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Abstract

Let p ≥ 3 be a positive integer and let k ∈ {1, 2, . . . p − 1}\bp/2c. The generalized Petersen
graph GP ((p, k) has its vertex and edge set as V (GP (p, k)) = {ui : i ∈ Zp} ∪ {u′i : i ∈ Zp}
and E(GP (p, k)) = {uiui+1 : i ∈ Zp} ∪ {u′iu′i+k ∈ Zp} ∪ {uiu′i : i ∈ Zp}. In this paper we
probe its spectrum and determine the Estrada index, Laplacian Estrada index, signless Laplacian
Estrada index, normalized Laplacian Estrada index, and energy of a graph. While obtaining some
interesting results, we also provide relevant background and problems.
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1. Introduction

The graphs considered in this paper are all finite, simple and undirected.
In parallel computing and computer networks, several different topologies for interconnecting

processing vertices exist. It is quite an enormous task to compare such networks with reference
to attributes such as diameter, average distance, traffic balance, fault tolerance etc. In order to
overcome the inherent drawbacks in ring topology, it is suggested to have a P -vertex ring that
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could lead to a double ring network. These notions have led to the generalized Petersen graph.
Let p ≥ 3 be a positive integer and let k ∈ {1, 2, . . . p − 1}\p/2. The generalized Petersen
graph GP ((p, k) has its vertex and edge set as V (GP (p, k)) = {ui : i ∈ Zp} ∪ {u′i : i ∈ Zp}
and E(GP (p, k)) = {uiui+1 : i ∈ Zp} ∪ {u′iu′i+k ∈ Zp} ∪ {uiu′i : i ∈ Zp}. They form a
pertinent family of 4-connected, 3-regular graphs with 2p vertices and 3p edges. These graphs are
generally used in interconnection networks. The Petersen graph is definitely a sought after objects
among the graph theory community. It has served as a counter example to several open problems
and conjectures. Even though it is cubic and without cut edges is not 1-factorizable and non-
hamiltonian. Another surprising aspect is that it is highly symmetric even though its automorphism
graph on directed paths of length three is transitive. Here we probe its spectrum and determine the
Estrada index, Laplacian Estrada index, Signless Laplacian Estrada index, normalized Laplacian
Estrada index, and energy of a graph. While obtaining some interesting results, we also provide
relevant background and problems.

1.1. Graph spectra
Graph spectra’s presence is quite eminent in internet, artificial intelligence and other related

areas. The largest eigen value plays a vital role to mathematically describe spreading of virus in
computer network. For an exhaustive review on graph spectra and its applications one can refer to
[29]. A seminal mathematical paper that deals with graph spectra [20] is outcome of an attempt to
solve approximately a partial differential equation which models a membrane vibration problem.
Among the research community in general and members of mathematics community in particular
who bothers graphs and its properties seriously are largely attracted by the distinct eigen values
of a graph which are very small in number. It is well known that graphs with lesser number of
distinct eigen values are highly symmetric and mostly possess small diameter. This is one of the
main reasons that motivated us to write this paper on the generalized Petersen graph. It is still open
problem to completely characterize classes of regular graphs with given number ‘k’ of distinct
eigen values where k is a positive integer which is very small. Also for interesting mathematical
properties regarding the largest value, smallest and second smallest eigen values one can refer to
[29].

1.2. Estrada index
Estrada index was coined to represent the inherent features of organic modules in its 3-D struc-

ture. Ernesto Estrada, a Cuban-Spanish mathematician coined in the year 2000, a new descriptor
called the Estrada index, denoted by EE [14]. Originally it was meant to quantify long chain
molecule’s degree of folding. The EE values of constructed weighted graphs play a crucial role
in the protein molecules. Infact it is a measure of complex network’s centrality. For more on the
variety of applications one can see [3]. A simple graph G with p vertices and q edges are called
normally as a (p− q) graph. By the eigen values of G we mean the eigen values of the adjacency
matrix A(G) of G. We denote them by λ1 ≥ λ2 ≥ · · · ≥ λp. The whole set of eigen values values

