

Electronic Journal of Graph Theory and Applications

Perfect 3-colorings of the cubic graphs of order $10\,$

Mehdi Alaeiyan, Ayoob Mehrabani

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

alaeiyan@iust.ac.ir, amehrabani@mathdep.iust.ac.ir

Abstract

Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect *m*-coloring of a graph *G* with *m* colors is a partition of the vertex set of *G* into *m* parts A_1, A_2, \dots, A_m such that, for all $i, j \in \{1, \dots, m\}$, every vertex of A_i is adjacent to the same number of vertices, namely, a_{ij} vertices, of A_j . The matrix $A = (a_{ij})_{i,j \in \{1,\dots,m\}}$ is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable parameter matrices of perfect 3-colorings for the cubic graphs of order 10.

Keywords: perfect coloring, equitable partition, cubic graph Mathematics Subject Classification: 03E02, 05C15, 68R05 DOI:10.5614/ejgta.2017.5.2.3

1. Introduction

The concept of a perfect m-coloring plays an important role in graph theory, algebraic combinatorics, and coding theory (completely regular codes). There is another term for this concept in the literature as "equitable partition" (see[10]).

The existence of completely regular codes in graphs is a historical problem in mathematics. Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Therefore, some effort has been done

Received: 12 November 2016, Revised: 19 May 2017, Accepted: 30 June 2017.

on enumerating the parameter matrices of some Johnson graphs, including J(4, 2), J(5, 2), J(6, 2), J(6, 3), J(7, 3), J(8, 3), J(8, 4), and J(v, 3) (v odd) (see [1, 3, 4, 9]).

Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of *n*-dimensional hypercube Q_n for n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-colorings of the *n*-dimensional cube with a given parameter matrix (see [6, 7, 8]). In this paper all graphs are assumed simple, connected and undirected. First we give some basic definitions and concepts. Let G = (V, E) be a graph. Two vertices $u, v \in V(G)$ are adjacent if there exists an edge $e = \{u, v\} \in E(G)$ to which they are both incident. The adjacent will be shown $u \leftrightarrow v$.

A cubic graph is a 3-regular graph. In [5], it is shown that the number of connected cubic graphs with 10 vertices is 19. Each graph is described by a drawing as shown in Figure 1.

Figure 1. Connected cubic graphs of order 10.

Definition 1.1. For a graph G and a positive integer m, a mapping $T : V(G) \to \{1, \dots, m\}$ is called a perfect m-coloring with matrix $A = (a_{ij})_{i,j \in \{1,\dots,m\}}$, if it is surjective, and for all i, j, for every vertex of color i, the number of its neighbors of color j is equal to a_{ij} . The matrix A is called the *parameter matrix* of a perfect coloring. In the case m = 3, we call the first color white, the second color black, and the third color red. In this paper, we generally show a parameter matrix by

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

Remark 1.1. In this paper, we consider all perfect 3-colorings, up to renaming the colors; i.e. we identify the perfect 3-coloring with the matrices

$$\begin{bmatrix} a & c & b \\ g & i & h \\ d & f & e \end{bmatrix}, \begin{bmatrix} e & d & f \\ b & a & c \\ h & g & i \end{bmatrix}, \qquad \qquad \begin{bmatrix} e & f & d \\ h & i & g \\ b & c & a \end{bmatrix}, \begin{bmatrix} i & h & g \\ f & e & d \\ c & b & a \end{bmatrix}, \begin{bmatrix} i & g & h \\ c & a & b \\ f & d & e \end{bmatrix},$$

obtained by switching the colors with the original coloring.

2. Preliminaries and Analysis

In this section, we present some results concerning necessary conditions for the existence of perfect 3-colorings of a cubic connected graph of order 10 with a given parameter matrix

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

The simplest necessary condition for the existence of perfect 3-colorings of a cubic connected graph with the matrix $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ is:

h with the matrix
$$\begin{bmatrix} d & e & f \\ g & h & i \end{bmatrix}$$
 is:
 $a+b+c=d+e+f=g+h+i=3.$

Also, it is clear that we cannot have b = c = 0, d = f = 0, or g = h = 0, since the graph is connected. In addition, b = 0, c = 0, f = 0 if d = 0, g = 0, h = 0, respectively.

