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Abstract

A graph is a mathematical object modeling the existence of a certain relation between pairs of
elements of a given set. Many of the first results concerning graphs made reference to relationships
between groups of people. In this article, we comment on four results of this kind: the Handshake
lemma (related to graph colorings and Boolean algebra), a lemma on known and unknown people
at a cocktail party (to Ramsey theory), a theorem on friends in common (to distance-regularity and
coding theory), and Hall’s Marriage theorem (to the theory of networks). These four areas of graph
theory, often with problems which are easy to state but difficult to solve, are extensively developed
and currently give rise to much research work. As examples of representative problems and results
of these areas we may cite the following: the Four Colors Theorem (4CTC), the Ramsey numbers,
problems of the existence of distance-regular graphs and completely regular codes, and finally the
study of topological proprieties of interconnection networks.
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1. Introduction

A graph G = (V,E) is a mathematical structure consisting of a vertex set V and a set of
edges E (or nonordered pairs of vertices). Normally, each vertex v ∈ V is represented by a
point and each edge e = {u, v} ∈ E by a line joining vertices u and v. Graph theory belongs
to combinatorics, which is the part of mathematics that studies the structure and enumeration
of discrete objects, in contrast to the continuous objects studied in mathematical analysis. In
particular, graph theory is useful for studying any system with a certain relationship between pairs
of elements, which give a binary relation. It is therefore not surprising that many of the problems
and results were originally stated in terms of personal relationships. For example, one of the most
simple results is the Handshake lemma: At a cocktail party, an even number of people shake an
odd number of hands. There is also the so-called Friendship theorem: At a party, if each pair of
people has exactly one friend in common, then there is somebody who is friend of everybody. The
first and most appealing proof of this theorem is due to Paul Erdős (with Alfred Rényi and Vera
Sós), a Hungarian mathematician, probably the most prolific of the 20th century, who like Euler
enjoyed coining sentences such as “A mathematician is a device for turning coffee into theorems”
or “Another roof, another proof”. The latter phrase shows his great capacity and predisposition
for collaborating with other authors from all over the world (he had 509 coauthors). From Erdős
we have the Erdős number: the co-authors of Erdős have Erdős number 1, the co-authors of the
co-authors of Erdős have Erdős number 2, etc. For more information on Erdős, see Hoffman [31].

It is considered that the first paper on graph theory was published in 1736. Its author was the
great Swiss mathematician Leonhard Euler, about who it is said that he wrote papers in the half
an hour between the first and the second calls for lunch. This first paper is about the existence
of a possible walk across the Königsberg bridges; see Euler [13]. This city was the capital of
Oriental Prussia, the birthplace of Immanuel Kant. Nowadays it corresponds to the Russian city of
Kaliningrad. The problem of the Königsberg bridges is related to the puzzle of drawing a figure
without raising the pencil from the paper and without passing twice through the same place. In
the original problem, it was asked if it was possible to walk through the city by crossing all the
bridges only once. With an ingenious reasoning, which in fact does not explicitly use any graph,
Euler proved the impossibility of this walk.

Another of the most famous problems in graph theory, not solved until 1977 by Appel, Haken
and Kock [3, 2], is the Four Colors theorem (4CT), which states that the countries of any map drawn
in the plane can be colored with four colors, such that countries with a common border (different
from a point) bear different colors. This theorem is regarded as the first important result to be
proved using a computer, because in a part of its proof 1,482 configurations were analyzed. For
this reason, not all mathematicians accept it. Twenty years later, Robertson, Sanders, Seymour and
Thomas [39] gave an independent proof, which is shorter, but also requires the use of a computer,
because of the 633 configurations analyzed.

As we have already stated, graph theory is used to study different relations. A first example is
an electric circuit, with all its components and its connections. In telecommunications, graph the-
ory contributes to the modeling, design and study of interconnection or communication networks.
For instance, interconnection networks are used in multiprocessor systems, where some processors
undertake a task of exchanging information, and in local networks consisting of different comput-
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ers placed at a short distances, which exchange data at very high speed and low cost. As regards
communication networks, nowadays the most important example is the Internet, which makes the
communication and exchange of data possible between computers all around the world. In fact,
we are experiencing a communication revolution, so that we could say that we are ‘weaving’ the
communication network.

For more details about notation, basic concepts and history of graph theory see, for example,
Bollobás [7], Diestel [11], West [43] and Biggs, Lloyd and Wilson [5].

2. Shaking hands: Colorings and Boolean algebra

In a graph G = (V,E), the degree δ(u) is the number of adjacent vertices to vertex u, namely,
the number of incident edges to u. We denote by ∆(G) the maximum degree of all the vertices of
G and by δ(G) the minimum degree.

We begin with one of the most simple results about graphs, which states that the sum of the
degrees of the vertices in V equals twice the number of edges in E:∑

u∈V

δ(u) = 2|E|, (1)

since in the degree sum, we count each edge twice because each edge is incident to two vertices.
From here, we obtain the inequalities:

δ(G)|V | ≤ 2|E| ≤ ∆(G)|V |. (2)

Although these results are apparently trivial, they have some interesting corollaries, such as the
following:

(a) Every graph has an even number of vertices with odd degree.

This is the so-called Handshake lemma, because it can be stated as follows: At a cocktail
party, the number of people who shake an odd number of other people’s hands is always
even.

(b) Every δ-regular graph (a graph is δ-regular if all its vertices have degree δ), with δ odd, has
an even number of vertices.

(c) Every planar graph (that is, it can be drawn on the plane without edge crossings) with girth
g (the girth is the length of the shortest cycle) and number of edges |E| satisfies

|E| ≤ g(|V | − 2)

g − 2
. (3)

To prove (c), we need the well-known Euler formula [14] published between 1752 and 1753,
and already observed by Descartes in 1640, which can be proved by induction and states that every
planar graph with n = |V | vertices, m = |E| edges and r = |R| regions satisfies

r + n = m+ 2. (4)
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Figure 1. The graphs of the five Platonic solids.

