0, . . . , 0, 0, 1, 0, 0 in order. Finally, apply Lemma 2.1 (14).
Case 4. n ≡ imod 16, i ∈ {0, 14, 15}.

First, we claim that Kr,s ∈ M1,2;3
4 . To see this, label the vertex x1 of Kr,s by 1, the vertex

y1 of Kr,s by 2 and all other vertices of Kr,s by 0. Next, we claim that Pn ∈ M0,1;0
4 . To see this,

for n ≡ 14mod 16, label the vertices of Pn by 0, 1, 0, 0, 0, 1, 0, 0, . . . , 0, 1, 0, 0, 0, 1 in order;
for n ≡ 15mod 16, label the vertices of Pn by 0, 1, 0, 0, 0, 1, 0, 0, . . . , 0, 1, 0, 0, 0, 1, 0 in order;
for n ≡ 0mod 16, label the vertices of Pn by 0, 1, 0, 0, 0, 1, 0, 0, . . . , 0, 1, 0, 0 in order. Finally,
apply Lemma 2.1 (33).

2.5. Join of an even cycle and a complete bipartite graph
Let X = {x1, x2, . . . , xr}, Y = {y1, y2, . . . , ys}, and the bipartition of Kr,s be (X, Y ).

Theorem 2.4. For integers n ≥ 1, r ≥ 1, and s ≥ 1, mc(C4n ∨ Kr,s) = 4.

Proof. Let C4n := u1u2 . . . u4nu1. Label the vertices of C4n by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0
in cyclic order. We consider four cases.
Case 1. n ≡ 1mod 4.

C4n ∈ M0,1;1
4 and by the proof of Theorem 2.3, Kr,s ∈ M2,3;1

4 . Apply Lemma 2.1 (2).
Case 2. n ≡ 2mod 4.

C4n ∈ M0,1;2
4 and by the proof of Theorem 2.3, Kr,s ∈ M0,3;3

4 . Apply Lemma 2.1 (31).
Case 3. n ≡ 3mod 4.

C4n ∈ M0,1;3
4 and by the proof of Theorem 2.3, Kr,s ∈ M0,1;1

4 . Apply Lemma 2.1 (14).
Case 4. n ≡ 0mod 4.

C4n ∈ M0,1;0
4 and by the proof of Theorem 2.3, Kr,s ∈ M1,2;3

4 . Apply Lemma 2.1 (33).

Theorem 2.5. For integers n ≥ 1, r ≥ 1, and s ≥ 1, mc(C4n+2 ∨ Kr,s) = 4.

Proof. Label the vertex x1 of Kr,s by 2 and all other vertices of Kr,s by 0. This shows that
Kr,s ∈ M0,2;2

4 . Let C4n+2 := u1u2 . . . u4n+2u1. Label the vertices of C4n+2 by 1, 0, 1, 0, 1, 0, 1, 0,
. . . , 1, 0, 1, 0, 1, 0 in cyclic order.

If n ≡ 1mod 2, then C4n+2 ∈ M0,2;3
4 . Now apply Lemma 2.1 (23).

If n ≡ 0mod 2, then C4n+2 ∈ M0,2;1
4 . Now apply Lemma 2.1 (22).
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2.6. Join of two regular bipartite graphs
Theorem 2.6. Let G be a k-regular bipartite graph with k ≡ 1mod 2 and let H be an `-regular
bipartite graph with ` ≡ 1mod 2. We have mc(G ∨ H) = 4.

Proof. Let (X, Y ) be the bipartition of G with |X| = |Y | = m, and let (U, V ) be the bipartition
of H with |U | = |V | = n. Define c : V (G ∨ H) → Z4 by c(x) = 0 for x ∈ X, c(y) = 2 for
y ∈ Y, c(u) = 1 for u ∈ U, c(v) = 3 for v ∈ V. Then, σ(x) = (n + 3n + 2k)(mod 4) = 2 for
x ∈ X and σ(y) = (n+ 3n)(mod 4) = 0 for y ∈ Y. We consider 2 cases.
Case 1. Either m ≡ 0mod 2 and ` ≡ 1mod 4 or m ≡ 1mod 2 and ` ≡ 3mod 4.