The number θ is called an eigenvalue of a graph G, if θ is an eigenvalue of the adjacency matrix of this graph. The number θ is called an eigenvalue of a perfect coloring T into three colors with the matrix A, if θ is an eigenvalue of A. The following lemma demonstrates the connection between the introduced notions.

Lemma 2.1. [10] If T is a perfect coloring of a graph G in m colors, then any eigenvalue of T is an eigenvalue of G.

Now, without lost of generality, we can assume that $|W| \le |B| \le |R|$. The following proposition gives us the size of each class of color.

Proposition 2.1. Let T be a perfect 3-coloring of a graph G with the matrix $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.

1. If $b, c, f \neq 0$ *, then*

$$|W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{c}{g}}, |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{f}{h}}, |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{g}{c}}.$$

2. If b = 0, then

$$|W| = \frac{|V(G)|}{\frac{c}{g} + 1 + \frac{ch}{fg}}, |B| = \frac{|V(G)|}{\frac{f}{h} + 1 + \frac{fg}{ch}}, |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{g}{c}}.$$

3. If c = 0, then

$$|W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{bf}{dh}}, |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{f}{h}}, |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{dh}{bf}}.$$

4. If f = 0, then

$$|W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{c}{g}}, |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{cd}{bg}}, |R| = \frac{|V(G)|}{\frac{g}{c} + 1 + \frac{bg}{cd}}.$$

Proof. (1): Consider the 3-partite graph obtained by removing the edges uv such that u and v are the same color. By counting the number of edges between parts, we can easily obtain |W|b = |B|d, |W|c = |R|g, and |B|f = |R|h. Now, we can conclude the desired result from |W| + |B| + |R| = |V(G)|.

The proof of (2), (3), (4) is similar to (1).

In the next lemma, under the condition |W| = 1, we enumerate all matrices that can be a parameter matrix for a cubic connected graph.

Lemma 2.2. Let G be a cubic connected graph of order 10. If T is a perfect 3-coloring with the matrix A, and |W| = 1, then A should be the following matrix:

$$A = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}.$$

Proof. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ be a parameter matrix with |W| = 1. Consider the white vertex. It is clear that none of its adjacent vertices are white; i.e. a = 0. Therefore, we have two cases below.

www.ejgta.org

(1) The adjacent vertices of the white vertex are the same color. If they are black, then b = 3 and c = 0. From c = 0, we get g = 0. Also, since the graph is connected, we have $f, h \neq 0$. Hence we obtain the following matrices:

$$\begin{bmatrix} 0 & 3 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 3 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 0 \end{bmatrix}.$$

If the adjacent vertices of the white vertex are red, then c = 3, b = 0. From b = 0, we get d = 0. Also, since the graph is connected, we have $f, h \neq 0$. Hence we obtain the following matrices:

[0	0	3		0	0	3		[0]	0	3]		[0	0	3]		[0	0	3]		[0]	0	3	
0	1	2	,	0	1	2	,	0	2	1	,	0	2	1	,	0	0	3	,	0	0	3	
$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	1	1		1	2	0		1	1	1		1	2	0		1	1	1		1	2	0	

Finally, by using Remark 1.1 and the fact that $|W| \le |B| \le |R|$, it is obvious that there are only six matrices in (1), as shown A_1 , A_2 , A_3 , A_4 , A_5 , A_6 .

$$A_{1} = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, A_{2} = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}, A_{3} = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}, A_{4} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix},$$
$$A_{5} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix}, A_{6} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 2 & 0 \end{bmatrix}$$

(2) The adjacent vertices of the white vertex are different colors. It immediately gives that $b, c \neq 0$. Also, it can be seen that d = g = 1. An easy computation as in (1), shows that there are only five matrices that can be a parameter matrix in this case, as shown A_7 , A_8 , A_9 , A_{10} , A_{11} .

$$A_{7} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A_{8} = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}, A_{9} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}, A_{10} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix},$$
$$A_{11} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}.$$

By using Proposition 2.1, it is obvious that just the matrix $A := A_2$ can be a parameter.