In this formula, the number of regions includes the exterior one (that is, the ‘sea’, if we have a
map or if the graph is imbedded on a sphere). For example, the Euler formula is satisfied by the
graphs of the Platonic solids shown in Figure 1. In fact, this formula gives necessary conditions
for the existence of these regular polyhedra; see Rademacher and Toeplitz [37]. In proving (4), the
key fact is that the removing of a vertex with degree δ (and its incident edges) leaves a new planar
graph whose number of regions, vertices and edges have been reduced, respectively, by δ − 1, 1
and δ units.

Returning again to the Euler formula, the number r of regions can also be interpreted as the
cardinality of the vertex set of the dual graph G∗. Given a planar graph G with n = |V | vertices
and m = |E| edges forming regions, its dual graph G∗ = (V ∗, E∗) has vertices representing the
regions of G, and there is an edge between two vertices if the corresponding regions are neighbors.
Then, r = |V ∗| and m = |E| = |E∗|. This interpretation provides a more symmetric Euler
formula:

|E∗| = (|V ∗| − 1) + (|V | − 1) = |E|, (5)

which allows us to prove it without using induction, but rather by identifying both parenthesis
in Equation (5) as the number of edges of two spanning trees T ∗ and T belonging to G∗ and G,
respectively. A spanning tree T of a connected graph G = (V,E) (that is, there is a path between
any pair of vertices) is composed of the vertex set V and |V | − 1 edges without forming cycles.
An example of this is shown in Figure 2, where each black continuous edge of G (the graph of a
cube Q) belongs to T , but where each black dashed edge corresponds to an edge of T ∗ in G∗ (the
graph of an octahedron). For more details, see Aigner and Ziegler [1].

In our case, the proof of (c) is as follows: As each edge is the border of two regions and each
region has at least g edges, we have r ≤ 2m/g. Note that this inequality is obtained from (2),
considering the dual graph, since r = |V ∗|, m = |E∗| and g = δ(G∗). Using this inequality and
Equation (4), we obtain (3).

As a particular case of (c), we have the following result:

(d) In any planar graph (g ≥ 3) the number of edges satisfies m ≤ 3n−6; if it does not contain
triangles (g ≥ 4), then m ≤ 2n−4; and if it contains neither triangles nor squares (g ≥ 5),
then m ≤ 5

3
(n− 2).

From the first inequality, we can see that the complete graph K5 (n = 5, m = 10) is not planar.
A graph is complete if there is an edge between every pair of vertices. Similarly, from the second

285



www.ejgta.org

Graphs, friends and acquaintances | C. Dalfó and M. A. Fiol

Figure 2. The spanning tree (black edges) of the cube graph Q (continuous edges and black vertices) and its dual
(dashed edges and white vertices).

Figure 3. The complete graph K5 and the complete bipartite graph K3,3.

inequality, we also obtain that the complete bipartite graph K3,3 (n = 6,m = 9) is not planar. A
bipartite graph (that is, the vertex set can be decomposed into two independent subsets such that
vertices in every subset are not adjacent) is complete if each pair of vertices in different subsets are
adjacent. See both graphs in Figure 3. Notice that, for instance, the third inequality turns out to be
an equality in the case of the dodecahedron graph (see again Figure 1, n = 20 and m = 30).

In this context, we have the famous Kuratowski theorem [34], which characterizes planar
graphs (see also the book by West [43, pp. 246–251] and the paper by Thomassen [41], where
the relation between the planarity criterion and the Jordan Curve Theorem is explained):

• A graph is planar if and only if it contains no homeomorphic subgraph to K5 or K3,3.

Recall that a graph H is homeomorphic to a graph G if the edges of G correspond to (independent)
paths in H .

From Equation (1) and again the inequalities in (d), we can prove the following:

• Every planar graph G contains a vertex u of degree δ(u) ≤ 5. Moreover, if G does not
contain triangles, then it has a vertex u of degree δ(u) ≤ 3.

Indeed, if ni denotes the number of vertices with degree i ∈ N, then from Equation (1) we have
that

2m = n1 + 2n2 + 3n3 + · · · ≤ 2(3n− 6) = 6n1 + 6n2 + 6n3 + · · · − 12,
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v1

v2

v ’2v3v4

v5

u

1

1

1

1

1

3 3

3

3

2

34
4

4

4

2

2

2

5

Figure 4. The case r = δ = 5 in the proof of the Five Color theorem (5CT).

whence
5n1 + 4n2 + 3n3 + 2n4 + n5 − n7 − 2n8 − · · · = 12,

so that ni > 0 for some i ≤ 5, as claimed. The proof of the case without triangles is analogue.
The existence of a vertex with degree at most five allows us to prove, by induction, the Five

Color theorem (5CT), which was first proved by Heawood [30] (see Aigner and Ziegler [1]):

• Five colors suffice to get a vertex-coloring of a planar graph.

Recall that in a vertex-coloring, adjacent vertices have different colors.
First note that the result is trivially true for graphs with at most 5 vertices. Then, assume that it

is also true for graphs with n− 1 > 5 vertices, and let G be a graph with n vertices. We know that
G contains a vertex u ∈ V with degree δ ≤ 5. Let vi, 1 ≤ i ≤ δ, denote the adjacent vertices to
u. From the induction hypothesis, the graph G′ = G − u (obtained from G by removing vertex u
and all its incident edges) has a vertex-coloring with r ≤ 5 colors. Therefore, if r ≤ 4 (which is
always the case when δ ≤ 4), we can restore vertex u and give it a color different from the colors
of the adjacent vertices vi. Thus, we obtain a coloring of G using at most 5 colors. Otherwise, if
r = δ = 5 we can assume, without lost of generality, that we have a situation as shown in Figure 4
(where vertex vi has color i, 1 ≤ i ≤ δ). Now consider the paths with vertices alternatively
colored 1-3 (with final vertices v1 and/or v3) and 2-4 (with final vertices v2 and/or v4). As G′ is
planar, these possible paths cannot cross each other (that is, they have neither crossed edges nor
common vertices). Then if, for example, there exists the path 1-3 with initial-final vertices v1-v3,
the path 2-4 with initial vertex v2 cannot have v4 as final vertex, but another vertex denoted by v′2
(see again Figure 4). Therefore, we can interchange the colors 2-4 in this path, so that v2 gets color
4. We can then restore vertex u and assign it color 2, obtaining a coloring of G with 5 colors.