In this case, σ(u) = (2m + 3`)(mod 4) = 3 for u ∈ U and σ(v) = (2m + `)(mod 4) = 1 for
v ∈ V.
Case 2. Either m ≡ 0mod 2 and ` ≡ 3mod 4 or m ≡ 1mod 2 and ` ≡ 1mod 4.

In this case, σ(u) = (2m + 3`)(mod 4) = 1 for u ∈ U and σ(v) = (2m + `)(mod 4) = 3 for
v ∈ V.

Theorem 2.7. Let G be a k-regular bipartite graph with k ≡ 2mod 4 and let H be an `-regular
bipartite graph with ` ≡ 1mod 2. We have mc(G ∨ H) = 4.

Proof. Let (X, Y ) be the bipartition of G with |X| = |Y | = m, and let (U, V ) be the bipartition
of H with |U | = |V | = n. We consider two cases.
Case 1. m ≡ 1mod 2.

Define c : V (G ∨ H) → Z4 by c(x) = 0 for x ∈ X, c(y) = 1 for y ∈ Y, c(u) = 0 for
u ∈ U, c(v) = 2 for v ∈ V. Then, σ(x) = (2n+k)(mod 4) = (2n+2)(mod 4) for x ∈ X, σ(y) =
2nmod 4 for y ∈ Y, σ(u) = (m+2`)(mod 4) = (m+2)(mod 4) for u ∈ U and σ(v) =mmod 4
for v ∈ V. Note that {2n, 2n+ 2}(mod 4) = {0, 2} and as m ≡ 1mod 2, {m,m+ 2}(mod 4) =
{1, 3}.
Case 2. m ≡ 0mod 2.

Define c : V (G ∨ H) → Z4 by c(x) = 0 for x ∈ X, c(y) = 1 for y ∈ Y, c(u) = 1 for
u ∈ U, c(v) = 3 for v ∈ V. Then, σ(x) = (4n+ k)(mod 4) = 2 for x ∈ X, σ(y) = 4nmod 4 =
0 for y ∈ Y, σ(u) = (m+ 3`)(mod 4) for u ∈ U and σ(v) = (m+ `)(mod 4) for v ∈ V.

Note that (i) if either m ≡ 0mod 4 and ` ≡ 1mod 4 or m ≡ 2mod 4 and ` ≡ 3mod 4, then
σ(u) = 3 for u ∈ U and σ(v) = 1 for v ∈ V, (ii) if either m ≡ 2mod 4 and ` ≡ 1mod 4 or
m ≡ 0mod 4 and ` ≡ 3mod 4, then σ(u) = 1 for u ∈ U and σ(v) = 3 for v ∈ V.

We propose:

Problem 1. Let G be a k-regular bipartite graph with k ≡ 0mod 4 and let H be an `-regular
bipartite graph with ` ≡ 1mod 2. Find mc(G ∨ H).

Problem 2. Let G be a k-regular bipartite graph with k ≡ 0mod 2 and let H be an `-regular
bipartite graph with ` ≡ 0mod 2. Find mc(G ∨ H).
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2.7. Join of two even cycles
Theorem 2.8. For m ≥ 1 and n ≥ 1, mc(C4m ∨ C4n) = 4.

Proof. First, label the vertices of C4m by 0, 0, 2, 0, 0, 0, 2, 0, . . . , 0, 0, 2, 0 in cyclic order. This
shows that C4m ∈ M0,2;0

4 ∪ M0,2;2
4 . Next, label the vertices of C4n by 1, 3, 0, 0, 1, 3, 0, 0, . . . ,

1, 3, 0, 0 in cyclic order. This implies that C4n ∈ M1,3;0
4 . Finally, apply Lemma 2.1 (5) and

(39).

