
www.ejgta.org

Electronic Journal of Graph Theory and Applications 5 (2) (2017), 194–206

Perfect 3-colorings of the cubic graphs of order
10

Mehdi Alaeiyan, Ayoob Mehrabani

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

alaeiyan@iust.ac.ir, amehrabani@mathdep.iust.ac.ir

Abstract

Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte.
A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts
A1, A2, · · · , Am such that, for all i, j ∈ {1, · · · ,m}, every vertex of Ai is adjacent to the same
number of vertices, namely, aij vertices, of Aj . The matrix A = (aij)i,j∈{1,··· ,m} is called the
parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into
three parts) of the cubic graphs of order 10. In particular, we classify all the realizable parameter
matrices of perfect 3-colorings for the cubic graphs of order 10.
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1. Introduction

The concept of a perfect m-coloring plays an important role in graph theory, algebraic combi-
natorics, and coding theory (completely regular codes). There is another term for this concept in
the literature as ”equitable partition” (see[10]).

The existence of completely regular codes in graphs is a historical problem in mathematics.
Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the
non-existence of nontrivial perfect codes in Johnson graphs. Therefore, some effort has been done
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on enumerating the parameter matrices of some Johnson graphs, including J(4, 2), J(5, 2), J(6, 2),
J(6, 3), J(7, 3), J(8, 3), J(8, 4), and J(v, 3) (v odd) (see [1, 3, 4, 9]).

Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of n-dimensional hy-
percube Qn for n < 24. He also obtained some constructions and a necessary condition for the
existence of perfect 2-colorings of the n-dimensional cube with a given parameter matrix (see
[6, 7, 8]). In this paper all graphs are assumed simple, connected and undirected. First we give
some basic definitions and concepts. Let G = (V,E) be a graph. Two vertices u, v ∈ V (G) are
adjacent if there exists an edge e = {u, v} ∈ E(G) to which they are both incident. The adjacent
will be shown u↔ v.

A cubic graph is a 3-regular graph. In [5], it is shown that the number of connected cubic
graphs with 10 vertices is 19. Each graph is described by a drawing as shown in Figure 1.

Figure 1. Connected cubic graphs of order 10.
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Definition 1.1. For a graph G and a positive integer m, a mapping T : V (G) → {1, · · · ,m} is
called a perfect m-coloring with matrix A = (aij)i,j∈{1,··· ,m}, if it is surjective, and for all i, j, for
every vertex of color i, the number of its neighbors of color j is equal to aij . The matrix A is called
the parameter matrix of a perfect coloring. In the case m = 3, we call the first color white, the
second color black, and the third color red. In this paper, we generally show a parameter matrix by

A =

a b c
d e f
g h i

 .
Remark 1.1. In this paper, we consider all perfect 3-colorings, up to renaming the colors; i.e. we
identify the perfect 3-coloring with the matricesa c b

g i h
d f e

 ,
e d f
b a c
h g i

 ,
e f d
h i g
b c a

 ,
 i h g
f e d
c b a

 ,
 i g h
c a b
f d e

 ,
obtained by switching the colors with the original coloring.

2. Preliminaries and Analysis

In this section, we present some results concerning necessary conditions for the existence of
perfect 3-colorings of a cubic connected graph of order 10 with a given parameter matrix

A =

a b c
d e f
g h i

.

The simplest necessary condition for the existence of perfect 3-colorings of a cubic connected

graph with the matrix

a b c
d e f
g h i

 is:

a+ b+ c = d+ e+ f = g + h+ i = 3.

Also, it is clear that we cannot have b = c = 0, d = f = 0, or g = h = 0, since the graph is
connected. In addition, b = 0, c = 0, f = 0 if d = 0, g = 0, h = 0, respectively.

The number θ is called an eigenvalue of a graph G, if θ is an eigenvalue of the adjacency
matrix of this graph. The number θ is called an eigenvalue of a perfect coloring T into three colors
with the matrix A, if θ is an eigenvalue of A. The following lemma demonstrates the connection
between the introduced notions.