of G form the spectrum of G. The Estrada index, EE(G) =
p∑
i=1

eλi where λi are the eigen values

of G. In [23, 25, 26] the author has found new lower bounds for the Estrada index, Estrada index
for Ramanujan graphs and perturbation results for Estrada index of weighted networks.
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1.3. Laplacian Estrada index
As an interesting extension to Estrada index the authors in [4] have introduced the notion

of Laplacian Estrada index of a Graph. A number of interesting results about LEE were found
in [4, 30] and for additional latest results one can refer to [18] and the reference therein. The
Laplacian matrix ofG is L(G) = D(G)−A(G) whereD(G) = diag[d1, d2, . . . , dp] is the diagonal
matrix of vertex degrees ofG. We denote the eigen values ofD(G) by µi, i = 1 to p. The Laplacian

Estrada index is LEE(G) =
p∑
i=1

eµi . The matrix L+(G) = D(G)+A(G) is referred as the signless

Laplacian matrix of G and its eigen values are denoted by ηi, i = 1 to p.

1.4. Signless Laplacian Estrada index
The authors in [1] have coined a new index in the mould of Estrada index namely signless

Laplacian Estrada index (SLEE). Although LEE and SLEE merge with each other when restricted
to the family of bi-partite graphs, SLEE offers noteworthy variations when we consider fullerenes
and other non-alternant conjugated species [1]. The matrix L+(G) = D(G) + A(G) is referred as
the signless Laplacian matrix of G and its eigen values are denoted by η1, η2, . . . , ηp. The signless

Laplacian Estrada index is SLEE(G) =
p∑
i=1

eηi . The study of the spectral properties of the matrix

L+(G) has started only very recently.

1.5. Normalized Estrada index
The authors in [15] have introduced another variation to Estrada index namely normalized

Laplacian Estrada index. For fundamental properties of `EE one can also see [19], The normalized
Laplacian matrix `(G) = (`ij)p×p where `ij = 1 if i = j and deg(vi) 6= 0; (−1)/(d(vi)d(vj))1/2 if
i 6= j and vi is adjacent to vj; 0 otherwise. Normalized Laplacian eigen values G are denoted by

0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δp. The normalized Estrada index is `EE(G) =
p∑
i=1

eδi .

The author in [24] studied the logarithm of the Estrada index as a spectral measure to character-
ize the robustness of complex networks. He derived novel analytic lower bounds for the logarithm
of the Estrada index based on the Laplacian spectrum and the mixing times of random walks on
the network. The main techniques he employed are some inequalities, such as the thermodynamic
inequality in statistical mechanics, a trace inequality of von Neumann, and a refined harmonic-
arithmetic mean inequality.

The idea of computing SLEE, LEE and EE of a well-known family like the generalized Petersen
graph is to explore the possibility of making them serve as a mathematical model for chemically
non-alternant conjugated species. It is a well known that graphs with lesser number of distinct
eigen values are highly symmetric and mostly possess small diameter. This is one of the main
reasons that motivated us to look at the generalized Petersen graph. Also see [4, 30, 18, 1, 15, 19,
6, 7].
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1.6. Energy and its variations
The concept of energy arose in chemistry. Molecular orbital theory due to Hückel is a subfield

of theoretical chemistry wherein the graph eigenvalues occur. The carbon atoms of a hydrocarbon
system are represented as vertices of a graph associated with the molecule. From Hückel theory,
the energy of a molecular graph is equal to the total π-electron energy of a conjugated hydrocarbon.

Even though the concept of graph energy is not considered as significant among the mathemat-
ical community when it was proposed. Later it has steadily attracted the attention and a number of
research papers started pouring out from the minds of mathematicians. To know more about this
one can refer to [10, 11, 2, 8]. The 3-regular generalized Petersen graph obeys this property. In-fact
there are only five graphs known as on data with E(G) assuming values less than the number of
vertices ofG. The energyE(G) is defined as the sum of absolute values of the eigen values [16, 5].