Theorem 2.9. For m ≥ 1 and n ≥ 1, mc(C4m ∨ C4n+2) = 4.

Proof. By the proof of Theorem 2.3, C4m ∈ M0,2;0
4 ∪ M0,2;2

4 . Labelling the vertices of C4n+2

by 1, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 1, 0, 1, 0 in cyclic order shows that C4n+2 ∈ M0,2;1
4 ∪ M0,2;3

4 .
Application of Lemma 2.3 (21), (22), (23) and (24) completes the proof.

Lemma 2.2. Let ` ≥ 1. If C4`+2 ∈ M i,j;k
4 , then {i, j} = {0, 2} and k ∈ {1, 3}.

Proof. Let C4`+2 = z1z2 . . . z4`+2z1. C4`+2 ∈M i,j;k
4 implies C4`+2 has a modular 4-coloring c such

that σ(z2p−1) = i and σ(z2p) = j for p ∈ {1, 2, . . . , 2` + 1}, and
4`+2∑
q=1

c(zq) ≡ k mod 4. We

consider four cases.
Case 1. i = 0 and j = 1.

The σ-value 1 for the vertices z2, z4, z6, . . . , z4` in order implies (c(z1), c(z3), c(z5), c(z7),
. . . , c(z4`+1)) is one of the following: (0, 1, 0, 1, . . . , 0), (1, 0, 1, 0, . . . , 1), (2, 3, 2, 3, . . . , 2), (3, 2, 3,
2, . . . , 3). But then σ(z4`+2) 6= 1, a contradiction.
Case 2. i ∈ {0, 2} and j = 3.

The σ-value 3 for the vertices z2, z4, z6, . . . , z4` in order implies (c(z1), c(z3), c(z5), c(z7),
. . . , c(z4`+1)) is one of the following: (0, 3, 0, 3, . . . , 0), (3, 0, 3, 0, . . . , 3), (1, 2, 1, 2, . . . , 1), (2, 1, 2,
1, . . . , 2). But then σ(z4`+2) 6= 3, a contradiction.
Case 3. i = 1 and j ∈ {2, 3}.

The σ-value 1 for the vertices z3, z5, z7, . . . , z4`+1 in order implies (c(z2), c(z4), c(z6), c(z8),
. . . , c(z4`+2)) is one of the following: (0, 1, 0, 1, . . . , 0), (1, 0, 1, 0, . . . , 1), (2, 3, 2, 3, . . . , 2), (3, 2, 3,
2, . . . , 3). But then σ(z1) 6= 1, a contradiction.
Case 4. i = 0 and j = 2.

The σ-value 0 for the vertices z3, z5, z7, . . . , z4`+1 in order implies (c(z2), c(z4), c(z6), c(z8),
. . . , c(z4`+2)) is one of the following: (0, 0, 0, 0, . . . , 0), (2, 2, 2, 2, . . . , 2), (1, 3, 1, 3, . . . , 1), (3, 1, 3,
1, . . . , 3). σ(z1) = 0 implies that (c(z2), c(z4), c(z6), c(z8), . . . , c(z4`+2)) = (0, 0, 0, 0, . . . , 0) or
(2, 2, 2, 2, . . . , 2).

The σ-value 2 for the vertices z2, z4, z6, . . . , z4` in order implies (c(z1), c(z3), c(z5), c(z7),
. . . , c(z4`+1)) is one of the following: (0, 2, 0, 2, . . . , 0), (2, 0, 2, 0, . . . , 2), (1, 1, 1, 1, . . . , 1), (3, 3, 3,
3, . . . , 3). σ(z4`+2) = 2 implies that (c(z1), c(z3), c(z5), c(z7), . . . , c(z4`+1)) = (1, 1, 1, 1, . . . , 1)
or (3, 3, 3, 3, . . . , 3).