Lemma 2.1. [10] If T is a perfect coloring of a graph G in m colors, then any eigenvalue of T is
an eigenvalue of G.

Now, without lost of generality, we can assume that |W | ≤ |B| ≤ |R|. The following proposi-
tion gives us the size of each class of color.
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Proposition 2.1. Let T be a perfect 3-coloring of a graph G with the matrix A =

a b c
d e f
g h i

.

1. If b, c, f 6= 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

2. If b = 0, then

|W | = |V (G)|
c

g
+ 1 +

ch

fg

, |B| = |V (G)|
f

h
+ 1 +

fg

ch

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

3. If c = 0, then

|W | = |V (G)|
b

d
+ 1 +

bf

dh

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

dh

bf

.

4. If f = 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

cd

bg

, |R| = |V (G)|
g

c
+ 1 +

bg

cd

.

Proof. (1): Consider the 3-partite graph obtained by removing the edges uv such that u and v are
the same color. By counting the number of edges between parts, we can easily obtain |W |b = |B|d,
|W |c = |R|g, and |B|f = |R|h. Now, we can conclude the desired result from |W |+ |B|+ |R| =
|V (G)|.
The proof of (2), (3), (4) is similar to (1).

In the next lemma, under the condition |W | = 1, we enumerate all matrices that can be a
parameter matrix for a cubic connected graph.

Lemma 2.2. Let G be a cubic connected graph of order 10. If T is a perfect 3-coloring with the
matrix A, and |W | = 1, then A should be the following matrix:

A =

0 3 0
1 0 2
0 1 2

.

Proof. Let A =

a b c
d e f
g h i

 be a parameter matrix with |W | = 1. Consider the white vertex. It is

clear that none of its adjacent vertices are white; i.e. a = 0. Therefore, we have two cases below.
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(1) The adjacent vertices of the white vertex are the same color. If they are black, then b = 3
and c = 0. From c = 0, we get g = 0. Also, since the graph is connected, we have f, h 6= 0.
Hence we obtain the following matrices:0 3 0

1 1 1
0 1 2

 ,
0 3 0
1 0 2
0 1 2

 ,
0 3 0
1 0 2
0 2 1

 ,
0 3 0
1 1 1
0 2 1

 ,
0 3 0
1 0 2
0 3 0

 ,
0 3 0
1 1 1
0 3 0

 .
If the adjacent vertices of the white vertex are red, then c = 3, b = 0. From b = 0, we get
d = 0. Also, since the graph is connected, we have f, h 6= 0. Hence we obtain the following
matrices:0 0 3

0 1 2
1 1 1

 ,
0 0 3
0 1 2
1 2 0

 ,
0 0 3
0 2 1
1 1 1

 ,
0 0 3
0 2 1
1 2 0

 ,
0 0 3
0 0 3
1 1 1

 ,
0 0 3
0 0 3
1 2 0

 .
Finally, by using Remark 1.1 and the fact that |W | ≤ |B| ≤ |R|, it is obvious that there are
only six matrices in (1), as shown A1, A2, A3, A4, A5, A6.

A1 =

0 3 0
1 1 1
0 1 2

 , A2 =

0 3 0
1 0 2
0 1 2

 , A3 =

0 3 0
1 0 2
0 2 1

 , A4 =

0 0 3
0 1 2
1 1 1

 ,
A5 =

0 0 3
0 0 3
1 1 1

 , A6 =

0 0 3
0 0 3
1 2 0


(2) The adjacent vertices of the white vertex are different colors. It immediately gives that

b, c 6= 0. Also, it can be seen that d = g = 1. An easy computation as in (1), shows that
there are only five matrices that can be a parameter matrix in this case, as shown A7, A8, A9,
A10, A11.

