
www.ejgta.org

Electronic Journal of Graph Theory and Applications 5 (1) (2017), 43–50

On size multipartite Ramsey numbers for stars
versus paths and cycles
Anie Lusiani1, Edy Tri Baskoro, Suhadi Wido Saputro
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
Jalan Ganesa 10 Bandung, Indonesia

anielusiani@students.itb.ac.id, ebaskoro@math.itb.ac.id, suhadi@math.itb.ac.id

Abstract

Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices
in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite
Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph
Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In
2007, Syafrizal et al. determined the size multipartite Ramsey numbers of paths Pn versus stars,
for n = 2, 3 only. Furthermore, Surahmat et al. (2014) gave the size tripartite Ramsey numbers
of paths Pn versus stars, for n = 3, 4, 5, 6. In this paper, we investigate the size tripartite Ramsey
numbers of paths Pn versus stars, with all n ≥ 2. Our results complete the previous results given
by Syafrizal et al. and Surahmat et al. We also determine the size bipartite Ramsey numbers
m2(K1,m, Cn) of stars versus cycles, for n ≥ 3,m ≥ 2.
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1. Introduction

Burger and Vuuren[1] studied one of generalizations of the classical Ramsey number problem.
They introduced the size multipartite Ramsey number as follow. Let j, l, n, s and t be natural num-
bers with n, s ≥ 2. The size multipartite Ramsey number mj(Kn×l, Ks×t) is the smallest natural
number ζ such that an arbitrary coloring of the edges of Kj×ζ , using the two colors red and blue,
necessarily forces a red Kn×l or a blue Ks×t as a subgraph. They also determined the exact values
of m1(K2×2, K2×2) and mj(K2×2, K3×1), for j ≥ 1.

In [10], Syafrizal et al. generalized this concept by removing the completeness requirement as
follows. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number
mj(G1, G2) = t is the smallest integer such that every factorization of graph Kj×t := F1 ⊕ F2

satisfies the following condition: either F1 contains G1 as a subgraph or F2 contains G2 as a sub-
graph. They also determined the size multipartite Ramsey numbers of paths versus other graphs,
especially cycles and stars [10, 11, 12]. In this paper, we determine the size multipartite Ramsey
numbers, mj(K1,m, H), for j = 2, 3, where H is a path or a cycle on n vertices, and K1,m is a star
of order m+ 1.

Let G be a simple and finite graph. The null graph is the graph with n vertices and zero edges.
A matching of a graph G is defined as a set of edges without a common vertex. The maximum
degree of G is denoted by ∆(G), where ∆(G) = max{dG(v)|v ∈ V (G)}. The minimum degree
of G is denoted by δ(G), where δ(G) = min{dG(v)|v ∈ V (G)}. A graph G of order n is called
Hamiltonian if it contains a cycle of length n and it called bipancyclic if it contains cycles of all
even lengths from 4 to n. A connected graph G is said to be k-connected, if it has more than k
vertices and remains connected whenever fewer than k vertices are removed. A set U of vertices
in a graph G is independent if no two vertices in U are adjacent. The maximum number of vertices
in an independent set of vertices of G is called independent number of G and is denoted by α(G).
For two vertices x, y ∈ G, if x is adjacent to y, then we denote by x ∼ y. Otherwise, we denote
by x � y.

In this paper, we also use the following theorems to prove our results.

Theorem 1.1. [4] If G is a graph of order n and the minimum degree of G, δ(G) ≥ n
2
, then G is a

Hamiltonian.

Theorem 1.2. [3] Let G be an s-connected graph with no independent set of s+ 2 vertices. Then,
G has a Hamiltonian path.

Theorem 1.3. [8] Let G be a balanced bipartite graph on 2n vertices. If the minimum degree of
G, δ(G) ≥ n+1

2
, then G is bipancyclic.

2. Stars versus Paths

Hattingh and Henning gave the results for the size bipartite Ramsey numbers of stars versus
paths, as follows.
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Theorem 2.1. [5] For positive integers m,n ≥ 2,

m2(K1,m, Pn) =



n
2

+m− 1, for m ≤ n
2

+ 1, n is even,
n−1
2

+m, for m ≤ n−1
2

+ 1, n is odd, m− 1 ≡ 0 mod(n−1
2

),
n−1
2

+m− 1, for m ≤ n−1
2

+ 1, n is odd, m− 1 6= 0 mod(n−1
2

),

2m− 1, for 1
2
bn
2
c+ 1 ≤ m < bn

2
c+ 1,

bn+1
2
c, for m < 1

2
bn
2
c+ 1.

