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Abstract

The following generalization of distance magic graphs was introduced in [2]. A directed Zn-
distance magic labeling of an oriented graph

−→
G = (V,A) of order n is a bijection

−→
` : V → Zn

with the property that there is a µ ∈ Zn (called the magic constant) such that

w(x) =
∑

y∈N+
G (x)

−→
` (y)−

∑
y∈N−

G (x)

−→
` (y) = µ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed Zn-distance magic label-

ing
−→
` for

−→
G , we say that G is orientable Zn-distance magic and the directed Zn-distance magic

labeling
−→
` we call an orientable Zn-distance magic labeling. In this paper, we find orientable Zn-

distance magic labelings of the Cartesian product of cycles. In addition, we show that even-ordered
hypercubes are orientable Zn-distance magic.
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1. Introduction

A distance magic labeling of an undirected graph G of order n is a bijection l : V (G) →
{1, 2, ..., n} such that

∑
y∈N(x)

l(y) is the same for every x ∈ V (G). For a comprehensive survey of

distance magic labeling, we refer the reader to [1].
An orientable Zn-distance magic labeling of a graph, first introduced by Cichacz et al. in [2], is

a generalization of distance magic labeling. Let G = (V,E) be an undirected graph on n vertices.
Assigning a direction to the edges of G gives an oriented graph

−→
G = (V,A). We will use the

notation −→xy to denote an edge directed from vertex x to vertex y. That is, the tail of the arc is x and
the head is y. For a vertex x, the set of head endpoints adjacent to x is denoted by N−(x), while the
set of tail endpoints is denoted by N+(x). A directed Zn-distance magic labeling of an oriented
graph

−→
G(V,A) of order n is a bijection

−→
` : V → Zn with the property that there is a µ ∈ Zn

(called the magic constant) such that

w(x) =
∑

y∈N+
G (x)

−→
` (y)−

∑
y∈N−

G (x)

−→
` (y) = µ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed Zn-distance magic

labeling
−→
` for

−→
G , we say that G is orientable Zn-distance magic and the directed distance magic

labeling ` we call an orientable Zn-distance magic labeling.
Throughout this paper we will use the notation [n] to represent the set {0, 1, ..., n− 1} for

a natural number n. Furthermore, for a given i ∈ [n] and any integer j, let i + j denote the
smallest integer in [n] such that i+ j ≡ i + j (modn). For a set of integers S and a number a, let
S + a = {s+ a : s ∈ S}.

Let Cn = {x0, x1, ..., xn−1, x0} denote a cycle of length n. For the sake of orienting the cycle,
if the edges are oriented such that every arc has the form −−−−→xixi+1 for all i ∈ [n], then we say the
cycle is oriented clockwise. On the other hand, if all the edges of the cycle are oriented such that
every arc has the form −−−−→xixi−1 for all i ∈ [n], then we say the cycle is oriented counter-clockwise.

2. Cartesian product of two cycles

The Cartesian product G2H is a graph with the vertex set V (G)× V (H). Two vertices (g, h)
and (g′, h′) are adjacent in G2H if and only if g = g′ and h is adjacent with h′ in H , or h = h′ and
g is adjacent with g′ in G. Hypercubes are interesting graphs which arise via the Cartesian product
of cycles. The hypercube of order 2k, Q2k is equivalent to the graph C4�C4�...�C4, where C4

appears k times in the product. This graph is 2k regular on 4k vertices. Labeling hypercubes has
provided the motivation for the following theorems. Recall the following theorem proved in [2].

Theorem 2.1. ([2]) The Cartesian product of cycles, Cm�Cn is orientable Zmn-distance magic
for all m ≥ 3 and n ≥ 3.

The next theorem lays the groundwork for labeling hypercubes.
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Theorem 2.2. For any p ≥ 1, and m ≥ 3, p disjoint copies of the graph Cm�Cm is orientable
Zpm2-distance magic.

Proof. Let G ∼= Cm
∼= {g0, g1, ..., gm−1, g0} ∼= {h0, h1, ..., hm−1, h0} ∼= H . Then orient each copy

of G�H as follows. Fix j ∈ [m]. Then for all i ∈ [m], orient clockwise each cycle of the form
{(gi, hj) , (gi+1, hj) , ..., (gi−1, hj) , (gi, hj)}. Similarly, fix i ∈ [m]. Then for all j ∈ [m], orient
clockwise each cycle of the form {(gi, hj) , (gi, hj+1) , ..., (gi, hj−1) , (gi, hj)}. Since the graph
G�H can be edge-decomposed into cycles of those two forms, we have oriented every edge in
each copy of G�H . Now let kxji denote the vertex (gi, hj) of the kth copy of G�H for i, j ∈ [m],
and k ∈ {1, 2, ..., p}. Then, for each k ∈ {1, 2, ..., p}, define