Lemma 2.3. Let G be a cubic connected graph of order 10. If T is a perfect 3-coloring with the matrix A, and |W| = |B| = 2, |R| = 6, then A should be the following matrix

$$\begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

Proof. First, suppose that $b, c \neq 0$. As |W| = 2, by Proposition 2.1, it follows that $\frac{b}{d} + \frac{c}{g} = 4$. Therefore b = c = 2, d = g = 1 and we get a contradiction with $b + c \leq 3$. Second, suppose that b = 0 and then d = 0. As |R| = 4, by Proposition 2.1, we have $\frac{g}{c} + \frac{h}{f} = \frac{2}{3}$. Therefore c = f = 3, g = h = 1, and consequently $A = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix}$. Finally, suppose that c = 0 and then g = 0. As |B| = 2, by Proposition 2.1, it follows that $\frac{d}{b} + \frac{f}{h} = 4$. Therefore b = f = 2, d = h = 1, or b = 3, d = f = h = 1 or b = 3, d = 1, f = h = 2. Hence $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}$, or $A = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$, or $A = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}$. By using the Proposition 2.1, it can be seen that only the matrix $\begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix}$ can be a parameter. \Box

Lemma 2.4. Let G be a cubic connected graph of order 10. Then G has no perfect 3-coloring T with the matrix that |W| = 2, |B| = 3, |R| = 5.

Proof. If T is a perfect 3-coloring with the similar proving Lemma2.3, A should be one of the following matrices:

$\begin{bmatrix} 2\\0\\1 \end{bmatrix}$	0 1 1	$\begin{bmatrix} 1\\2\\1 \end{bmatrix},$	$\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$	$0 \\ 2 \\ 1$	$\begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} \\ \end{bmatrix}$	$ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{array} $	$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$	$0 \\ 1 \\ 2$	$\begin{bmatrix} 2\\2\\0 \end{bmatrix},$
$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	2 1 1	$\begin{bmatrix} 0\\1\\2 \end{bmatrix},$	$\begin{bmatrix} 2\\1\\0 \end{bmatrix}$	1 1 2	$\begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} \end{array}$	$\begin{array}{ccc} 1 & 2 \\ 2 & 0 \\ 0 & 2 \end{array}$	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$	2 0 2	$\begin{bmatrix} 0\\2\\1 \end{bmatrix}.$

By using the Proposition 2.1, it can be seen that no matrix can be a parameter.

Lemma 2.5. Let G be a cubic connected graph of order 10. If T is a perfect 3-coloring with the matrix A, and also if |W| = 2, |B| = 4, |R| = 4, then A should be one of the following matrices:

 $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}.$

Proof. If T is a perfect 3-coloring with the similar proving Lemma2.3, then A should be one of the following matrices:

$\begin{bmatrix} 2\\0\\1 \end{bmatrix}$	0 1 1	$\begin{bmatrix} 1\\2\\1 \end{bmatrix},$	$\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$	$\begin{array}{c} 0 \\ 2 \\ 1 \end{array}$	$\begin{bmatrix} 2\\1\\1 \end{bmatrix},$	1 0 2	0 1 1	$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$	$,\begin{bmatrix}1\\0\\1\end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$\begin{bmatrix} 2\\2\\0 \end{bmatrix},$
$\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$	2 1 1	$\begin{bmatrix} 0\\1\\2 \end{bmatrix},$	$\begin{bmatrix} 2\\1\\0 \end{bmatrix}$	$egin{array}{c} 1 \\ 1 \\ 2 \end{array}$	$\begin{bmatrix} 0\\1\\1 \end{bmatrix}, \\ \end{bmatrix}$	1 2 0	2 0 2	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$	$2 \\ 0 \\ 2$	$\begin{bmatrix} 0\\2\\1\end{bmatrix}.$

By using the Proposition 2.1, it can be seen that the following matrices should be parameter:

Γ1	0	2		Γ1	0	2]		[1	2	0		Γ1	2	0	
0	2	1	,	0	1	2	,	1	1	1	Ι,	1	0	2	
$\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$	1	1		1	2	0		0	1	2		0	2	1	

Lemma 2.6. Let G be a cubic connected graph of order 10. Then G has no perfect 3-coloring T with the matrix that |W| = 3, |B| = 3, |R| = 4.