Hence the c-values for the vertices z1, z2, . . . z4`+2 in cyclic order are: 0, 1, 0, 1, . . . , 0, 1; 0, 3, 0,
3, . . . , 0, 3; 2, 1, 2, 1, . . . , 2, 1; 2, 3, 2, 3, . . . , 2, 3.

Theorem 2.10. For m ≥ 1 and n ≥ 1, mc(C4m+2 ∨ C4n+2) = 5.
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Proof. Let C4m+2 = x1x2 . . . x4m+2x1 and C4n+2 = y1y2 . . . y4n+2y1. Define c : V (C4m+2 ∨
C4n+2) → Z5 by c(x2p) = 1 and c(x2p−1) = 4 for p ∈ {1, 2, . . . , 2m + 1} and c(y2q) = 2
and c(y2q−1) = 3 for q ∈ {1, 2, . . . , 2n + 1}. Then, σ(x2p) = 3 and σ(x2p−1) = 2 for
p ∈ {1, 2, . . . , 2m + 1} and σ(y2q) = 1 and σ(y2q−1) = 4 for q ∈ {1, 2, . . . , 2n + 1}. Hence c
is a modular 5-coloring and therefore mc(C4m+2 ∨ C4n+2) ≤ 5.

Suppose there exists a modular 4-coloring c for C4m+2 ∨ C4n+2. This induces a modular 4-
coloring c′ = c|{x1,x2,...,x4m+2} such that σ′(x2p−1) = i′ and σ′(x2p) = j′ for p ∈ {1, 2, . . . , 2m+

1}, and
4m+2∑
q=1

c′(xq) ≡ k′ (mod 4) for some i′, j′, k′; and a modular 4-coloring c′′ = c|{y1,y2,...,y4n+2}

such that σ′′(y2p−1) = i′′ and σ′′(y2p) = j′′ for p ∈ {1, 2, . . . , 2n + 1}, and
4n+2∑
q=1

c′′(yq) ≡

k′′ (mod 4) for some i′′, j′′, k′′.
By the proof of Lemma 2.2, both the sequences {c′(xp)}4m+2

p=1 and {c′′(yp)}4n+2
p=1 are in {(0, 1, 0,

1, . . . , 0, 1), (0, 3, 0, 3, . . . , 0, 3), (2, 1, 2, 1, . . . , 2, 1), (2, 3, 2, 3, . . . , 2, 3)}.
If {c′(xp)}4m+2

p=1 = {c′′(yp)}4n+2
p=1 is one of: (0, 1, 0, 1, . . . , 0, 1), (0, 3, 0, 3, . . . , 0, 3),

(2, 1, 2, 1, . . . , 2, 1), (2, 3, 2, 3, . . . , 2, 3), then {σ(xp)}4m+2
p=1 = {σ(yp)}4n+2

p=1 = (1, 3, 1, 3, . . . , 1, 3),
a contradiction.

If {{c′(xp)}4m+2
p=1 , {c′′(yp)}4n+2

p=1 } ∈ {{(0, 1, 0, 1, . . . , 0, 1), (0, 3, 0, 3, . . . , 0, 3)},
{(0, 1, 0, 1, . . . , 0, 1), (2, 1, 2, 1, . . . , 2, 1)}, {(0, 1, 0, 1, . . . , 0, 1), (2, 3, 2, 3, . . . , 2, 3)},
{(0, 3, 0, 3, . . . , 0, 3), (2, 1, 2, 1, . . . , 2, 1)}, {(0, 3, 0, 3, . . . , 0, 3), (2, 3, 2, 3, . . . , 2, 3)},
{(2, 1, 2, 1, . . . , 2, 1), (2, 3, 2, 3, . . . , 2, 3)}, then {σ(xp)}4m+2

p=1 = {σ(yp)}4n+2
p=1 = (1, 3, 1, 3, . . . , 1, 3),

again a contradiction.
From these two contradictions, we have mc(C4m+2 ∨ C4n+2) ≥ 5.

