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Abstract

Let G = (V(G), E(G)) be a path of order n > 1. Let f,,(G) be a path with m > 0 independent
dominating vertices which follows a Fibonacci string of binary numbers where 1 is the dominating
vertex. A set F'(G) contains all possible f,,(G), m > 0, having the cardinality of the Fibonacci
number F,o. Let F;(G) be a set of f,,(G) where m = i(G) and FJ"**(G) be a set of paths
with maximum independent dominating vertices. Let [,,(G) be a path with m > 0 independent
dominating vertices which follows a Lucas string of binary numbers where 1 is the dominating
vertex. A set L(G) contains all possible /,,,(G), m > 0, having the cardinality of the Lucas number
L,. Let Ly(G) be a set of [,,,(G) where m = i(G) and L**(G) be a set of paths with maximum
independent dominating vertices. This paper determines the number of possible elements in the
sets Fy(G), Lqa(G), F;***(G) and L**(G) by constructing a combinatorial formula. Furthermore,
we examine some properties of /'(G) and L(G) and give some important results.

Keywords: Fibonacci numbers, Lucas numbers, path, independent domination number

Mathematics Subject Classification : 05C69
DOI: 10.5614/ejgta.2018.6.2.11

Received: 22 December 2016, Revised: 25 May 2018,  Accepted: 2 September 2018.

317



A note on Fibonacci and Lucas number of domination in path |  Leomarich F. Casinillo

1. Introduction

A Fibonacci number F,, and a Lucas number L,, can be obtained by the following equations
F, = F, o+ F, 4, forn € {3,4,5,---}, where F; = F, = land L, = L, o+ L, for
n € {3,4,5,---} where L; = 1, Ly = 3 [7]. Fibonacci and Lucas sequences have been widely
studied by many researchers. A Fibonacci string A,, of length n is a binary string b;bsb3...0,
containing no two consecutive 1s. A Lucas string B,, of length n is a binary string b;0503 - - - b,
containing no two consecutive 1s and no 1 in the first and in the last positions simultaneously
[3,4].

In graph theory, Oystein Ore [5] introduced the concept of a domination set in a graph. The
concept of the domination in graphs provides several applications especially in protection strate-
gies and business networking [1]. Let G = (V(G), E(G)) be a graph. Let v € V(G). Then
neighborhood of v is the set Ng(v) = N(v) = {u € V(G) : wv € E(G)}. If Z C V(G), then
the open neighborhood of Z is the set No(Z) = N(Z) = U, Na(v). The closed neighborhood
of Zis Ng|Z] = N[Z] = Z U N(Z). A subset D of V(G) is a dominating set of G if for every
v € V(G) \ D there exists u € D such that uwv € E(G), i.e., N[D] = V(G). A dominating set
I C V(G) is called an independent dominating set of G if no two dominating vertices in the set are
adjacent. The independent domination number of G, denoted by (&), is the smallest cardinality
of an independent dominating set of G. An independent dominating set with the cardinality i(G)
is called a i — set [2]. For example, let G = P, then we have i(G) = 2.

The degree of v € V(G), denoted by deg(v), is the number of edges incident with v in G. A
walk is a sequence u, us, us, - - - , Uy, of vertices of graph G such that {u;, u; 1} € E(G) for each
1 =1,2,...,n. Vertices u; and u,, are the endpoints of the walk while the vertices us, ug, - -+ , Up_1
are internal vertices of the walk. The length of walk is the number of edges on the walk, i.e., the
walk wuy, us, us, ..., u, has length n — 1. A path is a walk that does not repeat edges and does end
where it starts, i.e., u; — uy — ... = Uy, U1 # u,. A path of order n and length n — 1 is denoted
by P, [5, 1, 6].

Let G be a path and f,,,(G) be a path with m (> 0) independent dominating vertices which
follows a Fibonacci string of binary numbers where 1 is the dominating vertex. A set F'(G) con-
tains all possible f,,(G), m > 0, having the cardinality of the Fibonacci number F,, 5. Thus, a
set F'(G) contains paths of order n with no dominating vertex up to the maximum independent
dominating vertices. Let F;(G) be a set of f,,,(G) where m = i(G) and FJ"**(G) be a set of paths
with maximum independent dominating vertices. For example, let G = P, then we have

F(G) = {c00.00%.800.000.00-9}
Fi(G) = { o—e0}

and
F7(G)={ec—e}

Thus, we obtain |F(G)| = F5 =5, |F4(G)| = 1 and |F***(G)| = 1.