−→
l : V → Zpm2 by

~l(kxji ) = pmj + (k − 1)m+ i − j,

where the arithmetic is done modulo pm2.
Expressing ~l(kxji ) in the following alternative way

~l(kxji ) =



pmj + (k − 1)m,

pmj + (k − 1)m+ 1,

pmj + (k − 1)m+ 2,
...
pmj + (k − 1)m+ (m− 1),

for i ≡ j (modm)

for i ≡ j + 1 (modm)

for i ≡ j + 2 (modm)
...
for i ≡ j − 1 (modm)

,

makes it easy to see that ~l is clearly bijective. Then for any given k and for all i, j ∈ [m] we have
N+

(
kxji
)
= {kxj+1

i , kxji+1} and N−
(
kxji
)
= {kxj−1

i , kxji−1}. Recalling that w(kxji ) ∈ Zpm2 ,
we have

w(kxji ) = ~l(kxj+1
i ) +~l(kxji+1)− [~l(kxji−1) +

~l(kxj−1
i )]

= [j + 1+ j − j − j + 1]pm
+ (i − j − 1)− (i − j − 1) + (i − j + 1)− (i − j + 1)
= [(j + 1)− (j − 1)]pm

=

{
(2−m)pm, j ∈ {0,m− 1}
2pm, 0 < j < m− 1

= 2pm,

so~l is an orientable Zpm2-distance magic labeling. Hence, p copies of Cm�Cm is orientable Zpm2-
distance magic.

3. Cartesian product of many cycles

Theorem 3.1. For any m ≥ 3, the Cartesian product Cm�Cm�...�Cm is orientable Zmn-
distance magic.
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Proof. Let Gn
∼= Cm�Cm�...�Cm, the Cartesian product of n Cm’s. Then for n ≥ 2 we

may describe Gn recursively as Gn
∼= Gn−1�Cm. We also have that, |V (Gn)| = mn, so the

labeling will take place in Zmn . The proof is by induction. For n = 1, we apply the label-
ing

{
x00, x

1
0, ..., x

m−1
0

}
7−→ {0, 1, ...,m− 1} and orient the cycle clockwise. Clearly for j ∈

{0,m−1},w(xj0) = 2−m ≡ 2 (modm) and for 0 < j < m−1 , we havew(xj0) = 2 ≡ 2 (modm),
so G1 is orientable distance magic. For n = 2, Theorem 2.2 gives that G2 is orientable distance
magic and using the nomenclature from Theorem 2.2, w(xji ) = (2 − m)m ≡ 2m (modm2) for
j ∈ {0,m − 1}, i ∈ [m] and w(xji ) = 2m for j ∈ {0 < j < m − 1}, i ∈ [m]. Further-
more, for each fixed j, the labels of xji belong to the set [m] + jm for both base cases. Now
construct Gn

∼= Gn−1�Cm as follows. Let H i
∼= Gn−1 for i ∈ [m]. Furthermore, for a given

i, let Hj
i
∼= Gn−2 for j ∈ [m]. Let xji denote an arbitrary vertex in the subgraph Hj

i . Then for
any integers a, b let xj+b

i+a denote the corresponding vertex in the isomorphic subgraph Hj+b
i+a . Us-

ing this terminology, we have NGn

(
xji
)
= NGn−1(x

j
i ) ∪

{
xji+1, x

j
i−1

}
. Let wHi

(xji ) denote the
weight (in Zmn) induced on xji by the subgraph H i and wHj

i
(xji ) denote the weight (again in Zmn)

induced on xji by the subgraph Hj
i . Now partition Zmn−1 = P0 ∪ P1 ∪ P2 ∪ ... ∪ Pm−1 so that

Pj = [mn−2] + jmn−2 for j ∈ [m].
Now assume Gn−1 is orientable Zmn−1-distance magic with labeling ~l′ : V (Gn−1) → Zmn−1 .

Then in Gn, apply ~l′ and its corresponding orientation to H0
∼= Gn−1. As in the base cases, we

may assume that the labels of Hj
0 belong to P j for j ∈ [m] and

wH0(x
j
0) =

{
(2−m)mn−2, j ∈ {0,m− 1}
2mn−2, j ∈ {1, 2, ...m− 2} .

Next, orient all the edges in each subgraph H1, H2, ..., Hm−1 as in H0. Then the only edges
left to orient in Gn are cycles of the type

{
xj0, x

j
1, ..., x

j
m−1
}

for fixed j. Orient each of these cycles
clockwise. Now define ~l : V (Gn)→ Zmn as follows.