Proof. If T is a perfect 3-coloring with the similar proving Lemma2.3, then A should be one of the following matrices:

$\begin{bmatrix} 0\\ 3\\ 1 \end{bmatrix}$	1 0 0	$\begin{bmatrix} 2\\0\\2 \end{bmatrix},$	$\begin{bmatrix} 0\\1\\3 \end{bmatrix}$	2 2 0	$\begin{bmatrix} 1\\0\\0\end{bmatrix},$	$\begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix}$	0 1 1	1 2 1	,	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	$0 \\ 2 \\ 1$	2 1 1	,
$\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$	$0 \\ 1 \\ 2$	$\begin{bmatrix} 2\\2\\0 \end{bmatrix},$	$\begin{bmatrix} 1\\ 0\\ 2 \end{bmatrix}$	0 1 1	$\begin{bmatrix} 2\\2\\0 \end{bmatrix},$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	${3 \atop 0}{1}$	$\begin{pmatrix} 0\\2\\2 \end{bmatrix}$,	$\begin{bmatrix} 2\\ 2\\ 0 \end{bmatrix}$	$egin{array}{c} 1 \\ 0 \\ 3 \end{array}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	

By using Proposition 2.1, it can be seen that no matrix can be a parameter.

By using Lemmas 2.2, 2.3 and 2.5, it can be seen that only the following matrices can be parameter ones.

 $\begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}.$

www.ejgta.org

By Remark 1.1, it is clear that the matrix $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is the same as the matrix $\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and the matrix $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ is the same as the matrix $\begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ up to renaming the colors. Therefore, if T is a perfect 3-coloring with the matrix $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$

is a perfect 3-coloring with the matrix A, then A should be one of the following matrices:

$$A_{1} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}, A_{4} = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}.$$

The next theorem can be useful to find the eigenvalues of a parameter matrix.

Theorem 2.1. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ be a parameter matrix of a k-regular graph. Then the eigenvalues of A are

$$\lambda_{1,2} = \frac{\operatorname{tr}(A) - k}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(A) - k}{2}\right)^2 - \frac{\det(A)}{k}} \quad , \quad \lambda_3 = k$$

Proof. By using the condition a + b + c = d + e + f = g + h + i = k, it is clear that one of the eigenvalues is k. Therefore $det(A) = k\lambda_1\lambda_2$. From $\lambda_2 = tr(A) - \lambda_1 - k$, we get

$$\det(A) = k\lambda_1(\operatorname{tr}(A) - \lambda_1 - k) = -k\lambda_1^2 + k(\operatorname{tr}(A) - k)\lambda_1.$$

By solving the equation $\lambda^2 + (k - \operatorname{tr} (A))\lambda + \frac{\det(A)}{k} = 0$, we obtain

$$\lambda_{1,2} = \frac{\operatorname{tr}(A) - k}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(A) - k}{2}\right)^2 - \frac{\operatorname{det}(A)}{k}}$$

3. Perfect 3-colorings of the cubic connected graphs of order 10

In this section, we enumerate the parameter matrices of all perfect 3-colorings of the cubic connected graphs of order 10.

Theorem 3.1. The parameter matrices of cubic graphs of order 10 are listed in the following table.

graphs	matrix A_1	matrix A_2	$matrixA_3$	matrix A_4
1		×		×
2	\checkmark	×		\checkmark
3	×	×	×	×
4	\checkmark	×	×	×
5	×	×	×	×
6	\checkmark	×	\checkmark	×
7	Х	Х	×	Х
8	Х	×	×	×
9	×	×	\checkmark	\checkmark
10	\checkmark	×		×
11	×	×	×	×
12	×	×	×	×
13	×	×	×	\checkmark
14	×	×	×	\checkmark
15	Х	×	×	×
16	Х	Х	×	Х
17	×	×	×	×
18	Х	×	\checkmark	\checkmark
19	Х	×		\checkmark