We now consider the case of giving one of three colors to each edge of a graph G with maxi-
mum degree 3. This is called a free edge-coloring ofG. In particular, the (‘not-free’) edge-coloring
of a cubic (3-regular) graph, also called Tait-coloring, corresponds to the case where adjacent edges
receive different colors. As we will see later, if G is a planar graph, the problem of the existence of
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Tait-colorings is closely related to the Four Color theorem (4CT). Moreover, we will also see that
the construction of cubic graphs which cannot be Tait-colored leads to Boolean algebra, which is
commonly used in the study of logic circuits. To this end, we introduce a natural generalization
of the concept of ‘color’, which describes in a simple way the coloring (“0” or “1”) of any set
of edges or, more abstractly, of any family F of m colors chosen between three different colors,
say C = {1, 2, 3}, such that color i ∈ C appears mi times. This situation can be represented by
the coloring-vector m = (m1,m2,m3), where m = m1 + m2 + m3. Then, we say that F has
Boole-coloring 0, denoted by Ψ(F) = 0, if

m1 ≡ m2 ≡ m3 ≡ m (mod 2),

whereas F has Boole-coloring 1 (more specifically 1a), denoted by Ψ(F) = 1 (or Ψ(F) = 1a), if

ma + 1 ≡ mb ≡ mc ≡ m+ 1 (mod 2),

where {a, b, c} = {1, 2, 3}. See Fiol and Fiol [20] for more information.
Recalling these definitions, the Boole-coloring of an edge e ∈ E with color a ∈ C is Ψ(e) =

Ψ({a}) = 1a, and the Boole-coloring of a vertex v ∈ V , denoted by Ψ(v), is defined as the Boole-
coloring of its incident edges, which can have either different or the same colors. In this context, it
is curious to note the following facts:

1. If δ(v) = 1, then Ψ(v) = 1a if and only if the incident edge to vertex v has color a ∈ C.

2. If δ(v) = 2, then Ψ(v) = 0 if both incident edges to vertex v have the same color, and
Ψ(v) = 1 if not.

3. If δ(v) = 3, then Ψ(v) = 0 if and only if the three incident edges to vertex v have three
different colors. Thus, in a Tait-coloring of a cubic graph, all its vertices have Boole-coloring
0.

Moreover, a natural sum operation can be defined in the set B = {0, 11, 12, 13} of Boole-
colorings in the following way: Given the colorings X1 and X2 represented, respectively, by the
coloring-vectors m1 = (m11,m12,m13) and m2 = (m21,m22,m23), we define the sumX = X1+
X2 as the coloring represented by the coloring vector m = m1 +m2. Then, (B,+) is isomorphic
to the Klein group, with 0 as identity, 1a + 1a = 0, and 1a + 1b = 1c where {a, b, c} = {1, 2, 3};
see Table .

Notice that, since every element coincides with its inverse, m1a = 1a + 1a+
m· · · +1a is 0

if m is even and 1a if m is odd. From this simple fact, we can imply the following result (see
Fiol [18]), which is very useful in the further development of the theory and can be regarded as a
generalization of the so-called Parity lemma (see Isaacs [32]):

• Let G be a graph with n vertices, maximum degree 3, and having a free edge-coloring, such
that ni vertices have Boole-coloring 1i, for i ∈ C, with n′ = n1 + n2 + n3 ≤ n. Then,

n1 ≡ n2 ≡ n3 ≡ n′ (mod 2). (6)
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+ 0 11 12 13

0 0 11 12 13

11 11 0 13 12

12 12 13 0 11

13 13 12 11 0

Table 1. Klein’s group of Boole-colorings.
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Figure 5. An example of the fact that every map has a 3-graph associated.

Indeed, since the Boole-coloring of each vertex is the sum of the Boole-colorings of its incident
edges, and recalling again Equation (1), we can write

∑
v∈V

Ψ(v) =
3∑
i=1

ni1i + (n− n′)0 =
3∑
i=1

ni1i =
∑
e∈E

2Ψ(e) = 0,

but this equality is only satisfied if ni1i = 0 or ni1i = 1i, for every i ∈ C. Then, from n1+n2+n3 =
n′, we get the result.

Note that, as a direct consequence, we also get the following:

• There is no edge-coloring of a graph G having only one vertex with Boole-coloring 1 (and
the other vertices with Boole-coloring 0).

Another consequence is the following result by Tait [40]:

• A cubic planar graph is Tait-colorable if and only if its corresponding map is 4-colorable.