A7 =

0 1 2
1 1 1
1 1 1

 , A8 =

0 2 1
1 0 2
1 1 1

 , A9 =

0 1 2
1 2 0
1 0 2

 , A10 =

0 1 2
1 0 2
1 1 1

 ,
A11 =

0 1 2
1 0 2
1 2 0

 .
By using Proposition 2.1, it is obvious that just the matrix A := A2 can be a parameter.
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Lemma 2.3. Let G be a cubic connected graph of order 10. If T is a perfect 3-coloring with the
matrix A, and |W | = |B| = 2, |R| = 6, then A should be the following matrix0 0 3

0 0 3
1 1 1

 .
Proof. First, suppose that b, c 6= 0. As |W | = 2, by Proposition 2.1, it follows that

b

d
+
c

g
= 4.

Therefore b = c = 2, d = g = 1 and we get a contradiction with b+ c ≤ 3.

Second, suppose that b = 0 and then d = 0. As |R| = 4, by Proposition 2.1, we have
g

c
+
h

f
=

2

3
.

Therefore c = f = 3, g = h = 1, and consequently A =

0 0 3
0 0 3
1 1 1

.

Finally, suppose that c = 0 and then g = 0. As |B| = 2, by Proposition 2.1, it follows that
d

b
+
f

h
= 4. Therefore b = f = 2, d = h = 1, or b = 3, d = f = h = 1 or b = 3,d = 1,

f = h = 2. Hence A =

1 2 0
1 0 2
0 1 2

, or A =

0 3 0
1 1 1
0 1 2

, or A =

0 3 0
1 0 2
0 2 1

.

By using the Proposition 2.1, it can be seen that only the matrix

0 0 3
0 0 3
1 1 1

 can be a parameter.

Lemma 2.4. Let G be a cubic connected graph of order 10. Then G has no perfect 3-coloring T
with the matrix that |W | = 2, |B| = 3, |R| = 5.

Proof. If T is a perfect 3-coloring with the similar proving Lemma2.3, A should be one of the
following matrices: 2 0 1

0 1 2
1 1 1

 ,
1 0 2
0 2 1
1 1 1

 ,
1 0 2
0 1 2
2 1 0

 ,
1 0 2
0 1 2
1 2 0

 ,
1 2 0
1 1 1
0 1 2

 ,
2 1 0
1 1 1
0 2 1

 ,
1 2 0
2 0 1
0 2 1

 ,
1 2 0
1 0 2
0 2 1

 .
By using the Proposition 2.1, it can be seen that no matrix can be a parameter.

Lemma 2.5. Let G be a cubic connected graph of order 10. If T is a perfect 3-coloring with the
matrix A, and also if |W | = 2, |B| = 4, |R| = 4, then A should be one of the following matrices:
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1 0 2
0 2 1
1 1 1

 ,
1 0 2
0 1 2
1 2 0

 ,
1 2 0
1 1 1
0 1 2

 ,
1 2 0
1 0 2
0 2 1

 .
Proof. If T is a perfect 3-coloring with the similar proving Lemma2.3, then A should be one of
the following matrices: 2 0 1

0 1 2
1 1 1

 ,
1 0 2
0 2 1
1 1 1

 ,
1 0 2
0 1 2
2 1 0

 ,
1 0 2
0 1 2
1 2 0

 ,
1 2 0
1 1 1
0 1 2

 ,
2 1 0
1 1 1
0 2 1

 ,
1 2 0
2 0 1
0 2 1

 ,
1 2 0
1 0 2
0 2 1

 .
By using the Proposition 2.1, it can be seen that the following matrices should be parameter:1 0 2

0 2 1
1 1 1

 ,
1 0 2
0 1 2
1 2 0

 ,
1 2 0
1 1 1
0 1 2

 ,
1 2 0
1 0 2
0 2 1

 .

Lemma 2.6. Let G be a cubic connected graph of order 10. Then G has no perfect 3-coloring T
with the matrix that |W | = 3, |B| = 3, |R| = 4.

Proof. If T is a perfect 3-coloring with the similar proving Lemma2.3, then A should be one of
the following matrices: 0 1 2

3 0 0
1 0 2

 ,
0 2 1
1 2 0
3 0 0

 ,
2 0 1
0 1 2
1 1 1

 ,
1 0 2
0 2 1
1 1 1

 ,
1 0 2
0 1 2
1 2 0

 ,
1 0 2
0 1 2
2 1 0

 ,
0 3 0
1 0 2
0 1 2

 ,
2 1 0
2 0 1
0 3 0

 .
By using Proposition 2.1, it can be seen that no matrix can be a parameter.