In [9, 12, 13, 17, 28] the authors have categorized graphs on p-vertices and obeys E(G) >
2p − 2 as hypo-energetic and those violate this as energy non-hypo energetic. To comprehend
the logic behind defining hyperenergeticity one needs to observe the following. In those periods
when computers were not available, to calculate HMO total π-energy (that is, E) much effort was
made to find simple algebraic expressions to obtain an approximate numerical value of E perusing
the simple structural details of the underlying molecular graph. One such approximation was due
to McClelland [21] viz. E ≈ a

√
2pq where p and q are the number of vertices also denotes

number of carbon atoms and number of edges also stands for number of carbon-carbon bonds of
the corresponding molecular graph and where a is an empirical constant a ≈ 0.9. Alternately one
can also call a graph with p vertices to be hypo-energetic if E(G) < p. Normalized Laplacian

energy of the graph G is defined as E`(G) =
p∑
i=1

|δi − 1|.

Note that if a graph is non-singular then it is non-hypo energetic. This is because (1/p)E(G) ≥(∏p
i=1 |λi|1/p

)
= |det(A(G))|1/p. As |det(A(G)| ≥ 1 (here det(A(G) stands for the determinant

of A(G)) this implies |det(A(G))|1/p ≥ 1. But the converse is not true. That is if G is non-hypo
energetic then it is not necessary that it should be non-singular. For instance the graph GP (3, 1)

is non hypo energetic as E(GP (3, 1)) =
6∑
i=1

|λi| = 7.236 > |V (GP (3, 1))| = 6. But two

of its eigen values equal to zero. Is GP (3t, 1) singular and non-hypo energetic for all t ≥ 1?
In [29] it has been established that for any graph with p vertices and q edges if q ≥ p2/4 then
G is non-hypo energetic. But the converse need not be true. For instance, consider the graph
GP (4, 1). Note that |V (GP (4, 1))| = 8 and |E(GP (4, 1))| = 12. Note that 12 ≥ 82/4 =
16. Similarly the other generalized Petersen graphs serving as likewise examples are GP (5, 1),
GP (6, 1), GP (7, 1) etc. This induces us to conclude that GP (p, 1) is non-hypo energetic but
|E(GP (p, 1))| ≥ |V (GP (p, 1)|2/4 for p ≥ 4. Moreover the fact 3p ≥ (2p)2/4 is possible if and
only if p ≤ 3. Hence GP (3, 1) is the only graph among the class of generalized Petersen graph to
posses the property of being non-hypo energetic with |E(GP (p, 1))| ≥ |V (GP (p, 1)|2/4.

1.7. Chromatic number of a graph
By the chromatic number of a graph G we mean the least number of colors used to properly

color the vertices ofG such that no two adjacent vertices are colored same. This coloring parameter
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is denoted by χ(G). The chromatic number of the generalized Petersen graph is computed for
academic interest for a few special cases to indicate how the vertex of it is split into two or three
sets depending on the fact that they are bipartite or not. Also there is an interesting relationship
between chromatic number and the first largest eigen value of the adjacency matrix of a graph and
the same is exploited in the proof of Theorem 2.5.

2. Main results

Proposition 2.1. GP (2r, 2s+ 1) is bi-partite.

Corollary 2.1. χ(GP (2r, `)) = 2 for any odd ’`’.

Proposition 2.2. χ(GP (2r, 2k)) = 3 for any r, k.

Theorem 2.1. 2
√
p2 + 3p ≤ EE(GP [p, k]) ≤ (2p− 1) + e

√
6p.

Theorem 2.2. LEE(GP (p, k)) ≥ 1 + e4 + 2(p− 1)e(
3p−2
p−1 ).

Theorem 2.3. LEE(GP (p, k)) ≤ exp{3{2p− 1− LE(GP [p, k])}}+ exp{LE(GP [p, k])}

where LE(G) indicates Laplacian energy of G defined by LE(G) =
p∑
i=1

∣∣∣∣µi − 2q

p

∣∣∣∣.
Theorem 2.4. LEE(G∗) ≤ 8p− 1− 2

√
6p+ e2

√
6p.

Theorem 2.5. SLEE(Gp(2r, 1)) ≥ e2 + (p− 1)e(−
2−2q
p−1 ).

Corollary 2.2. SLEE(Gp(2r + 1, k)) ≥ e4 + (p− 1)e(−
4−2q
p−1 ) for any k.