Using the Boole-colorings, the proof of this last result is as follows: First, recall that every map
has a 3-graph associated, because a vertex with degree greater than 3 can be replaced by a polygon,
in such a way that the map obtained can be colored with 4 colors, and so can the original map;
see an example in Figure 5. Now assume that we have the regions of the map with the colorings
0, 11, 12, 13. Then, to obtain a Tait-coloring of a cubic planar graph, we only need to assign to each
edge the sum of the colorings of both regions separated by this edge. To see that this gives a Tait-
coloring, we only have to study one vertex, as shown in Figure 6. Since we have a 4-colored map,
each two neighboring regions have different colors. Thus, no sum can give 0. Moreover, since the
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X1 X2
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X +1 X2

X +1 X3 X +2 X3

Figure 6. Obtaining a Tait-coloring of a 3-graph.
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Figure 7. The 4-coloring of a map and the Tait-coloring of its edges.

three regions with a common vertex have different colorings X1, X2 and X3 and (B,+) is a group,
the colorings X1 +X2, X1 +X3 and X2 +X3 must also be different. Figure 7 provides an example
of a 4-coloring of a map and its Tait-coloring (obtained from Table 1), where the colorings 0, 11, 12

and 13 are denoted by 0, 1, 2 and 3, respectively.
Conversely, if we want to obtain a 4-colored map from a Tait-coloring of the edges of the

corresponding graph, we begin by giving the coloring 0 to any region considered as initial. Then,
starting from this region, we follow an arbitrary path crossing some edges and visiting all the
regions. We give each newly visited region the coloring obtained by adding the coloring of the
‘previous’ region plus the coloring of the last edge crossed. As no edge has the coloring 0, it is
obvious that the coloring obtained for each region is different from that of its ‘previous’ region in
the path followed; for an example of this process, see Figure 8 (left and center). Now, to finish
the proof, we need to show that the coloring of each region is independent of the path followed.
With this aim, let p1 and p2 be two paths with the same initial and final regions. We want to prove
that the coloring obtained for the final region is the same following both paths; there is an example
of this fact in Figure 8 (center and right). The colorings X and Y obtained by following both
paths are equal if and only if the sum of the colorings of all edges crossed, respectively, by p1
and p2 is 0. Indeed, let X1, X2, . . . , Xs and Y1, Y2, . . . , Yt be the colorings of the edges crossed
respectively by p1 and p2, then X1 + X2 + · · · + Xs = X and Y1 + Y2 + · · · + Yt = Y . If
(X1 + X2 + · · · + Xs) + (Y1 + Y2 + · · · + Yt) = 0, the sums in both parenthesis are equal, so
X = Y . To prove this equality, we can assume that p1 + p2 is a simple curve (see Figure 9)
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Figure 8. An edge-coloring of the dodecahedron (also in Figure 1) and two paths with the same initial and final regions.
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Figure 9. Two paths from a region 0 to another with an unknown color.

because, otherwise, we could decompose it into some simple curves. If we imagine that we cut
the graph with this curve, we obtain two graphs, such that the colorings of the edges crossed by
the curve must satisfy m1 ≡ m2 ≡ m3 (mod 2), where mi is the number of edges crossed with
coloring 1i. (Just imagine that in every cut we have two vertices of degree 1 and apply (6).) Then,
(X1 +X2 + · · ·+Xs) + (Y1 + Y2 + · · ·+ Yt) = m1 11 +m2 12 +m3 13 = 0, as claimed.

As previously mentioned, the concept of colorings allows us to use the theory of Boolean
algebra for the construction and characterization of snarks, that is, cubic graphs that are not Tait-
colorable, also known as class two. The name ‘snark’ was proposed by Gardner [25], who bor-
rowed it from a nonsense poem by the famous English author Lewis Carroll [10]. The most simple
example of snark is the Petersen graph [36] (see Figure 10). With the colorings we can obtain infi-
nite families of snarks. An example is the family obtained by joining adequately an odd number of
copies of the multipole (cubic graph with edges and semi-edges—or ‘dangling edges’— which are
edges with only one final vertex), shown in Figure 11 (left). This structure behaves as a NOT gate
of logic circuits in the sense that, its edges and semi-edges having been Tait-colored, the colorings
X1 and X2 are conjugated one to each other, namely X2 = 0 (respectively, X2 = 1) if and only if
X1 = 1 (respectively, X1 = 0). This is satisfied for any coloring of semi-edge e. Two examples of
this fact are shown in Figure 11 (center and right). If, as previously stated, we join an odd number
of these multipoles in a circular configuration, adding some vertices to connect semi-edges e, any
attempt at Tait-coloring will lead to a conflict, and hence the graph is a snark. An example with
five multipoles can be seen in Figure 12. This family of snarks, called flower snarks, was proposed
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Figure 10. The Petersen graph P .

X1{ } =X2 X1 X1=0{ } =X2 1 } =X2 0X1=1{

e 1

2

1

2

1

3

1
2 3

3

3

2

3

1

3

1

1
1

2

3 1
3

2

3
2

2

Figure 11. Multipoles and the NOT gate.

by Loupekhine (see Isaacs [33]). The first infinite families of snarks were given by Isaacs [32], but
they can also be obtained by using Boole-colorings. More details on this technique can be found
in Fiol [16].

3. Known and unknown: Ramsey theory

Let us consider the following result:

• At a cocktail party with six o more people, there are always three people who are known or
unknown to each other.

In other words, if the complete graph Kn on n ≥ 6 vertices can be (free) edge-colored with
two colors, say blue and red, then it always contains a monochromatic triangle, namely, a subgraph
K3 with its three edges blue or red. Indeed, as each vertex u has degree 5, at least 3 of its incident
edges {u, vi}, 1 ≤ i ≤ 3, must have the same color, for example, blue. Then, if any of the 3
edges {vi, vj} (1 ≤ i < j ≤ 3) is blue, we obtain a blue triangle. Otherwise, we have a red
triangle. Although this is an easy proof, it can be extremely difficult to prove similar results having
more colors and/or imposing other monochromatic subgraphs. In this context, recall that, given m
graphs G1, G2, . . . , Gm, the Ramsey number R(G1, G2, . . . , Gm) is defined as the smallest number
n, such that, in any edge-coloring of Kn using m colors, there always exists a monochromatic
subgraph (with color i) isomorphic to Gi for some 1 ≤ i ≤ m. If Gi is a complete graph Kr,
the Ramsey number is expressed by writing r instead of Kr, for sake of simplicity. Some known
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Figure 12. A flower snark.

results of exact values and bounds for Ramsey numbers are the following:

R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18, R(4, 4) = 18,

R(4, 5) = 25, 43 ≤ R(5, 5) ≤ 49; R(3, 3, 3) = 17; 51 ≤ R(3, 3, 3, 3) ≤ 62.