For positive integers m,n ≥ 1, Christou et al. [2] determined the size bipartite Ramsey num-
bers of stars K1,m versus nP2.

The size multipartite Ramsey numbers of paths Pn versus stars was determined only for n =
2, 3 by Syafrizal et al. [11] in 2007. Furthermore, Surahmat et al. [9] gave the size tripartite
Ramsey numbers of paths Pn versus stars, for n = 3, 4, 5, 6. Lusiani et al. [7] gave the size
tripartite Ramsey numbers of paths P3 versus a disjoint union of m copies of a star. In this section,
we investigate the size tripartite Ramsey numbers of paths Pn versus stars, with all n ≥ 2. Our
results complete the previous results given by Syafrizal et al. and Surahmat et al.

Theorem 2.2. For positive integers n ≥ 2, m3(K1,2, Pn) = dn
3
e.

Proof. For n = 2, 3, it is clear that m3(K1,2, Pn) ≥ 1. To show that m3(K1,2, Pn) ≥ dn
3
e, for

n ≥ 4, let us consider a factorization the graph K3×(dn
3
e−1) = F1 ⊕ F2. We choose F1 as a match-

ing, then F1 + K1,2. Since |V (K3×(dn
3
e−1))| = |V (F2)| = 3(dn

3
e − 1) < n, we obtain F2 + Pn.

Now, we show that m3(K1,2, Pn) ≤ dn
3
e. For n = 2, 3, we know that in any red-blue coloring

avoiding a redK1,2, there will be a blue P2 or a blue P3. Therefore,m3(K1,2, Pn) ≤ 1, for n = 2, 3.
For n ≥ 4, we consider a factorization K3×dn

3
e = G1 ⊕G2 such that G1 does not contain K1,2, so

∆(G1) ≤ 1. Then δ(G2) ≥ |V (G2)| − dn3 e −∆(G1) = 2dn
3
e − 1 ≥ 3

2
dn
3
e = |V (G2)|

2
. By Theorem

1.1, we have that G2 is Hamiltonian which implies G2 ⊇ Pn, for n ≥ 4.

Theorem 2.3. For positive integer n ≥ 2,

m3(K1,3, Pn) =

{
dn
3
e+ 1, if 2 ≤ n ≤ 6,

dn
3
e, if n ≥ 7.

Proof.

To show that m3(K1,3, Pn) ≥ t, let t =


2, if 2 ≤ n ≤ 3,

3, if 4 ≤ n ≤ 6,

dn
3
e, if n ≥ 7.

We consider a factorization the graph K3×(t−1) = F1 ⊕ F2, where F1 does not contain K1,3. We
consider the following three cases.
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Case 1. For 2 ≤ n ≤ 3.
We have K3×(t−1) = K3. We can choose F1 = K3, which implies F1 + K1,3 and F2 + Pn.

Case 2. For 4 ≤ n ≤ 6.
We have K3×(t−1) = K3×2. We can choose F1 = C6 and F2 = 2C3, see Figure 1. Then, F1 + K1,3

and the longest path in F2 is a P3.

Figure 1. F1 is a C6 and F2 is 2C3.

Case 3. For n ≥ 7.
We have K3×(t−1) = K3×(dn

3
e−1). We can choose F1 = C3(dn

3
e−1), then F1 + K1,3. Since

|V (K3×(t−1))| = |V (F2)| = 3(dn
3
e − 1) < n, we obtain F2 + Pn.

Now, we show that m3(K1,3, Pn) ≤ t, let t =


2, if 2 ≤ n ≤ 3,

3, if 4 ≤ n ≤ 9,

dn
3
e, if n ≥ 10.

We consider a factorization K3×t = G1 ⊕ G2 such that G1 does not contain K1,3, so ∆(G1) ≤ 2.
We consider the following three cases.

Case 1. For 2 ≤ n ≤ 3.
We have K3×t = K3×2. Since ∆(G1) ≤ 2, then δ(G2) ≥ |V (G2)| − t−∆(G1) = 6− 2− 2 = 2,
which implies that G2 ⊇ P3.

Case 2. For 4 ≤ n ≤ 9.
We have K3×t = K3×3. Since ∆(G1) ≤ 2, then δ(G2) ≥ |V (G2)| − t−∆(G1) = 9− 3− 2 = 4.
We will use Theorem 1.2 to show that G2 is a Hamiltonian path. So, we will show that G2 is a
2-connected graph with no independent set of 4 vertices. Let A,B,C be the three partities of G2.
Let x 6= y, where x, y be any vertices in G2 and S = N(x) ∩N(y). There are two possibilities:

1. Let x and y be in the same partite set. Since δ(G2) ≥ 4, then S 6= ∅ and |S| ≥ 2. So, two
vertices of S together with x and y form a C4.