Theorem 2.6. LetG[p, k] be any generalized Petersen graph with k ≤
⌊
p−1
2

⌋
. Then `EE(GP [p, k]) ≥

1 + (p− 1)
p
p−1 .

Theorem 2.7. 2
√
p2 + 3p ≤ EE(GP [p, k]) ≤ (2p− 1) + e

√
6p.

3. Proofs of main results

Proof of Proposition 2.1:

For s = 0, it is obvious. We give construction for P (2r, 2t + 1). Let (V1, V2) be the bi-partition
of the vertex set of GP (2r, 2t + 1) with V1 = {u2j−1, v2i : 1 ≤ j ≤ r, 1 ≤ i ≤ r} and
V2 = {u2i, v2j−1 : 1 ≤ i ≤ r, 1 ≤ j ≤ r}. The edge set of GP (2r, 2t+ 1) is E[GP [2r, 2t+ 1]] =
{(u2j−1, u2j), 1 ≤ j ≤ r; (ui, vi), 0 ≤ i ≤ 2r; (u0, u1); (vi, vi+t(mod 2r)), 0 ≤ i ≤ 2r − 1}. Then
for the graph GP (2r, 2t+ 3) just keep the vertex set bi-partition exactly as in GP (2r, 2t+ 1) and
construct the edge set in a similar manner. Like this one can modify the edge set of GP (2r, k) for
any odd k by retaining the vertex bi-partite sets.
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Proof of Proposition 2.2:

Let V (GP (2r, 2k)) = {uiu′i : 1 ≤ i ≤ 2p} and E(GP (2r, 2k)) = {uiu′i : 1 ≤ i ≤ 2r, uiui+1 :
1 ≤ i ≤ 2r − 1, u2ru1, u

′
iu2k+i(mod 2r) : 1 ≤ i ≤ 2r}. Note that C2k+3 is an induced sub-

graph of GP (2r, 2k). As χ is a monotone function and the chromatic number of an odd cy-
cle is 3, we have 3 = χ(c2k+3) ≤ χ(GP (2r, 2k)). We now exhibit a chromatic 3-coloring of
GP (2r, 2k) to complete the proof. Let f : V (GP (2r, 2k)) → {c1, c2, c3} be a function such
that f(vi) = ci for 1 ≤ i ≤ s where V1 = {ui : i ≡ 0(mod 3), u′i : i ≡ 1(mod 3)},
V2 = {ui : i ≡ 1(mod 3), u′i : i ≡ 2(mod 3)}, V3 = {ui : i ≡ 2(mod 3), u′i : i ≡ 0(mod 3)}. Then
one can check that (V1, V2, V3) constitutes a partition of the vertex set GP (2r, 2k).

Proof of Theorem 2.1:

Let G∗ = GP [p, k]. Then from EE = EE(G) =

2p∑
i=1

eλi We get EE2 = 2p
∑
i=1

e2λi +

2
∑
i<j

∑
eλieλj with the help of the inequality between arithmetic mean and geometric mean, we

infer that 2
∑
i<j

∑
eλiλj ≥ 2p(2p − 1)

(∏
i<j

eλiλj

) 2
2p(2p−1)

= 2p(2p − 1)
[(∏2p

i=1 e
λi
)2p−1] 2

2p(2p−1)

= 2p(2p − 1)(exp(
∑2p

i=1 λi))
1
p = 2p(2p − 1). Further, 2p

2p∑
i=1

e2λi =

2p∑
i=0

∑
k≥0

(2λi)
k

k!
= 2p +

12p +

2p∑
i=1

∑
k≥3

(2λi)
k

k!
. As

2p∑
i=1

∑
k≥3

(2λi)
k

k!
≥ 8

2p∑
i=1

∑
k≥3

(λi)
k

k!
, we can choose a constant β ∈ [0.8]