So, the result at the beginning of this section can be expressed as R(3, 3) ≤ 6. Moreover, since
R(3, 3) ≥ 6 (it is easy to color with two colors the edges of the complete graph K5 without
monochromatic triangles: the ‘outer cycle’ with one color and the ’inner’ cycle with the other)
we conclude that R(3, 3) = 6. A good updated summary on this subject can be found in Radzis-
zowski [38].

As an example, we now prove the following result:

• R(3, 3, 3) = 17.

We first see that R(3, 3, 3) ≤ 17. We make an edge-coloring of a complete graph using three
colors; say blue, red and green. Let us assume that the edge-coloring has no monochromatic
triangles. The green neighborhood of a vertex v is the set of vertices that have a green edge to
v. The green neighborhood of v cannot contain any green edge in order to avoid monochromatic
triangles. Then, the edge-coloring of the green neighborhood of v has only two colors: blue and
red. Since R(3, 3) = 6, the green neighborhood of v can contain at most 5 vertices. With the same
reasoning, the blue and the red neighborhoods of v can have at most 5 vertices each. As every
vertex different from v is in the green, blue or red neighborhoods of v, then the complete graph can
have at most 1 + 5 + 5 + 5 = 16 vertices. Thus, R(3, 3, 3) ≤ 17.

Now, to prove that R(3, 3, 3) ≥ 17, we use algebraic graph theory based on the properties
of eigenvalues and eigenvectors of the adjacency matrix, that is, a matrix with rows and columns
indexed by the vertices of the graph, and whose entries are either 1 or 0, according to whether the
corresponding vertices are adjacent or not.

A δ-regular graph with n vertices is said to be (n, δ; a, c)-strongly regular if each pair of ad-
jacent vertices has a common neighbors and each pair of nonadjacent vertices has c common
neighbors.
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Figure 13. Clebsch graph defined in two different ways.

If R(3, 3, 3) ≥ 17, then we can color the edges of the complete graph K16 with three colors,
namely, we can make an edge-coloring of K16 without monochromatic triangles. The required
edge-coloring is equivalent to a decomposition of K16 into three graphs G1, G2 and G3, each one
corresponding to one color. It follows that each Gi, i = 1, 2, 3, must be a graph on 16 vertices,
regular of degree 5 (because each vertex has degree 15 and the neighborhood with one color has
at most 5 vertices) and without triangles. Moreover, each vertex u ∈ Vi has 10 vertices at distance
2, which can be reached by 5 · 4 = 20 paths of length 2. Then, we can consider a graph in which
any two nonadjacent vertices have 2 common neighbors and any two adjacent vertices have no
common neighbors. In other words, a (16, 5; 0, 2)-strongly regular graph. It is known that there
is just one such graph, the Clebsch graph, which is illustrated in two different ways in Figure 13.
On the left, there is the Clesbch graph, as the graph whose vertices are labeled with the numbers
0 to 15 in base 2, and where two vertices are adjacent whenever the corresponding labels differ
either by one or by all four digits. On the right, there is the Clebsch graph, as the rooted graph
with vertices labeled 0, i, and the unordered pairs ij, with i, j ∈ {1, 2, 3, 4, 5}, for i 6= j. In this
representation, the adjacencies are 0 ∼ i, ij ∼ i, ij ∼ j, and ij ∼ kl if i, j, k, l are all different
and i, j, k, l ∈ {1, 2, 3, 4, 5}. In fact, the Clebsch graph is vertex-transitive (informally speaking,
we see the same structure from any vertex), so that any vertex can be chosen as vertex 0. Notice
that, from this view of the Clebsch graph, it is apparent that the induced subgraph on ten vertices
at distance 2 (from the vertex chosen as 0) is the Petersen graph [36]; compare Figure 13 (on the
right) and Figure 10.

Therefore, our problem is to find three edge-disjoint copies of the Clebsch graph in K16. To
this end, let us introduce the following terminology: Let Gi = (V,Ei) be a family of graphs on
the same vertex set V and such that Ei ∩ Ej = ∅, for i, j = 1, 2, . . . ,m. We define the graph
G =

⋃m
i=1Gi as the graph G = (V,E), where E =

⋃m
i=1Ei. Notice that the corresponding

adjacency matrices satisfy A(G) =
∑m

i=1 A(Gi). With Cli denoting a graph isomorphic to the
Clebsch graph, our problem now reads: Is it true that K16 = Cl1 ∪ Cl2 ∪ Cl3? In terms of their
adjacency matrices Ai = A(Cli), we have

A1 + A2 + A3 = J − I, (7)
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Figure 14. K16/3 = Clebsch graph.

since the adjacency matrix of K16 is equal to J − I , where J denotes the matrix whose entries are
all 1 and I is the identity matrix.

We now use eigenvalue techniques to address Equation (7). Recall that the spectrum of an
adjacency matrix gives the eigenvalues of this matrix (which are real because the matrix is sym-
metric), and that each eigenvalue has at least one eigenvector associated. To find the spectra of the
Clebsch graph and the matrix J − I , we can either compute them or simply find them in some
standard reference, such as Godsil and Royle [27]. We then have that spAi = {51, 110,−35} and
sp(J − I) = {151,−115}, where the superscripts denote the multiplicity of each eigenvalue. In
both cases, the largest eigenvalue has the all-1 vector j as eigenvector. It follows that the eigenvec-
tors of the other eigenvalues are in the subspaceH = j⊥ (with vectors the addition of whose com-
ponents are zero). Denote by Ei the eigenspace of Ai corresponding to the eigenvalue 1, namely,
Ei = ker(Ai − I), and consider the subspace F = E1 ∩ E2 ⊂ H. As dim E1 = dim E2 = 10
and dimH = 15, we infer that dimF ≥ 5. From Equation (7), with A1v = v, A2v = v
and (J − I)v = −v, where v ∈ F , we obtain that A3v = −3v and, then, dimF = 5 and
F = ker(A3 + 3I). This implies that