2. Let x and y be in the different partite sets, say x ∈ A and y ∈ B.
(a) x ∼ y. If S = ∅, then there exist c1, c2 ∈ C, c1 6= c2 such that x ∼ c1 and y ∼ c2. Now,

since δ(G2) ≥ 4, K = N(c1) ∩N(c2) 6= ∅, say b2 ∈ K. Then {x, y, c1, c2, b2} form a
C5. Also, If S 6= ∅, then x and y will be contained in a C3.
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(b) x � y. Since δ(G2) ≥ 4, then |S| ≥ 1 and S ⊆ C. If |S| ≥ 2, then x, y and two
vertices of S will create a C4. If |S| = 1, then B − {y} ⊆ N(x) and |N(y) ∩ C| = 2.
Let N(y)∩C = {c1, c2}. Since δ(G2) ≥ 4, then |N(c1)∩ (B −{y})| ≥ 1. Therefore,
select b1 ∈ B − {y} such that c1 ∼ b1. Then, xc2yc1b1x is a C5.

Since any two different vertices in G2 belongs to a cycle, G2 is a 2-connected graph. Now, we
show that α(G2) = 3. Since G2 is a factor of K3×3, α(G2) ≥ 3. α(G2) ≤ 3, as any independent
set of G2 can have at most one element from each of the three partite sets. So, we have α(G2) = 3.
Then, by Theorem 1.2, G2 is a Hamiltonian path, which implies G2 ⊇ Pn, for 4 ≤ n ≤ 9.

Case 3. For n ≥ 10.
We have K3×t = K3×dn

3
e. Since ∆(G1) ≤ 2, then δ(G2) ≥ |V (G2)| − t−∆(G1) = 2dn

3
e − 2 ≥

3
2
dn
3
e = |V (G2)|

2
. Thus, by Theorem 1.1, G2 is Hamiltonian which implies G2 ⊇ Pn, for n ≥ 10.

Theorem 2.4. For positive integers 4 ≤ m ≤ 1
2
dn
3
e+ 1 and n ≥ 16,m3(K1,m, Pn) = dn

3
e.

Proof. To show that m3(K1,m, Pn) ≥ dn
3
e, let us consider a factorization graph K3×(dn

3
e−1) =

F1 ⊕ F2, where F1 does not contain K1,m. We can choose F1 = C3dn
3
e−3, then F1 + K1,m. Since

|V (K3×(dn
3
e−1))| = |V (F2)| = 3dn

3
e − 3 < n, we obtain F2 + Pn.

Now, we show that m3(K1,m, Pn) ≤ dn
3
e. We consider a factorization K3×dn

3
e = G1⊕G2 such

that G1 does not contain K1,m, so ∆(G1) ≤ m − 1. Then, δ(G2) ≥ |V (G2)| − dn3 e − ∆(G1) =
2dn

3
e−(m−1). Since δ(G2) ≥ 2dn

3
e−(m−1) and 2(m−1) ≤ dn

3
e, then δ(G2) ≥ 2dn

3
e− 1

2
dn
3
e =

3
2
dn
3
e = |V (G2)|

2
. Then, by Theorem 1.1, G2 is Hamiltonian which implies G2 ⊇ Pn.

3. Stars versus Cycles

The size multipartite Ramsey numbers for paths versus cycles of three or four vertices have
been showed by Syafrizal et al. [12]. Recently, Lusiani et al. [6] showed the size multipartite
Ramsey numbers for stars versus cycles. Now, we investigate the size bipartite Ramsey numbers
for stars versus cycles. The research is inspired by the work of Hattingh and Henning on the
size bipartite Ramsey numbers for stars versus paths. It seems that m2(K1,m, Cn) is related to
m2(K1,m, Pn). However, since a complete bipartite graph does not contain odd cycles, then it is
clear that m2(K1,m, Cn) = ∞. Now, we only consider m2(K1,m, Cn), where n is even. To show
this relation, in Theorem 3.1, we obtain the exact value of m2(K1,m, Cn) for certain values of n.

Theorem 3.1. Let m ≥ 2 and n ≥ 2m, where n is even. Then,

m2(K1,m, Cn) =

{
2m− 1, for 2m ≤ n ≤ 4m− 4,

dn
2
e, for 4m− 2 ≤ n.