Table _

Proof. As it has been shown in Section 3, only matrices A_1 , A_2 , A_3 and A_4 can be parameter matrices. With consideration of cubic graphs eigenvalues and using Theorem 2.1, it can be seen that the connected cubic graphs with 10 vertices can have perfect 3-coloring with matrices A_1 , A_2 , A_3 and A_4 which is represented by Table 2.

graphs	matrix A_1	matrix A_2	$matrix A_3$	matrix A_4
1	\checkmark			
2	\checkmark	\checkmark		\checkmark
4	\checkmark		×	×
5	\checkmark	\checkmark		\checkmark
6	\checkmark			
9	\checkmark			
10	\checkmark			
13	×	Х		
14	×	×	\checkmark	\checkmark
18	\checkmark		\checkmark	
19	×	×	\checkmark	
		Table 2		

Table 2

The vertices of cubic graphs are labeled clockwise with $a_1, a_2, ..., a_{10}$, respectively. The graph 1 has perfect 3-colorings with the matrices A_1 and A_3 . Consider two mappings T_1 and T_2 as follows:

$$T_1(a_1) = T_1(a_{10}) = 1, T_1(a_4) = T_1(a_7) = 2,$$

$$T_1(a_2) = T_1(a_3) = T_1(a_5) = T_1(a_6) = T_1(a_8) = T_1(a_9) = 3.$$

$$T_2(a_5) = T_2(a_6) = 1, T_2(a_2) = T_2(a_3) = T_2(a_8) = T_2(a_9) = 2,$$

$$T_2(a_1) = T_2(a_4) = T_2(a_7) = T_2(a_3) = 3.$$

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices A_1 and A_3 , respectively.

The graph 2 has perfect 3-colorings with the matrices A_1 , A_3 and A_4 . Consider three mappings T_1 , T_2 and T_3 as follows:

$$T_1(a_2) = T_1(a_7) = 1, T_1(a_5) = T_1(a_{10}) = 2,$$

$$T_1(a_1) = T_1(a_3) = T_1(a_4) = T_1(a_6) = T_1(a_8) = T_1(a_9) = 3.$$

$$T_2(a_1) = T_2(a_6) = 1, T_2(a_3) = T_2(a_4) = T_2(a_8) = T_2(a_9) = 2,$$

$$T_2(a_2) = T_2(a_5) = T_2(a_7) = T_2(a_{10}) = 3.$$

$$T_3(a_1) = 1, T_3(a_2) = T_3(a_6) = T_3(a_{10}) = 2,$$

$$T_3(a_3) = T_3(a_4) = T_3(a_5) = T_3(a_7) = T_3(a_8) = T_3(a_9) = 3.$$

It is clear that T_1 , T_2 and T_3 are perfect 3-coloring with the matrices A_1 , A_3 and A_4 , respectively.

The graph 4 has perfect 3-colorings with the matrix A_1 . Consider the mapping T_1 as follows:

$$T_1(a_5) = T_1(a_{10}) = 1, T_1(a_2) = T_1(a_7) = 2,$$

 $T_1(a_1) = T_1(a_3) = T_1(a_4) = T_1(a_6) = T_1(a_8) = T_1(a_9) = 3$

It is clear that T_1 is a perfect 3-coloring with the matrix A_1 .

The graph 6 has perfect 3-colorings with the matrices A_1 and A_3 . Consider two mappings T_1 and T_2 as follows:

$$T_1(a_5) = T_1(a_9) = 1, T_1(a_7) = T_1(a_2) = 2,$$

$$T_1(a_1) = T_1(a_3) = T_1(a_4) = T_1(a_6) = T_1(a_8) = T_1(a_{10}) = 3.$$

$$T_2(a_3) = T_2(a_4) = 1, T_2(a_1) = T_2(a_6) = 2 = T_2(a_8) = T_2(a_{10}) = 2,$$

$$T_2(a_2) = T_2(a_5) = T_2(a_7) = T_2(a_9) = 3.$$

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices A_1 and A_3 , respectively.