2.8. Join of a regular bipartite graph and an empty graph
Okamoto, Salehi and Zhang [2] have shown that for any integer n ≥ 3, mc(Cn ∨ K1) =

χ(Cn ∨K1). Using the proof technique of this result, we prove Theorem 2.11.

Theorem 2.11. Let G be an r-regular bipartite graph with r ≡ 1 or 2 (mod 3). Then, for any
positive integer s, mc(G ∨ sK1) = 3.

Proof. Let (X, Y ) be the bipartition of G. Construct G ∨ sK1 from G by joining new vertices
w1, w2, . . . , ws to every vertex of G. Define c : V (G ∨ sK1) → Z3 by c(wi) = 0 for i ∈
{1, 2, . . . , s}, c(x) = 1 if x ∈ X and c(y) = 2 if y ∈ Y. Then, for i ∈ {1, 2, . . . , s}, σ(wi) =
|X| + 2|Y | = |X| + 2|X| ≡ 0mod 3; for x ∈ X, σ(x) = 2r is 2 if r ≡ 1mod 3 and it is 1 if r ≡
2mod 3; for y ∈ Y, σ(y) = r is 1 if r ≡ 1mod 3 and it is 2 if r ≡ 2mod 3. Hence, c is a modular
3-coloring of G, and therefore mc(G ∨ sK1) ≤ 3. But, mc(G ∨ sK1) ≥ χ(G ∨ sK1) = 3. Thus,
mc(G ∨ sK1) = 3.

Remark 2.1. LetG be an r-regular bipartite graph with r ≡ 0mod 3and let (X, Y ) be the bipartition
of G. Suppose there exist partitions {X1, X2} of X and {Y1, Y2} of Y and integers t′ and t′′ both
not congruent to 0mod 3 such that t′ is not congruent to t′′(mod 3), the subgraph induced by
X1 ∪ Y1 is t′-regular and the subgraph induced by X2 ∪ Y2 is t′′-regular, then mc(G ∨ sK1) = 3.
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To see this, define c : V (G ∨ sK1) → Z3 by c(wi) = 0 for i ∈ {1, 2, . . . , s}, c(x) = 1 if x ∈ X1,
c(x) = 2 if x ∈ X2, c(y) = 2 if y ∈ Y1, and c(y) = 1 if y ∈ Y2. Then, for i ∈ {1, 2, . . . , s}, σ(wi)
= |X1|+ 2|X2|+ 2|Y1|+ |Y2| = 3|X| = 0mod 3; for x ∈ X1, σ(x) = 2t′ + (r − t′) = r + t′; for
x ∈ X2, σ(x) = t′′ + 2(r − t′′) = 2r − t′′; for y ∈ Y1, σ(y) = t′ + 2(r − t′) = 2r − t′; and for y ∈
Y2, σ(y) = 2t′′ + (r− t′′) = r + t′′. By hypothesis, in Z3, 0 /∈ {r + t′, r + t′′, 2r− t′, 2r− t′′} and
{r + t′, 2r − t′′} ∩ {r + t′′, 2r − t′} = φ.

3. Join of a path and a complete graph

Theorem 3.1. For integers n ≥ 3 and p ≥ 3, mc(Pn ∨ Kp) = p+ 2.

Proof. Let Pn := u1u2 . . . un and V (Kp) = {v1, v2, . . . , vp}. Define c : V (Pn ∨Kp)→ Zp+2 as
follows: Label the vertices of Pn, in order, by 0, 1, 0, 0, 0, 1, 0, 0, . . . , 0, 1, 0, 0 for n ≡ 0mod 4;
by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1 for n ≡ 1mod 4; by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1, 0
for n ≡ 2mod 4; and by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0, 1, 0, 0 for n ≡ 3mod 4. Label the p
vertices of Kp by the p numbers in

{0, 1, 2, . . . , p+ 1}\{(
⌈n
4

⌉
− 1)(mod (p+ 2)),

⌈n
4

⌉
(mod (p+ 2))}.