By using Lemmas 2.2, 2.3 and 2.5, it can be seen that only the following matrices can be
parameter ones.0 0 3

0 0 3
1 1 1

 ,
1 0 2
0 2 1
1 1 1

 ,
1 0 2
0 1 2
1 2 0

 ,
1 2 0
1 1 1
0 1 2

 ,
1 2 0
1 0 2
0 2 1

 ,
0 3 0
1 0 2
0 1 2

 .
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By Remark 1.1, it is clear that the matrix

1 0 2
0 2 1
1 1 1

 is the same as the matrix

1 2 0
1 1 1
0 1 2

 and the

matrix

1 0 2
0 1 2
1 2 0

 is the same as the matrix

1 2 0
1 0 2
0 2 1

 up to renaming the colors. Therefore, if T

is a perfect 3-coloring with the matrix A , then A should be one of the following matrices:

A1 =

0 0 3
0 0 3
1 1 1

 , A2 =

1 0 2
0 2 1
1 1 1

 , A3 =

1 0 2
0 1 2
1 2 0

 , A4 =

0 3 0
1 0 2
0 1 2

 .
The next theorem can be useful to find the eigenvalues of a parameter matrix.

Theorem 2.1. Let A =

a b c
d e f
g h i

 be a parameter matrix of a k-regular graph. Then the eigen-

values of A are

λ1,2 =
tr (A)− k

2
±

√(
tr (A)− k

2

)2

− det(A)

k
, λ3 = k.

Proof. By using the condition a + b + c = d + e + f = g + h + i = k, it is clear that one of the
eigenvalues is k. Therefore det(A) = kλ1λ2. From λ2 = tr (A)− λ1 − k, we get

det(A) = kλ1(tr (A)− λ1 − k) = −kλ21 + k(tr (A)− k)λ1.

By solving the equation λ2 + (k − tr (A))λ+
det(A)

k
= 0, we obtain

λ1,2 =
tr (A)− k

2
±

√(
tr (A)− k

2

)2

− det(A)

k
.

3. Perfect 3-colorings of the cubic connected graphs of order 10

In this section, we enumerate the parameter matrices of all perfect 3-colorings of the cubic
connected graphs of order 10.

Theorem 3.1. The parameter matrices of cubic graphs of order 10 are listed in the following table.
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graphs matrix A1 matrix A2 matrixA3 matrix A4

1
√

×
√

×
2

√
×

√ √

3 × × × ×
4

√
× × ×

5 × × × ×
6

√
×

√
×

7 × × × ×
8 × × × ×
9 × ×

√ √

10
√

×
√

×
11 × × × ×
12 × × × ×
13 × × ×

√

14 × × ×
√

15 × × × ×
16 × × × ×
17 × × × ×
18 × ×

√ √

19 × ×
√ √

Table 1

Proof. As it has been shown in Section 3, only matrices A1, A2, A3 and A4 can be parameter
matrices. With consideration of cubic graphs eigenvalues and using Theorem 2.1, it can be seen
that the connected cubic graphs with 10 vertices can have perfect 3-coloring with matrices A1, A2,
A3 and A4 which is represented by Table 2.

graphs matrix A1 matrix A2 matrixA3 matrix A4

1
√ √ √ √

2
√ √ √ √

4
√ √

× ×
5

√ √ √ √

6
√ √ √ √

9
√ √ √ √

10
√ √ √ √

13 × ×
√ √

14 × ×
√ √

18
√ √ √ √

19 × ×
√ √

Table 2

The vertices of cubic graphs are labeled clockwise with a1, a2, ..., a10, respectively. The graph 1
has perfect 3-colorings with the matrices A1 and A3. Consider two mappings T1 and T2 as follows:
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T1(a1) = T1(a10) = 1, T1(a4) = T1(a7) = 2,
T1(a2) = T1(a3) = T1(a5) = T1(a6) = T1(a8) = T1(a9) = 3.
T2(a5) = T2(a6) = 1, T2(a2) = T2(a3) = T2(a8) = T2(a9) = 2,

T2(a1) = T2(a4) = T2(a7) = T2(a3) = 3.