H = F1 ∪ F2 ∪ F3

where Fi = Ej ∩ Ek, with {i, j, k} = {1, 2, 3}.
This indicates that the required spectral condition necessary to the existence of the decompo-

sition K16 = Cl1 ∪ Cl2 ∪ Cl3 is satisfied. In this case, this condition is also sufficient, and it is
known that there are only two nonisomorphic decompositions. One of these is illustrated in Fig-
ure 14, which shows how to color one third of the edges of K16 with one color using the Clebsch
graph. By rotating this graph 2π

15
and 4π

15
radians, we obtain the edges to be colored with the two

other colors; with this, we get R(3, 3, 3) = 17.
In the case of avoiding monochromatic triangles with m > 3 colors, only bounds of Ramsey

numbers are known. By definition, we state that C(m) := R(3, 3, m. . ., 3) − 1 for m ≥ 1, that is,
C(m) is the biggest integer n such that Kn can be colored with m colors without monochromatic
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triangles. The following upper bound is known (see Fiol, Garriga and Yebra [23] and Greenwood
and Gleason [28]):

• C(m) ≤ bm! ec, (8)

Recall that, surprisingly, we find the number e. The proof is as follows: Obviously, C(1) =
R(3)− 1 = 2 and we know that C(2) = R(3, 3)− 1 = 5 and C(3) = R(3, 3, 3)− 1 = 16. If we
compute C(3) from C(2), considering that a vertex v can only be adjacent to 5 + 5 + 5 vertices,
we obtain that C(3) ≤ 3C(2) + 1 = 16. For any m ≥ 1, we get the recurrence

C(m+ 1) ≤ (m+ 1)C(m) + 1.

We solve the corresponding linear equation

D(m+ 1) = (m+ 1)D(m) + 1,

first solving its homogeneous equation

D(m+ 1) = (m+ 1)D(m)⇒ D(m) = Km!,

where K is a constant. Then, we look for a particular solution D(m) = K(m)m! of the complete
equation:

K(m+ 1)(m+ 1)! = (m+ 1)K(m)m! + 1

⇒ K(m+ 1)−K(m) =
1

(m+ 1)!
⇒ K(m) =

m∑
r=1

1

r!
+ α

⇒ D(m) = m!

(
m∑
r=1

1

r!
+ α

)
,

where α is a constant. Finally, C(1) = D(1) = 2 gives α = 1 and, hence, C(m) ≤ bm! ec, as
claimed.

From the examples given at the beginning of this section, we saw that 51 ≤ R(3, 3, 3, 3) ≤ 62.
Using (8), we obtain that

R(3, 3, 3, 3) = C(4) + 1 ≤ b4! ec+ 1 = 66,

which represents a good upper bound, quite close to the best bound known.

4. Common friends: Distance-regularity and coding theory

As commented by Aigner and Ziegler [1], nobody knows who was the first to state the following
result and to give it the human touch:

• At a cocktail party with three or more people, if each two people have exactly one friend in
common, then there is a person (the ‘politician’) who is a friend of everybody.
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Nowadays, this result is known as the Friendship theorem. As mentioned in the introduction,
the first proof (by contradiction) was given by Erdős, Rényi and Sós [12] in 1966, and is considered
to be the most successful. Basically, it has two parts: First, it is proved that if the graph G which
models such a cocktail party (where people correspond to vertices and friendships are represented
by edges) is a counterexample with more than three vertices, then it has to be regular, say with
degree k. As a consequence, G has to be strongly regular with parameters (n, k; 1, 1), that is,
every two adjacent vertices has exactly one common neighbor, and the same holds for every two
nonadjacent vertices. Second, spectral graph theory is used to prove that G cannot exist. In fact,
the hypothetic graphGwould be an example of a distance-regular graph, in this case with diameter
2 (the concepts of strongly-regularity and distance-regularity coincide for connected graphs with
diameter 2). Generally speaking, we say that a graph is distance-regular if, when it is observed
or ‘hung’ from any of its vertices (called root), we obtain a partition of the vertex set into layers,
where the layer i contains the vertices at distance i from the root, and the vertices in a layer are
indistinguishable from each other with respect to their adjacencies. A more precise definition of
distance-regularity is the following: A graph G with diameter D is distance-regular if, for every
pair of vertices u, v and integers 0 ≤ i, j ≤ D, the number pij(u, v) of vertices at distance i from u
and at distance j from v only depends on the distance between u and v, dist(u, v) = k. Then, we
write pij(u, v) = pkij , where the constants pkij are called the intersection numbers. Indeed, because
of the many relations between these numbers, it is possible to give a much more simple definition,
since for each distance k we only need the pairs of distances (i, j) = (k−1, 1), (k, 1) and (k+1, 1).
The corresponding intersection numbers are enough to determine all the others; see, for example,
Biggs [4]. Therefore, the most common definition of distance-regularity is: A graph G is distance-
regular if, for every pair of vertices u, v at distance dist(u, v) = k, the numbers ck, ak, and bk of
vertices adjacent to v, and at distance k − 1, k, and k + 1, respectively, from u only depends on k,
such that ck = pkk−1,1, ak = pkk,1, and bk = pkk+1,1. As simple examples of distance-regular graphs,
we have the 1-skeleton of regular polyhedrons; see again Figure 1. In Figure 15, we show the
layer partition of the cube graph Q with the so-called intersection diagram of the corresponding
intersection numbers. Notice that each layer is represented by a circle containing its number of
vertices.

Since their introduction by Biggs in the early 70’s, distance-regular graphs, and their principal
generalization called association schemes (see, for example, Brouwer and Haemers [9]), have
been key concepts in algebraic combinatorics. These graphs have connections with other areas of
mathematics, such as geometry, coding theory, group theory, design theory, and with other parts of
graph theory. As pointed out by Brouwer, Cohen and Neumaier in their monumental book on this
subject [8], this is because most of the finite objects with ‘enough’ regularity are closely related to
distance-regular graphs.