The σ- values of the vertices of Pn in Pn ∨Kp are, alternately, ( (p+1)(p+2)
2

− 2
⌈
n
4

⌉
+1)(mod (p+2))

and ( (p+1)(p+2)
2

− 2
⌈
n
4

⌉
+ 2)(mod (p + 2)). The σ- values of the p vertices of Kp in Pn ∨ Kp are

the p numbers in {( (p+1)(p+2)
2

−
⌈
n
4

⌉
+ 1 − i)(mod (p + 2)) : i ∈ {0, 1, 2, . . . , p + 1}\{(

⌈
n
4

⌉
−

1)(mod (p + 2)),
⌈
n
4

⌉
(mod (p + 2))}}. Note that the σ- value of any vertex of Pn in Pn ∨ Kp is

different from that of any vertex of Kp in Pn ∨ Kp. This completes the proof.

4. Join of an even cycle and a complete graph

Theorem 4.1. For integers n ≥ 2 and p ≥ 3, mc(C2n ∨ Kp) = p+ 2.

Proof. Let C2n := u1u2 . . . u2nu1 and V (Kp) = {v1, v2, . . . , vp}. Define c : V (C2n ∨ Kp) →
Zp+2 as follows: We consider two cases:
Case 1. n ≡ 0mod 2.

Label the vertices of C2n, in cyclic order, by 1, 0, 0, 0, 1, 0, 0, 0, . . . , 1, 0, 0, 0. Label the p
vertices of Kp by the p numbers in

{0, 1, 2, . . . , p+ 1}\{(n
2
− 1)(mod (p+ 2)),

n

2
(mod (p+ 2))}.

The σ- values of the vertices of C2n in C2n ∨ Kp are, alternately, ( (p+1)(p+2)
2

− n+1)(mod (p+2))

and ( (p+1)(p+2)
2

− n+ 2)(mod (p+ 2)). The σ- values of the p vertices of Kp in C2n ∨ Kp are the
p numbers in {( (p+1)(p+2)

2
− n

2
+1− i)(mod (p+2)) : i ∈ {0, 1, 2, . . . , p+1}\{(n

2
− 1)(mod (p+

2)), n
2
(mod (p+2))}. Observe that the σ- value of any vertex of C2n in C2n ∨ Kp is different from

that of any vertex of Kp in C2n ∨ Kp.
Case 2. n ≡ 1mod 2.
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Label the vertices of C2n, in cyclic order, by 1, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 1, 0. Label the p
vertices of Kp by the p numbers in {0, 1, 2, . . . , p + 1}\{(n − 2)(mod (p + 2)), n mod (p + 2)}.
The σ- values of the vertices ofC2n inC2n ∨Kp are, alternately, ( (p+1)(p+2)

2
− 2n+2)(mod (p+2))

and ( (p+1)(p+2)
2

− 2n+4)(mod (p+2)). The σ- values of the p vertices of Kp in C2n ∨ Kp are the
p numbers in {( (p+1)(p+2)

2
− n+2− i)(mod (p+2)) : i ∈ {0, 1, 2, . . . , p+1}\{(n− 2)(mod (p+

2)), n mod (p+ 2)}. Clearly, the σ- value of any vertex of C2n in C2n ∨ Kp is different from that
of any vertex of Kp in C2n ∨ Kp.

This completes the proof.

5. Conclusion

We have seen that mc(G ∨ H) = χ(G) + χ(H) for every join graph G ∨ H, except for the
join graph C4m+2 ∨ C4n+2, that we have encountered in this paper.

References

[1] R. Balakrishnan and K. Ranganathan, A textbook of graph theory, Second Edition, Springer-
Verlag, New York, 2012.

[2] F. Okamoto, E. Salehi and P. Zhang, A checkerboard problem and modular colorings of
graphs, Bull. Inst. Combin. Appl. 58 (2010), 29–47.

[3] F. Okamoto, E. Salehi and P. Zhang, A solution to the checkerboard problem, J. Comput.
Appl. Math. 5 (2010), 447–458.

149