It is clear that T1 and T2 are perfect 3-coloring with the matrices A1 and A3, respectively.

The graph 2 has perfect 3-colorings with the matrices A1, A3 and A4. Consider three mappings
T1, T2 and T3 as follows:

T1(a2) = T1(a7) = 1, T1(a5) = T1(a10) = 2,
T1(a1) = T1(a3) = T1(a4) = T1(a6) = T1(a8) = T1(a9) = 3.
T2(a1) = T2(a6) = 1, T2(a3) = T2(a4) = T2(a8) = T2(a9) = 2,

T2(a2) = T2(a5) = T2(a7) = T2(a10) = 3.
T3(a1) = 1, T3(a2) = T3(a6) = T3(a10) = 2,

T3(a3) = T3(a4) = T3(a5) = T3(a7) = T3(a8) = T3(a9) = 3.

It is clear that T1, T2 and T3 are perfect 3-coloring with the matrices A1, A3 and A4, respectively.

The graph 4 has perfect 3-colorings with the matrix A1. Consider the mapping T1 as follows:

T1(a5) = T1(a10) = 1, T1(a2) = T1(a7) = 2,
T1(a1) = T1(a3) = T1(a4) = T1(a6) = T1(a8) = T1(a9) = 3.

It is clear that T1 is a perfect 3-coloring with the matrix A1.

The graph 6 has perfect 3-colorings with the matrices A1 and A3. Consider two mappings T1
and T2 as follows:

T1(a5) = T1(a9) = 1, T1(a7) = T1(a2) = 2,
T1(a1) = T1(a3) = T1(a4) = T1(a6) = T1(a8) = T1(a10) = 3.

T2(a3) = T2(a4) = 1, T2(a1) = T2(a6) = 2 = T2(a8) = T2(a10) = 2,
T2(a2) = T2(a5) = T2(a7) = T2(a9) = 3.

It is clear that T1 and T2 are perfect 3-coloring with the matrices A1 and A3, respectively.

The graph 9 has perfect 3-colorings with the matrices A3 and A4. Consider two mappings T1
and T2 as follows:

T1(a1) = T1(a6) = 1, T1(a3) = T1(a4) = T1(a8) = T1(a9) = 2,
T1(a2) = T1(a5) = T1(a7) = T1(a10) = 3.

T2(a1) = 1, T2(a2) = T2(a6) = 2 = T2(a10) = 2,
T2(a3) = T2(a4) = T2(a5) = T2(a7) = T2(a8) = T2(a9) = 3.
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It is clear that T1 and T2 are perfect 3-coloring with the matrices A3 and A4, respectively.

The graph 10 has perfect 3-colorings with the matrices A1 and A3. Consider two mappings T1
and T2 as follows:

T1(a2) = T1(a5) = 1, T1(a7) = T1(a10) = 2,
T1(a1) = T1(a3) = T1(a4) = T1(a6) = T1(a8) = T1(a9) = 3.

T2(a1) = T2(a6) = 1, T2(a3) = T4(a6) = 2 = T2(a8) = T2(a9) = 2,
T2(a2) = T2(a5) = T2(a7) = T2(a10) = 3.

It is clear that T1 and T2 are perfect 3-coloring with the matrices A1 and A3, respectively.

The graph 13 has perfect 3-colorings with the matrix A4. Consider a mapping T1 as follows:

T1(a6) = 1, T1(a1) = T1(a5) = T1(a7) = 2,
T1(a2) = T1(a3) = T1(a4) = T1(a7) = T1(a8) = T1(a9) = 3.

It is clear that T1 is a perfect 3-coloring with the matrix A4.