~l(xji ) =

{
~l′(xj0) + i(m− 1)mn−2 +mn−1, 0 ≤ j < i
~l′(xj0) + i(m− 1)mn−2, i ≤ j ≤ m− 1

.

To show that ~l is a bijection, it suffices to show that for each fixed i, ~l : Pj 7−→ Pj−i + imn−1 for
all j, since for each fixed i, j − i runs through [m] as j runs through [m]. Since the labels of Hj

0

belong to P j for j ∈ [m], we have

~l : Pj 7−→
{
Pj + i(m− 1)mn−2 +mn−1, 0 ≤ j < i
Pj + i(m− 1)mn−2, i ≤ j ≤ m− 1

.

Now, if 0 ≤ j < i, we have

Pj 7→ Pj + i(m− 1)mn−2 +mn−1

= [mn−2] + jmn−2 + i(m− 1)mn−2 +mn−1

= [mn−2] + (j − i)mn−2 + (i+ 1)mn−1

= [mn−2] + (j − i)mn−2 +mmn−2 + imn−1

= [mn−2] + (m+ j − i)mn−2 + imn−1

= Pj−i + imn−1.
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While if i ≤ j ≤ m− 1, we have

Pj 7→ Pj + i(m− 1)mn−2

= [mn−2] + jmn−2 + i(m− 1)mn−2

= [mn−2] + (j − i)mn−2 + imn−1

= Pj−i + imn−1.

Therefore, it is clear that for each i ∈ [m], the label set used on H i is i ·mn−1 + {P0 ∪ P1 ∪ ... ∪
Pm−1} = Zmn−1 + imn−1, so we see that

−→
l : V (Gn) → Zmn is bijective. This completes the

labeling and orientation of Gn.
Observe that ~l(xji ) ≡ ~l′(xj0) (modmn−2). Therefore, wHj

i
(xji ) = wHj

0
(xj0) in Zmn . Then we

have,
wHi

(xji ) = wHj
i
(xji ) +

~l(xj+1
i )−~l(xj−1

i )

= wHj
0
(xj0) +

~l(xj+1
i )−~l(xj−1

i ).

But,
wHj

0
(xj0) = wH0(x

j
0)− [~l′(xj+1

0 )− ~l′(xj−1
0 )].

Therefore,

wHi
(xji ) = wH0(x

j
0)− ~l′(x

j+1
0 ) + ~l′(xj−1

0 ) +~l(xj+1
i )−~l(xj−1

i )

= wH0(x
j
0) + [~l(xj+1

i )− ~l′(xj+1
0 )]− [(~l(xj−1

i )− ~l′(xj−1
0 )]

= a+ b− c,

where a = 2mn−2−mn−1I{j = 0 or m− 1}, b = i(m− 1)mn−2+mn−1I{0 ≤ j + 1 ≤ i − 1},
and c = i(m − 1)mn−2 +mn−1I{0 ≤ j − 1 ≤ i − 1} and I is the indicator function. Then we
can write

wHi
(xji ) = 2mn−2+mn−1 [I{0 ≤ j + 1 ≤ i − 1} − I{j = 0 or m− 1} − I{0 ≤ j − 1 ≤ i − 1}] .

Let I = I{0 ≤ j + 1 ≤ i − 1}− I{j = 0 or m− 1}− I{0 ≤ j − 1 ≤ i − 1}. We will now
show that I = −1 when j ≡ i or i− 1 (modm) and I = 0 otherwise.

Case 1. Suppose j ≡ i (modm). Then since j, i ∈ [m], we have j = i and hence I = 1− 1− 1 =
−1 when j = 0 or j = m− 1. When 1 ≤ j ≤ m− 2, we have I = 0− 0− 1 = −1.

Case 2. Suppose j ≡ i− 1 (modm). Then if j = 0, we have I = 0− 1− 0 = −1. If j = m− 1,
we have I = 1− 1− 1 = −1. If 1 ≤ j ≤ m− 2, we have I = 0− 0− 1 = −1.

Case 3. Suppose j 6≡ i, i−1 (modm). Then if j = 0, we have I = 1−1−0 = 0. If j = m−1, we
have I = 1−1−0 = 0. If 1 ≤ j ≤ i − 2, we have I = 1−0−1 = 0. If i + 1 ≤ j ≤ m−2,
we have I = 0− 0− 0 = 0, proving the claim.

We have now fully determined the weight induced by the subgraph H i for each i ∈ [m]. We have,

wHi
(xji ) =

{
(2−m)mn−2, j ≡ i or i− 1 (modm)
2mn−2, otherwise .