In 1997 Fiol and Garriga [21, 19] gave the following quasi-spectral characterization of distance-
regular graphs:

• A regular graphGwith adjacency matrix A and d+1 distinct eigenvalues is distance-regular
if and only if the number |Γd(u)| of vertices at distance d from each vertex u is a constant
and only depends on the spectrum of the matrix A.

More precisely, consider a regular graphGwith n vertices and spectrum spG = {λ10, λ
m1
1 , . . . , λmd

d },
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Figure 15. A layer partition of the cube Q and its intersection diagram.

where λ0, λ1, . . . , λd are the eigenvalues of A and the superscripts denote their multiplicities; λ0 is
simple because G is connected, thus A is irreducible (Perron-Frobenius theorem for nonnegative
matrices, see Godsil [26, p. 31]). Then, G is distance-regular if and only if, for each vertex u,

|Γd(u)| = n

(
d∑
i=0

π2
0

miπ2
i

)−1
, (9)

where πi’s are moment-like parameters, which can be calculated from the distance between eigen-
values with the formula πi =

∏d
j=0(j 6=i) |λi − λj|, for 0 ≤ i ≤ d. As examples, we give the

spectrum, the number of vertices and the value of |Γd(u)| obtained from Equation (9) of the cube
Q and the Petersen graph P (see again Figures 15 and 10, respectively):

• Cube: spQ = {31, 13,−13, 31}, n = 8, |Γ3(u)| = 1.

• Petersen: spP = {31, 15,−24}, n = 10, |Γ2(u)| = 6.

As previously mentioned, the theory on distance-regular graphs has many applications in cod-
ing theory. Recall that a code C, with a set of allowed words or code-words, can be simply rep-
resented as a vertex subset of a distance-regular graph G; see Godsil [26] and van Lint [42]. The
vertex subset represents the ‘universe’ of words, with or without meaning, which can be received.
There is an edge between two words if, with a certain probability, one can be transformed into the
other in the process of transmission. Then, the shorter the distance between two words in G, the
more similar the words. If a code-word has not suffered too many changes, the resulting word is not
far from the original one and it is possible to retrieve it (decision criterion by proximity). Therefore,
a code is better if the words that constitute it are far away from each other. In the study and design
of good codes, some algebraic techniques are used to obtain information about the structure of the
graph G and, in particular, about the vertex subset C that represents the code. In the applications
of special relevance, there are the so-called completely regular codes, whose graphs are structured
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in a kind of distance-regularity around the set that constitutes the code. Thus, these codes can be
algebraically characterized in a similar way to the characterization of the distance-regular graphs
through their spectra; see Fiol and Garriga [22] for more information.

5. Weddings: Hall’s and Menger’s theorems. Multibus networks

Let us imagine two groups of heterosexual people available for marriage, one of women and
another of men, the latter at least as large as the former. Also imagine that every woman knows a
certain number of men. The Hall Marriage theorem gives necessary and sufficient conditions for
every woman to be able to marry a man who she knows:

• A complete matching is possible if and only if each group of women, whatever their number,
knows altogether at least an equal number of men.

If the sets of women and men are denoted by U and V , respectively, we can represent the above
situation as a bipartite graph G = G(U ∪ V,E), with stable vertex sets U and V and where edges
stand for acquaintances. Then, we can state Hall’s theorem in a more mathematical form:

• In a bipartite graph G = G(U ⊂ V,E) with |U | ≤ |V |, a complete matching is possible if
and only if, for every U∗ ⊂ U ,

|Γ(U∗)| ≥ |U∗|, (10)

where Γ(U∗) = ∪u∈U∗Γ(u).

(Recall that Γ(u) ⊂ V is the set of vertices adjacent to vertex u ∈ U .)
There are several proofs of Hall’s theorem. The proof we present here is by Rado, although

our reasoning is a little different from that in Bollobás [6] or Harary [29]. As necessity is trivial,
we are going to prove sufficiency. If graph G satisfies Eq. (10), for any ui, uj ∈ U with i 6= j and
Γ(ui) ∩ Γ(uj) = ∅, it is immediate that G contains a complete matching. If Γ(ui) ∩ Γ(uj) 6= ∅,
then there exist at least two edges uiv and ujv, with v ∈ V . Now we claim that, after removing
one of these edges, the resulting graph still satisfies Eq. (10). Indeed, if this were not the case,
there would be two subsets U1, U2 ⊂ U , with ui ∈ U1 and uj ∈ U2, such that |Γ(U1)| = |U1| and
|Γ(U2)| = |U2|. Moreover, ui would be the only vertex of U1 adjacent to (some vertex of) V , and
uj would be the only vertex of U2 adjacent to V . See this situation in Figure 16. Then, we would
have that the common number of adjacent vertices to U1 and U2 would satisfy the inequality:

|Γ(U1) ∩ Γ(U2)| ≥ |Γ(U1 − {ui}) ∩ Γ(U2 − {uj})|+ 1 ≥ |Γ(U1 ∩ U2)|+ 1

≥ |U1 ∩ U2|+ 1.

Moreover, we would also have:

|Γ(U1 ∪ U2)| = |Γ(U1) ∪ Γ(U2)| = |Γ(U1)|+ |Γ(U2)| − |Γ(U1) ∩ Γ(U2)|
≤ |Γ(U1)|+ |Γ(U2)| − |U1 ∩ U2| − 1

= |U1|+ |U2| − |U1 ∩ U2| − 1,
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Figure 16. The situation of the proof of Hall’s theorem.

a contradiction since, according to Eq. (10),

|Γ(U1 ∪ U2)| ≥ |U1 ∪ U2| = |U1|+ |U2| − |U1 ∩ U2|.