so that 2p
2p∑
i=1

e2λi ≥ 2 + 12p + β

2p∑
i=1

∑
k≥3

(λi)
k

k!
= 2p + 12p − 2βp − 3βp + β

2p∑
i=1

∑
k≥3

(λi)
k

k!
. So

2p∑
i=1

e2λi ≥ 2(1−β)p+3(4−β)p+βEE. A little elementary computations show that EE ≥ β

2
+√(

2p− β

2

)2

+ 3(4− β)p. Now observe that for p ≥ 1 the function
β

2
+

√(
2p− β

2

)2

+ 3(4− β)p

decreases. A lower bound for EE occurs at β = 0. That is, EE(G∗) ≥ 2
√
p2 + 3p. (While deriv-

ing this we made use of the fact that
2p∑
i=1

(2λi)
0

0!
= 2p,

2p∑
i=1

(2λi)
1

1!
= 0, and

2p∑
i=1

(2λi)
2

2!
= 4(3p)).

To achieve the upper bound note that EE = 2p +

2p∑
i=1

∑
k≥1

(λi)
k

k!
≤ 2p +

2p∑
i=1

∑
k≥1

|λi|k

k!
= 2p +
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∑
k≥1

1

k!

2p∑
i=1

[(λi)
2]
k
2 ≤ 2p+

∑
k≥1

1

k!

[
2p∑
i=1

(λi)
2

] k
2

= 2p+
∑
k≥1

1

2!
(6p)

k
2 = 2p−1+

∑
k≥0

(
√
6p)k

k!
which

in turns gives the required upper bound.

Proof of Theorem 2.2:

As GP (p, k) is connected, µ2p = 0. Therefore LEE{GP (p, k)} = 1 +

2p−1∑
i=1

eµi ≥ 1 + eµi +

(2p − 2)e(µ1+µ2+···µ2p−1)/2p−2) = 1 + eµi + (2p − 2)e6p−2/2p−2. This is because of the applica-
tion of arithmetic-geometric mean inequality and that µ1 + µ2 + · · · + µ2p−1 = 6p. If g(θ) =

eθ + (2p− 2)e{
6p−θ
2p−2} then g′(θ) = eθ − e{

6p−θ
2p−2}. Hence g is an increasing function for θ ≥ 6p

2p−1 .
Next note that 6p

2p−1 ≤ 4. Also µ1 ≥ 4 [7]. Hence from g(µ1) ≥ g(4) the result follows.

Proof of Theorem 2.3:

First observe that
p∑
i=1

(µi − 3) = 0 and µi ≥ 3. Now e−3LEE(GP [p, k]) =

2p∑
i=1

e(µi−3) =

2p +
∑
k≥2

1

k!

2p∑
i=1

|µi − 3|k0 ≤ 2p +
∑
k≥2

1

k!

(
2p∑
i=1

|µi − 3|k0
)

= 2p +
∑
k≥2

1

k!
LE(GP [p, k])k0 =

2p− 1− LE(GP (p, k)) + exp{LE(GP (p, k))}.

Proof of Theorem 2.4:

First note that
2p∑
i=1

µ2
i = 18p + 2(3p) = 24p. So for k ∈ Z+ with k ≥ 3, we have

(
2p∑
i=1

µ2
i

)k

≥

2p∑
i=1

µ2k
i + k

∑
1≤i<j≤2p

[µ2
iµ

2(k−1)
j + µ

2(k−1)
i µ2

j ] ≥
2p∑
i=1

µ2k
i + 2k

∑
1≤i<j≤2p

µki µ
k
j ≥

(
2p∑
i=1

µki

)2

. Hence

2p∑
i=1

µki ≤

(
2p∑
i=1

µ2
i

) k
2

= (24p)
k
2 . Now LEE(G∗) = 2p + 6p +

∑
k≥2

1

k!

2p∑
i=1

µki ≤ 2p + 6p +∑
k≥2

1

k!
(24p)k = 8p− 1− 2

√
6p+ e2

√
6p.

Proof of Theorem 2.5:

As GP [2r, 1] is a connected graph, η1 ≥ 0. By using the arithmetic-geometric mean inequality
(as in Theorem 2.1) we derive that SLEE(GP [2r, 1]) = eη1 + eη2 + · · · + eηp ≥ eη1 + (p −

1)(

p∑
i=1

eηi)1/p−1.
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Now as
p∑
i=1

ηi = 2q we have SLEE(GP [2r, 1]) ≥ eη1 + (p− 1) [e2q−η1 ]
1
p−1 (*). Consider the

function g(x) = ex + (p − 1)e−(
x−2q
p−1 ). Clearly g′(x) > 0 if x > 0. We know that for any simple

graph, with chromatic number χ, λ1 ≥ χ− 1 (**) Therefore the result follows with the help of (*)
and (**).