The graph 9 has perfect 3-colorings with the matrices A_3 and A_4 . Consider two mappings T_1 and T_2 as follows:

$$T_1(a_1) = T_1(a_6) = 1, T_1(a_3) = T_1(a_4) = T_1(a_8) = T_1(a_9) = 2,$$

$$T_1(a_2) = T_1(a_5) = T_1(a_7) = T_1(a_{10}) = 3.$$

$$T_2(a_1) = 1, T_2(a_2) = T_2(a_6) = 2 = T_2(a_{10}) = 2,$$

$$T_2(a_3) = T_2(a_4) = T_2(a_5) = T_2(a_7) = T_2(a_8) = T_2(a_9) = 3.$$

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices A_3 and A_4 , respectively.

The graph 10 has perfect 3-colorings with the matrices A_1 and A_3 . Consider two mappings T_1 and T_2 as follows:

$$T_1(a_2) = T_1(a_5) = 1, T_1(a_7) = T_1(a_{10}) = 2,$$

$$T_1(a_1) = T_1(a_3) = T_1(a_4) = T_1(a_6) = T_1(a_8) = T_1(a_9) = 3.$$

$$T_2(a_1) = T_2(a_6) = 1, T_2(a_3) = T_4(a_6) = 2 = T_2(a_8) = T_2(a_9) = 2,$$

$$T_2(a_2) = T_2(a_5) = T_2(a_7) = T_2(a_{10}) = 3.$$

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices A_1 and A_3 , respectively.

The graph 13 has perfect 3-colorings with the matrix A_4 . Consider a mapping T_1 as follows:

$$T_1(a_6) = 1, T_1(a_1) = T_1(a_5) = T_1(a_7) = 2,$$

 $T_1(a_2) = T_1(a_3) = T_1(a_4) = T_1(a_7) = T_1(a_8) = T_1(a_9) = 3.$

It is clear that T_1 is a perfect 3-coloring with the matrix A_4 .

The graph 14 has perfect 3-colorings with the matrix A_4 . Consider a mapping T_1 as follows:

$$T_1(a_6) = 1, T_1(a_1) = T_1(a_5) = T_1(a_7) = 2,$$

 $T_1(a_2) = T_1(a_3) = T_1(a_4) = T_1(a_7) = T_1(a_8) = T_1(a_9) = 3.$

It is clear that T_1 is a perfect 3-coloring with the matrix A_4 .

The graph 18 has perfect 3-colorings with the matrices A_3 and A_4 . Consider two mappings T_1 and T_2 as follows:

$$T_1(a_1) = T_1(a_6) = 1, T_1(a_3) = T_1(a_4) = T_1(a_8) = T_1(a_9) = 2,$$

$$T_1(a_2) = T_1(a_5) = T_1(a_7) = T_1(a_{10}) = 3.$$

$$T_2(a_1) = 1, T_2(a_2) = T_2(a_6) = 2 = T_2(a_{10}) = 2,$$

$$T_2(a_3) = T_2(a_4) = T_2(a_5) = T_2(a_7) = T_2(a_8) = T_2(a_9) = 3.$$

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices A_3 and A_4 , respectively.

The graph 19 has perfect 3-colorings with the matrices A_3 and A_4 . Consider two mappings T_1 and T_2 as follows:

$$T_1(a_2) = T_1(a_9) = 1, T_1(a_1) = T_1(a_4) = T_1(a_6) = T_1(a_8) = 2,$$

$$T_1(a_3) = T_1(a_5) = T_1(a_7) = T_1(a_9) = 3.$$

$$T_2(a_1) = 1, T_2(a_3) = T_2(a_6) = 2 = T_2(a_9) = 2,$$

$$T_2(a_2) = T_2(a_4) = T_2(a_5) = T_2(a_7) = T_2(a_8) = T_2(a_{10}) = 3.$$

www.ejgta.org

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices A_3 and A_4 , respectively. There are no perfect 3-colorings with the matrices A_2 and A_4 for graph 1.

