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Abstract

For a finite connected graph X, we consider the graph RX obtained from X by associating a
new vertex to every edge of X and joining by edges the extremities of each edge of X to the
corresponding new vertex. We express the spectrum of the Laplace operator on RX as a function
of the corresponding spectrum on X. As a corollary, we show that X is a complete graph if and
only if A\;(RX) > . We give a re-interpretation of the correspondence X ~— RX in terms of the
right-angled Coxeter group defined by X.
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1. Introduction

Let X = (V, E) be a finite, connected graph. Denote by ~ the adjacency relation on V; that
is, x ~ y if and only if {z,y} € E. Endow the space RV of real-valued functions on V' with
the scalar product (f|g) = >y, f(2)g(x) deg(z), where deg(x) is the number of neighbors of z.
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The combinatorial Laplace operator of X is the operator Ax on RV, defined by

(Axha) = @) = g T 2

(f € RV, z € V). Itis classical that Ax is self-adjoint with respect to (.|.) (that is, (Ax flg) =
(f|Axg) forevery f, g € RV), and has spectrum contained in [0, 2]; the associated quadratic form
is given by:
Baflf) =5 3 (@) - F)
T,y Ty

(f € RV); see [4] for all this. Then 0 is a multiplicity 1 eigenvalue of Ay, and we denote by
A1(X) the smallest non-zero eigenvalue of X.

We denote by R X the graph with vertex set VL F (the disjoint union of V' and F’) and adjacency
relation given by:

o ifr,ycV: z~ys{z,y} €k,
eifreVeck:o~e&s e
e ife, ¢ € F, then ¢, ¢ are not adjacent in RX.

Graphically, this means that every edge ¢ = {z,y} in X gets replaced in RX by a triangle
{z,y,e} (with dege = 2)!. This operation on graphs was considered by Cvetkovic [5], who
computed, in case X is regular, the spectrum of the adjacency operator of X as a function of the
corresponding spectrum for X (see Theorem 3 in [5]).

The purpose of this note is twofold. First, we explain the relevance of the transformation X —
RX in terms of Cayley graphs for the right-angled Coxeter group associated with X. Second, we
compute the spectrum Sp Agx of Agx in terms of the spectrum Sp Ax of Ay, without regularity
assumption on X . Observe that, for f € R(V L E):

W)~ gam [ eeviony f(2) + Xeepyen fle)] if yeV
(Brx/)y) = { Fly) = 33, fl@) if yek

The following result will be proved in Section 3:

o))

Proposition 1.1. Let X be a finite connected graph with n vertices and m edges. A real number
A € [0,2] is an eigenvalue of Agx if and only some of the following cases occurs:

e )\ = 1 (this case occurs only if m > n);

_ 3.
./\_2’

I'The graph RX should NOT be confused with the total graph 7'X, whose set of vertices is also V LI E but the 3rd
condition above gets replaced by: there is an edge between e, ¢’ € E if and only if e and €’ are incident in X. So RX
is a spanning subgraph of 7' X.
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e 2\ is an eigenvalue of Ax.

Taking into account the fact that, for the complete graph K, on n vertices, we have Sp(Ag, ) =
{0, 2}, and that A; > 1 characterizes complete graphs (see Lemma 1.7 in [4]), we get as an
immediate corollary:

Corollary 1.1. Let X be a finite connected graph. The following are equivalent:

i) M(RX) > 1,
ii) X is a complete graph.

However, it is possible to give a direct, group-theoretic proof of the implication (i) = (i) in
Corollary 1.1: this will be done in Section 2.

2. Cayley graphs and property (T)

Recall that a finitely generated group I' has property (T) if every affine isometric action of I" on
a Hilbert space, has a fixed point. We refer to [2] for examples, characterizations and applications
of property (T).

Let I be a finitely generated group and let S be a finite generating subset such that $ = S~}
and 1 ¢ S. Let G(I', S) be the Cayley graph of I" with respect to .S; that is, the vertex set is I, and
two vertices x,y € [ are adjacent if 7'y € S. Let Xg be the graph induced by G(I', S) on S;
that is, the vertex set of Xg is S, and two elements s,t € S are adjacent if st € S. The spectral
criterion for property (T) (see [1], [6], [7]; see also [2], Theorem 5.5.2) is the statement that, if Xg
is connected and \; (Xg) > 3, then I" has property (T).

Proof of (i) = (ii) in Corollary 1.1: Let X = (V, E) be a finite connected graph and let Wx
be the right-angled Coxeter group associated with X; this is the group defined by the presentation:

Wx =(seVl]ss=1(seV); st=ts ({s,t} € E)).

We will need two standard facts about Coxeter groups:

(a) An infinite Coxeter group does not have property (T) (see [3]);
(b) If {s,t} ¢ E, then st has infinite order in W.

We define a new generating set of W by:
S=XU{st=ts: {s,t} € E}.

Observe that, if st = ts, then for any two distinct z,y € {s,t, st}, the quotient ™'y is still in
{s,t, st}. In other words, the graph Xg induced by G(Wx,S) on S, is isomorphic to RX.

So, if we assume A (RX) > 3, then Wy has property (T) by the spectral criterion. By fact (a)
above, Wx is a finite group, which of course implies that st has finite order for every s,¢ € V. By
fact (b), we must have s ~ ¢ for every s,¢ € V; that is, X is a complete graph. U
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3. The Laplace operator on RX

Recall that the Laplace operator on X, as a matrix indexed by V' x V/, is:

1 if T=1
(AX)IZJ - _degl(x) if T~y
0 if x4y zoy

Set |V| = n and |E| = m. Turning to RX with vertex set £/ LI V/, recall that deg (e) = 2 for
e € F and degpy(z) = 2deg(z) for x € V. So, from (1), the Laplace operator Arx on RX is a

(m+mn) X (m + n) matrix:
Ao — L, B
A 1, - My

where (Mx f)(x) = @ > g~z J(y) is the Markov operator on X (with f € RV and, for
reV,ee k.

. ——2de{g(m) if xce
e 0 if vde
L if zee
— 2
Be””—{ if v¢e

Observe that
0 if x#yzwy
1 .

(AB),y = Tdog(®) if T~y
T if rT=y
So that . ]
AB:Z(1n+MX):Z(2'1n_AX)- (2)

The characteristic polynomial of Agy is

B B B (1—=XM1, B
Prx(A) = det(Arx — A+ Lingn) = det ( A (32— M1, + 1Ay

For A\ # 1, multiply on the left by the unimodular matrix ( 1 _173 14 10 ) to get

(1 =M1, B
Prx(}) =det< 0 (%_A)1H+ATX—(1—>\)‘1AB)
=(1-\)" det[(% — N1, + % —(1-N)""AB]
= (1— )™ " det[(1 - /\)(% — M1, + G=Nax AB]

2
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By Equation (2):
Pax(0) = (1= )" det](1 = 1) (5 ~ N1, + T2 2o, ay)
= (1= )" et~ (A~ 25
_9n(1— A — g)n det(2) — Ay)
So 3
Prx(A) =27"(1- )\)mfn(g — A)"Px(2)) 3)

Proposition 1.1 immediately follows from equation (3).
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