Proof of Corollary 2.2:

It follows from the Theorem 2.5 and the fact that χ[(GP [2r + 1, k]) = 3.

Proof of Theorem 2.6:

It is easy to check that δ1 = 0 for any GP (p, k). So
p∑
i=2

δi = p, the number of vertices and hence

`EE(Gp[p, k)] = 1 +

p∑
i=2

eδi ≥ 1 + (p − 1)e

(
p∑
i=2

δi

)
p−1 = 1 + (p − 1)e

p
p−1 (by AM-GM-mean

inequality).

Proof of Theorem 2.7:

Let G∗ = GP [p, k]. Then from EE(G) =

2p∑
i=1

eλ1 We get EE2 =

2p∑
i=1

e2λi +
∑∑

eλieλi

where i < j. With the help of the inequality between arithmetic mean and geometric mean, we in-

fer that 2
∑
i<j

∑
eλiλj ≥ 2p(2p− 1)

(∏
i<j

eλieλj

) 2
2p(2p−1)

= 2p(2p− 1)((

2p∏
i=1

eλi)2p−1)2/2p(2p−1) =

2p(2p − 1)(exp(

2p∑
i=1

λi))
1
p = 2p(2p − 1). Further

2p∑
i=1

e2λi =

2p∑
i=0

∑
k≥0

(2λi)
k

k!
= 2p + 12p +

2p∑
i=1

∑
k≥3

(2λi)
k

k!
. As

2p∑
i=1

∑
k≥3

(2λi)
k

k!
≥ 8

2p∑
i=1

∑
k≥3

(λi)
k

k!
we can choose a constant β ∈ [0.8] so

that
2p∑
i=1

e2λi ≥ 2p + 12p + β

2p∑
i=1

∑
k≥3

(λi)
k

k!
= 2p + 12p − 2βp − 3βp + β

2p∑
i=1

∑
k≥0

(λi)
k

k!
. So

2p∑
i=1

e2λi ≥ 2(1−β)p+3(4−β)p+βEE. A little elementary computations show that EE ≥ β

2
+√(

2p− β

2

)2

+ 3(4− β)p. Now observe that for p ≥ 1 the function
β

2
+

√(
2p− β

2

)2

+ 3(4− β)p
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decreases in [0, 8]. Hence the tight lower bound for EE occurs at β = 0. That is, EE(G∗) ≥

2
√
p2 + 2p. While deriving this we made use of the fact that

2p∑
i=1

(2λi)
0

0!
= 2p and

2p∑
i=1

(2λi)
1

1!
= 0

and
2p∑
i=1

(2λi)
2

2!
= 4(3p). To achieve the upper bound note that EE = 2p +

2p∑
i=1

∑
k≥1

(λi)
k

k!
≤

2p+

2p∑
i=1

∑
k≥1

|λi|k

k!
= 2p+

∑
k≥1

1

k!

2p∑
i=1

[(λi)
2]
k
2 ≤ 2p+

∑
k≥1

1

k!

[
2p∑
i=1

(λi)
2

] k
2

= 2p+
∑
k≥1

1

2!
(6p)

k
2 =

2p− 1 +
∑
k≥0

(
√
6p)k

k!
which in turns gives the required upper bound.