The graph 14 has perfect 3-colorings with the matrix A4. Consider a mapping T1 as follows:

T1(a6) = 1, T1(a1) = T1(a5) = T1(a7) = 2,
T1(a2) = T1(a3) = T1(a4) = T1(a7) = T1(a8) = T1(a9) = 3.

It is clear that T1 is a perfect 3-coloring with the matrix A4.

The graph 18 has perfect 3-colorings with the matrices A3 and A4. Consider two mappings T1
and T2 as follows:

T1(a1) = T1(a6) = 1, T1(a3) = T1(a4) = T1(a8) = T1(a9) = 2,
T1(a2) = T1(a5) = T1(a7) = T1(a10) = 3.

T2(a1) = 1, T2(a2) = T2(a6) = 2 = T2(a10) = 2,
T2(a3) = T2(a4) = T2(a5) = T2(a7) = T2(a8) = T2(a9) = 3.

It is clear that T1 and T2 are perfect 3-coloring with the matrices A3 and A4, respectively.

The graph 19 has perfect 3-colorings with the matrices A3 and A4. Consider two mappings T1
and T2 as follows:

T1(a2) = T1(a9) = 1, T1(a1) = T1(a4) = T1(a6) = T1(a8) = 2,
T1(a3) = T1(a5) = T1(a7) = T1(a9) = 3.

T2(a1) = 1, T2(a3) = T2(a6) = 2 = T2(a9) = 2,
T2(a2) = T2(a4) = T2(a5) = T2(a7) = T2(a8) = T2(a10) = 3.

204



www.ejgta.org

Perfect 3-colorings of the cubic graphs of order 10 | M. Alaeiyan and A. Mehrabani

It is clear that T1 and T2 are perfect 3-coloring with the matrices A3 and A4, respectively.
There are no perfect 3-colorings with the matrices A2 and A4 for graph 1.

Contrary to our claim, suppose that T is a perfect 3-coloring with the matrix A2 for graph 1.
According to the matrix A2, each vertex with white color has a neighbor with white color, so the
two vertices with white color are adjacent. In the case that a1 ↔ a2, a1 ↔ a3, a2 ↔ a4, a3 ↔ a4 by
symmetry a7 ↔ a8, a7 ↔ a9, a8 ↔ a10 and a9 ↔ a10, they have less than four adjacent vertices.
These vertices are red color, which is a contradiction. So a5 ↔ a6, a4 ↔ a5 and its symmetric
a6 ↔ a7 will be remain that are white color. In the case that a4 ↔ a5, the neighbors of a4 and
a5 are red color and vertex a1 that is their neighbor’s is also red color has two neighbors with red
color which it is not possible. If a5 and a6 are white color, adjacent vertices are red color and other
vertices are black color, so each black color is adjacent to another black color vertex, which is a
contradiction. So we conclude the graph 1 has no perfect 3-coloring with matrix A2.

Contrary to our claim, suppose that T is a perfect 3-coloring with the matrix A4 for graph 1.
According to the matrix A4, each vertex with white color has three adjacent with black color. If
a1 is white color, then a2, a3, a5 are black color, which is a contradiction with the second row
of matrix A4. If a2 is white color, then according to the matrix A4, the vertices a1, a3, a4 are
black color, which is a contradiction with the second row of matrix A4. If a3 is white color, then
according to the matrix A4, the vertices a1, a2, a4 are black color, which is a contradiction with the
second row of matrixA4. If a4 is white color, then according to the matrixA4, the vertices a2, a3, a5
are black color, which is a contradiction with the second row of matrix A4. If a5 is white color,
then a3 is a vertex that is black color and has three red color neighbors, which is a counteraction
with the second row of matrix A4. According to the symmetric, the vertices a6, a7, a8, a9, a10 can
not be white color. Therefore the graph 1 has no perfect 3-coloring with matrix A4.

As it is stated in the before paragraphs, the graph 1 has no perfect 3-coloring with matrices A2

and A4.
About other graphs in Figure 1, similarly, we can get the same result as in Table 1.
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