Proof. Let t =

{
2m− 1, for 2m ≤ n ≤ 4m− 4,

dn
2
e, for 4m− 2 ≤ n.
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To show that m2(K1,m, Cn) ≥ t, let us consider a factorization the graph K2×(t−1) = F1 ⊕ F2,
such that F1 does not containK1,m. Then, ∆(F1) ≤ (m−1). We consider the following two cases.

Case 1. For 2m ≤ n ≤ 4m− 4.
We have K2×(t−1) = K2×(2m−2). We can choose F1 = 2K2×(m−1). The complement of F1 relative
to K2×(2m−2) is 2K2×(m−1). So, we get F2 = 2K2×(m−1), which implies F1 + K1,m and F2 + Cn
for 2m ≤ n ≤ 4m− 4.

Case 2. For 4m− 2 ≤ n.
We have K2×(t−1) = K2×(dn

2
e−1). If we choose F2 = K2×(dn

2
e−1), then F1 is a null graph. So,

F1 + K1,m. Since |V (K2×(t−1))| = |V (F2)| = 2(dn
2
e − 1) < n, we obtain F2 + Cn.

Now, we show that m2(K1,m, Cn) ≤ t. We consider a factorization K2×t = G1 ⊕G2 such that
G1 does not contain K1,m, so ∆(G1) ≤ (m− 1). We consider the following two cases.

Case 1. For 2m ≤ n ≤ 4m− 4.
We have K2×t = K2×(2m−1). Since ∆(G1) ≤ (m − 1), then δ(G2) ≥ |V (G2)| − t − ∆(G1) =
2m − 1 − (m − 1) = m. Then, by Theorem 1.4, G2 is bipancyclic, which implies G2 ⊇ Cn, for
2m ≤ n ≤ 4m− 4.

Case 2. For 4m− 2 ≤ n.
We have K2×t = K2×(dn

2
e). Since ∆(G1) ≤ (m − 1), then δ(G2) ≥ |V (G2)| − t − ∆(G1) =

dn
2
e − (m − 1) ≥ 1

2
(dn

2
e + 1), for n ≥ 4m − 2. Thus, by Theorem 1.3, G2 is bipancyclic, which

implies G2 ⊇ Cn, for n ≥ 4m− 2.

In the next two theorem, we consider m2(K1,m, Cn) for certain values of m and n which are
not included in Theorem 3.1. In particular, we prove that m2(K1,3, C4) = 5 in Theorem 3.2 and
m2(K1,4, C4) = 6 in Theorem 3.3.

Theorem 3.2. m2(K1,3, C4) = 5.

Figure 2. F1 is a C8 and F2 does not contain a C4.
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Proof. To show that m2(K1,3, C4) ≥ 5, let us consider a factorization the graph K2×4 = F1 ⊕ F2,
where F1 does not contain K1,3. If we choose F1 = C8, then F2 does not contain a C4, as shown
in Figure 2. This implies that F1 + K1,3 and F2 + C4.

Now, we show that m2(K1,3, C4) ≤ 5. We consider a factorization K2×5 = G1 ⊕G2 such that
G1 does not contain K1,3, so ∆(G1) ≤ 2. Then, δ(G2) ≥ |V (G2)| − t−∆(G1) = 10− 5− 2 = 3.
Thus, by Theorem 1.3, G2 is bipancyclic, which implies G2 ⊇ C4.

Theorem 3.3. m2(K1,4, C4) = 6.

Proof. To show that m2(K1,4, C4) ≥ 6, let us consider a factorization the graph K2×5 = F1 ⊕ F2,
where F1 does not containK1,4. Then, ∆(F1) ≤ 3 and δ(F2) ≥ |V (F2)|−t−∆(F1) = 10−5−3 =
2. We can choose F2 = C10. So, we get F2 + C4. Now, we show that m2(K1,4, C4) ≤ 6. We
consider a factorizationK2×6 = G1⊕G2 such thatG1 does not containK1,4, so ∆(G1) ≤ 3. Then,
δ(G2) ≥ |V (G2)| − t −∆(G1) = 12 − 6 − 3 = 3. Let A and B be the two partitie sets of K2×6.
Let a1 ∈ A be adjacent to bi ∈ B, i ∈ {1, 2, 3} in G2. Since δ(G2) ≥ 3, then each bi is adjacent
to at least two vertices in A−{a1}. By the Pigeonhole Principle, there exists at least one vertex in
A− {a1} adjacent to two vertices in {b1, b2, b3}. So, we get C4 in G2.
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