4. Numerical computation of various Estrada indices for GP (p, k) for some p and k

Using Mat lab we have calculated EE(GP (p, k)), LEE(GP (p, k)), SLEE(GP (p, k)) and
`EE(GP (p, k)) for p = 3 to 8 and k = 1 to 3. Different generalized Petersen graphs and their
respective Estrada indices are given below:

Figure 1: GP (3, 1)
EE = 24.2544
LEE = 301.7051
`EE = 18.6048
SLEE = 487.565

Figure 2: GP (4, 1)
EE = 29.3939
LEE = 590.3907
SLEE = 590.3907
`EE = 25.6130

Figure 3: GP (5, 1)
EE = 33.2993
LEE = 684.7497
SLEE = 712.6166
`EE = 31.6940
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Figure 4: GP (5, 2)
EE = 34.2182
LEE = 631.5983
SLEE = 687.293
IEE = 31.9178

Figure 5: GP (6, 1)
EE = 42.2703
LEE = 856.4102
SLEE = 849.0211
IEE = 32.9473

Figure 6: GP (6, 2)
EE = 43.2507
LEE = 710.4666
SLEE = 868.7108
IEE = 38.0957

Figure 7: GP (7, 1)
EE = 49.2564
LEE = 988.9037
SLEE = 989.331
IEE = 44.7814

Figure 8: GP (7, 2)
EE = 46.6754
LEE = 820.1843
SLEE = 937.505
IEE = 44.692

Figure 9: GP (8, 1)
EE = 56.3009
LEE = 1130.4687
SLEE = 1075.8705
IEE = 51.1781

Figure 10: GP (8, 2)
EE = 44.7758
LEE = 1048.6051
SLEE = 898.9929
IEE = 51.0998

Figure 11: GP (8, 3)
EE = 52.7103
LEE = 1058.7175
SLEE = 1070.9476
IEE = 51.0857

Using Mat Lab we have plotted the spectrum of GP (p, k) obtained for various and respective
underlying matrices. we denote various spectrum as follows:
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5. Future Directions and Conclusion

With the advent of latest digital technologies, time-dependent complex networks arise canoni-
cally in a number of applications ranging from neuroscience to online human social behavior. The
edges in such networks, stands for the interactions between elements of the systems that changes
over time. This brings in new opportunities for both modeling and computation. The time ordering
induces an asymmetry in terms of information communication, even though each static snapshot
network is symmetric or undirected. That is, if x communicates with y, and y communicates with
z, then information might reach w from u but not the other way.

All the above discussed works on the Estrada index are only confined to static graphs, which
may be considered as a drawback from the viewpoint of network science. Lately, the Estrada
index of time-dependent networks is introduced in [27] based on a canonical definition of a walk
on an evolving graph, namely, a time-ordered sequence of graphs over a fixed vertex set. Given
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an evolving graph, this dynamic Estrada index respects the time-dependency and generalizes the
(static) Estrada index.

In [22] the author went further and considered the dynamic Laplacian Estrada index and the
dynamic normalized Laplacian Estrada index. He showed that it is possible to define dynamic
(normalized) Laplacian Estrada index in full analogy with dynamic Estrada index [27]. Then
he used synthetic examples (random evolving small-world networks) to validate the relevance of
his proposed various dynamic Estrada indices. His simulation results highlight the fundamental
difference between the static and dynamic Estrada indices.

He further remarked that there is an increasing interest in studying evolving graphs in recent
few years. He also noticed that the evolving networks have found a place in the analysis of co-
evolutionary games and the emergence of cooperation in complex adaptive systems.

To conclude we have made an attempt to compute various Estrada type indices for the gener-
alized Petersen graph and plotted numerically their respective graphical representation using MAT
LAB software for p = 3 to 8. Their respective graphs show, the distribution of the spectrum of
various indices. We propose to calculate LEE, SLEE, lEE for all values of p and k for GP (p, k) in
the near future and report elsewhere.

Moreover, we have come across an article concerning evolving graphs as suggested by the
anonymous referee in [27, 22]. In those articles the authors have defined an evolving graph
G1, G2, . . . , GN as a time-ordered sequence of graphs over a fixed set of vertices. By exploit-
ing the walk on the evolving graph that respects the arrow of time, they extended the static Estrada
index to accommodate a new dynamic setting. He found that although asymmetry is raised intrin-
sically by time’s arrow, the dynamic Estrada index is order invariant. He obtained some lower and
upper bounds for the dynamic Estrada index in terms of the numbers of vertices and edges. We try
to investigate and explore whether it is possible to consider the generalized Petersen graph as an
evolving graph as its vertex set is fixed. It would be another interesting direction to proceed.
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