Contrary to our claim, suppose that T is a perfect 3-coloring with the matrix A_2 for graph 1. According to the matrix A_2 , each vertex with white color has a neighbor with white color, so the two vertices with white color are adjacent. In the case that $a_1 \leftrightarrow a_2$, $a_1 \leftrightarrow a_3$, $a_2 \leftrightarrow a_4$, $a_3 \leftrightarrow a_4$ by symmetry $a_7 \leftrightarrow a_8$, $a_7 \leftrightarrow a_9$, $a_8 \leftrightarrow a_{10}$ and $a_9 \leftrightarrow a_{10}$, they have less than four adjacent vertices. These vertices are red color, which is a contradiction. So $a_5 \leftrightarrow a_6$, $a_4 \leftrightarrow a_5$ and its symmetric $a_6 \leftrightarrow a_7$ will be remain that are white color. In the case that $a_4 \leftrightarrow a_5$, the neighbors of a_4 and a_5 are red color and vertex a_1 that is their neighbor's is also red color has two neighbors with red color which it is not possible. If a_5 and a_6 are white color, adjacent vertices are red color and other vertices are black color, so each black color is adjacent to another black color vertex, which is a contradiction. So we conclude the graph 1 has no perfect 3-coloring with matrix A_2 .

Contrary to our claim, suppose that T is a perfect 3-coloring with the matrix A_4 for graph 1. According to the matrix A_4 , each vertex with white color has three adjacent with black color. If a_1 is white color, then a_2, a_3, a_5 are black color, which is a contradiction with the second row of matrix A_4 . If a_2 is white color, then according to the matrix A_4 , the vertices a_1, a_3, a_4 are black color, which is a contradiction with the second row of matrix A_4 . If a_3 is white color, then according to the matrix A_4 . If a_3 is white color, then according to the matrix A_4 . If a_4 is white color, then according to the matrix A_4 , the vertices a_2, a_3, a_5 are black color, which is a contradiction with the second row of matrix A_4 . If a_4 is white color, then according to the matrix A_4 , the vertices a_2, a_3, a_5 are black color, which is a contradiction with the second row of matrix A_4 . If a_5 is white color, then according to the matrix A_4 . If a_5 is white color, then according to the matrix A_4 . If a_5 is white color, then a_3 is a vertex that is black color and has three red color neighbors, which is a counteraction with the second row of matrix A_4 . According to the symmetric, the vertices $a_6, a_7, a_8, a_9, a_{10}$ can not be white color. Therefore the graph 1 has no perfect 3-coloring with matrix A_4 .

As it is stated in the before paragraphs, the graph 1 has no perfect 3-coloring with matrices A_2 and A_4 .

About other graphs in Figure 1, similarly, we can get the same result as in Table 1. \Box

References

- [1] M. Alaeiyan and A. Abedi, Perfect 2-colorings of Johnson graphs J(4,3), J(4,3), J(6,3) and Petersen graph, Ars Combinatoria, (to appear).
- [2] M. Alaeiyan and H. Karami, Perfect 2-colorings of the generalized Petersen graph, *Proceed*ings Mathematical Sciences **126** (2016), 1–6.
- [3] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs J(6,3) and J(7,3), Lecture Notes in Computer Science **5228** (2008), 11–19.
- [4] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs J(8,3) and J(8,4) with two colors, *Journal of Applied and Industrial Mathematics* **5** (2011), 19-30.
- [5] F.C. Bussemaker, S. Cobeljic, D.M. Cvetkovic and J.J. Seidel, *Computer invetigation of cubic graphs*, Technische Hpgesschool Eindhoven Nederland Onderafedeling Der Wiskunde, January 1976.

- [6] D.G. Fon-Der-Flaass, A bound on correlation immunity, *Siberian Electronic Mathematical Reports Journal* **4** (2007), 133–135.
- [7] D.G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, *Siberian Mathematical Journal* **4** (2007), 923–930.
- [8] D.G. Fon-der-Flaass, Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity, *Siberian Mathematical Journal* **4** (2007), 292–295.
- [9] A.L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs J(v, 3), Journal of Combinatorial Designs **21** (2013), 232–252.
- [10] C. Godsil, Compact graphs and equitable partitions, *Linear Algebra and Its Application* 255 (1997), 259–266.
- [11] C. Godsil and R. Gordon, Algebraic graph theory, Springer Science+Business Media, LLC (2004).