We are ready to determine the weight of each vertex. To this end we have w(xji ) = wHi
(xji ) +

~l(xji+1)−~l(x
j
i−1) and we recall that the arithmetic is to be performed in Zmn .
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Case 1. Suppose j ≡ i or i− 1 (modm). Then we have

w(xji ) = (2−m)mn−2 +

{
2(m− 1)mn−2 +mn−1, 1 ≤ i ≤ m− 2
(2−m)(m− 1)mn−2, i ∈ {0,m− 1}

=

{
2mn−1, 1 ≤ i ≤ m− 2
2mn−1 −mn, i ∈ {0,m− 1}

≡ 2mn−1 (modmn),

since (i + 1) − (i − 1) ≡ 2 (modmn) when 1 ≤ i ≤ m − 2 and (i + 1) − (i − 1) ≡
2−m (modmn) when i ∈ {0,m− 1}.

Case 2. Suppose j 6≡ i, i− 1 (modm). Then we have

w(xji ) = 2mn−2 +

{
2(m− 1)mn−2, 1 ≤ i ≤ m− 2
(2−m)(m− 1)mn−2 −mn−1, i ∈ {0,m− 1}

=

{
2mn−1, 1 ≤ i ≤ m− 2
2mn−1 −mn, i ∈ {0,m− 1}

≡ 2mn−1 (modmn).

Hence, w(xji ) = 2mn−1 for all i, j ∈ [m], so Gn is orientable Zmn-distance magic for all n ≥
1.

Corollary 3.1. The hypercube Q2k is orientable Z22k-distance magic for all k ≥ 1.

Proof. Since Q2k
∼= C4�C4�...�C4, the Cartesian product of k C4’s, Theorem 3.1 gives the

result.

One may wonder if the hypercube Q2k+1 is orientable Z22k+1-distance magic. Since the graph
is odd regular, a little pessimism is understandable. Indeed, no odd regular graph on n ≡ 2 (mod 4)
vertices is orientable Zn-distance magic, as was proved in [2]. However,Q2k+1 contains 22k+1vertices,
a number divisible by 4, so it is possible that Q2k+1 is orientable Z22k+1-distance magic for some
k. It can easily be checked that Q1

∼= K2 is not. The following theorem rules out Q3 as well.

Theorem 3.2. The hypercube Q3 is not orientable Z8-distance magic.

Proof. Let G ∼= Q3 as shown in Figure 1. An important fact we will use is that regardless of
the orientation of the edges, the (directed) weight of a given vertex has the same parity as the
sum (performed in Z8 of course) of its neighbors. Suppose for the sake of contradiction that G
is orientable Z8-distance magic with orientable Z8-distance magic labeling ~l : V (G) → Z8 and
associated magic constant µ.

Case 1. Suppose µ is even. Observe that N(x1) = {x2, x4, x6}. Then since µ is even, either all
three of ~l(x2),~l(x4),~l(x6) are even or exactly one is even. Suppose it is the case that all
three of ~l(x2),~l(x4),~l(x6) are even. Then that leaves but one other vertex with an even label.
Since N(x3) = {x2, x4, x8}, and w(x3) = µ is even, it must be the case that ~l(x8) is even.
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x4

x5

x1

x6

x2

x7

x3

x8

Figure 1. Q3

Consequently, ~l(x1),~l(x3),~l(x5) must all be odd. But N(x4) = {x1, x3, x5}, so w(x4) = µ

is odd, a contradiction. Therefore, it cannot be the case that all three of~l(x2),~l(x4),~l(x6) are
even. In fact, because the graph is vertex transitive, we have shown that no vertex may be
adjacent to three even labeled vertices. So it must be the case that every vertex is adjacent
to exactly one even-labeled vertex and two odd-labeled vertices. But this is impossible since
there are an equal number of odd and even elements in Z8.

Case 2. The proof of the odd µ case is essentially the same as Case 1 and is left to the reader.

Hence, Q3 is not orientable Z8-distance magic.

We conclude this section with the following conjecture.

Conjecture 1. The odd-ordered hypercube, Q2k+1 is not orientable Z22k+1-distance magic for any
k ∈ {0, 1, 2, ...}.

4. Conclusion

We have proven that any number of disjoint copies of the Cartesian product of two cycles is
orientable Zn-distance magic. We have also shown that the Cartesian product of any number of
a given cycle is orientable Zn-distance magic, a result which encompasses even-ordered hyper-
cubes. Finally, we have shown that the two smallest odd-ordered hypercubes are not orientable
Zn-distance magic graphs, and we conjecture that no odd-ordered hypercube is orientable Zn-
distance magic.
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