Consequently, every vertex v ∈ V with degree δ(v) ≥ 2 can be converted to a vertex with degree
1, and the resulting graph still satisfies Eq. (10). This completes the proof.

Curiously, Hall’s theorem is closely linked to another classical result in graph theory: Menger’s
theorem; see, for example, Bollobás [7]. As in the case of Hall’s theorem, Menger’s theorem
states that a certain condition, which is trivially necessary for a result to be true, is also suffi-
cient. In Menger’s case, the result is not on matchings, but on the vertex-connectivity κ (or edge-
connectivity λ) of a graph, which is defined as the minimum cardinality of a vertex (or edge) set
whose deletion disconnects the graph or, in particular, two given vertices u, v. This set is called a
cutting set or separating set of G or, in particular, of u, v. Then, Menger’s theorem states that for
every pair of vertices u, v (nonadjacent, in the case of computing κ):

• The minimum size κ(u, v) of a separating set of vertices equals the maximum number of
independent paths in vertices from u to v.

• The minimum size λ(u, v) of a separating set of edges equals the maximum number of inde-
pendent paths in edges from u to v.

It has been shown that the vertex-connectivity κ = minu,v∈V κ(u, v) (or edge-connectivity
λ = minu,v∈V λ(u, v)) of a graph or digraph G (a digraph is a graph whose edges are associated to
one of the two possible directions) reaches its maximum value, which equals the minimum degree
of G, if in G the diameter is small enough with respect to the girth (see Fàbrega and Fiol [15]) or
if the number of vertices is large enough with respect to the diameter (see Fiol [17]).

Both the theorems mentioned, Hall’s and Menger’s, have many applications in the study and
design of interconnection networks (for example, between processors) and in communication net-
works. Here we explain an application of Hall’s theorem to the study of multibus interconnection
networks: A multiprocessor system with shared memory and multibus interconnection network
consists of P processors, B buses and M memory modules with B ≤ min{P,M}. The proces-
sors have access to the memory modules through the buses, so we can establish processor-bus
and bus-memory connections. Let us assume that there are m requirements (with m ≤ M ) by
the processors for accessing to different memory modules. As each processor-memory connection
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Figure 17. The complete multibus interconnection scheme.

requires a bus, if m ≤ B, then m memories will be assigned; instead, if m > B, then only B
memories will be assigned. In the complete scheme (see Figure 17), each bus is connected to
all the memories and all the processors. This represents B(P + M) connections, and generally
this provides an important saving with respect to the crossbar network with PM connections, one
connection between each pair processor-memory, because the number of buses is normally much
smaller than the number of processors and memories. For example, if M = P (an usual situation),
the saving is obtained if B < M/2.

Because the cost of the network basically depends on the number of connections, it is useful
to consider the redundancy of this scheme. Namely, what is the maximum number of connections
(processor-bus or bus-memory) that can be removed without having system degradation? In other
words, how many connections, from all of B(P +M), can be removed such that any of the m ≤ B
processors asking for access to any of the m different memory modules do not lose access? The
answer is a direct consequence of the following result:

• In a multiprocessor system with multibus network without having degradation, each bus can
be disconnected from at most B − 1 altogether processors or memory modules.

The proof is as follows: For each bus i, 0 ≤ i ≤ B−1, let pi andmi be, respectively, the number of
processors and memories connected to it. Analogously, let pi and mi be the numbers of processors
and memories disconnected from bus i. Obviously, pi+pi = P andmi+mi = M . The result states
that, in a non-degrading system, each bus i can be disconnected from, at most, B− 1 processors or
memories, namely, pi +mi ≤ B − 1 for 0 ≤ i ≤ B − 1. But we can also state that each bus must
have more than P+M−B connections, such that pi+mi > P+M−B for 0 ≤ i ≤ B−1. Assume
that, on the contrary, for some bus i, we have pi + mi ≥ B. Let k1, k2, . . . , ky with y ≤ pi ≤ P
and j1, j2, . . . , jx with x ≤ mi ≤ M be, respectively, the processors and memories disconnected
to the bus i. Note that x + y = B. Now consider x other processors ky+1, ky+2, . . . , ky+x and y
other memories jx+1, jx+2, . . . , jx+y, as in Figure 18. Let (k, j) be the requirement of processor k
to access to memory j. None of the B requirements

(k1, jx+1), (k2, jx+2), . . . , (ky, jx+y), (ky+1, j1), (ky+2, j2), . . . , (ky+x, jx)
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j1 j2 jx jx+1 jx+2 jx+y

 Bus i

ky+1 ky+2 ky+x k1 k2 ky

Figure 18. Part of a system that suffers degradation.

Rhombic scheme
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 7 7 7 7 7 7 7 7
6 6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

Table 2. Matrix representation of the rhombic scheme with M = 16 and B = 8 (entries indicate the buses connected
to memory modules).

can use bus i, and this means that the system suffers degradation.
So, as stated before, the conclusion is that the maximum number of redundant connections

is B(B − 1). In fact, this value is obtained with the so-called minimum topologies, such as the
rhombic and the staircase topologies; see Tables 2 and 3, respectively. More details can be found
in Fiol, Valero, Yebra and Land [24] and in Lang, Valero and Fiol [35].

Notice that the result only gives us necessary conditions for suffering degradation. In this
context, Hall’s theorem is used to give a characterization for the interconnection topologies to
prevent degradation of the system, as in the aforementioned cases of the complete and the minimum
topologies:

• A multibus system does not suffer degradation if and only if any of the p ≤ B disjoint pairs
processor-memory are connected to a set of, at least, p buses.

As previously stated, this result gives necessary and sufficient conditions for a non-degrading
multibus system.
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Staircase scheme
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 7 7 7 7 7 7 7 7
6 6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

Table 3. Matrix representation of the staircase scheme with M = 16 and B = 8 (entries indicate the buses connected
to memory modules).
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