Let /,,(G) be a path with m (> 0) independent dominating vertices which follows a Lucas
string of binary numbers where 1 is the dominating vertex. The set L(G) contains all possible
lm(G), m > 0, having the cardinality of the Lucas number L,,. Thus, the set L(G) contains paths
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of order n with no dominating vertex up to the maximum independent dominating vertices and no
two dominating vertices with degree 1. Let L;(G) be a set of [,,,(G)) where m = i(G) and L}**(G)
be a set of paths with maximum independent dominating vertices. For example, let G = P, then
we have

L (G)= {00 . 009 00.0-00}
L4(G) = {o—e=<}

and
LFEEX(G) = {O—O—'.f [ S assr e fO—.—Q}‘

Thus, we obtain |L(G)| = Ls = (G)| = 1and |L}*(G)| = 3.

The sum of paths P, and P, is a path of n + m vertices by connecting the last vertex of P,
to the first vertex of P,,, and it is denoted as P,,®FP,, = P,.,,. A path with order n and with one
dominating vertex at i'" vertex is denoted by P!.

2. Results

From the above definitions, the following Remark is immediate.

Remark 2.1. Let G = P,_; and H = P,_5 with order n. If n > 3 and m > 0, then
Fo(P) = {P12fm(G)} U{P, @ fin(H)}.
The next theorem is a direct consequence of Remark 2.1.

(G)] = Fusa.

Proof. Suppose G is a path of order n > 1 and f,,,(G) € F(G) where m > 0. Then, consider the
following cases.

Theorem 2.1. Let G be a path of order n > 1. Then,

Case 1. Let G be a path of order 1. Then, the element of F'(G ) a trivial graph of either dominat-
ing vertex P} or non-dominating vertex Py, i.e., |F(G)| =2 =

Case 2. Now consider a graph H = P,. Since f,,(H) € F(H), there exist v € F such that N (v)
is non-dominating vertex. This implies that the element of F'(H) are P, Py and Py.

In Remark 2.1 and by cases (1) and (2), F(P3) = {P1® f,,(G)} U{P}®f,,(H)} where

{Pi®fn(G)}| =2 = Fyand [{Py®f,,(H)} = 3 = F,. This implies that |F(P3)| = 5 = F.
By definition we have F,, = F},_5 + F},_; forn > 3 where F| = F, = 1. Then, it follows that if
G = P,, then we obtain |F(G)| = F, ;2. This completes the proof. O

Let G = P,. The maximum independent domination number m in path of order n > 1is a
path with with maximum number of no two consecutive dominating vertices satisfying Fibonacci
string is denoted by f**((G), where m > 0. A set that contains f"**(G), m > 0, is denoted by
Frer(q).
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Theorem 2.2. Let G be a path of order n > 1 and m be a maximum independent domination
number that follows Fibonacci string in G. Then,

2l n = 1(mod 2),
m =
2, n=0(mod2).

Proof. Let G be a graph of order n. First, consider if n is odd integer, then we have the following
cases.

Case 1. If n = 1, then it follows that v € V(G) is a dominating vertex. Thus, it satisfies that
m=1= ”T“

Case 2. If n > 3, then the leaves of G are dominating vertices. Since no two consecutive domi-
nating vertices, it follows that the arrangement of u; € [ and v; € V(G) \ I for all 4, are alternate.
So, we have |V(G) \ I| = |I| + 1 and deg(v;) = 2 for all <. This implies that |V (G) \ I| = 25+
and |I| = m = 2.

Now, consider the following cases for n is even.

Case 1. If n is even, then there exist u € F' such that deg(u) = 1 with no dominating vertex
in the first and last in G simultaneously. Also, since the arrangement is alternate, it follows that
|V(G) \ F| = |F|. Thus, this implies m = .

Case 2. If there exist two dominating vertices u and v such that deg(u) = deg(v) = 1, then
there exists one edge e € F(G) such that e is incident with two non-dominating vertices a and b.
This also follows that N(a) and N (b) are sets with two elements, dominating and non-dominating
vertices. So, this implies that |V (G) \ F| = |F| = m = 4. This completes the proof. O

The next Corollary determines the cardinality of F/J***(G).

Corollary 2.1. Let G be a path of order n > 1. Then,

1, n = 1(mod 2),
Fma.’f G —
)] {"+2 n = 0(mod 2).

2

Proof. (i) Suppose that the order of G is odd, then consider the following cases.
Case 1. If n = 1, then it follows that v € V(@) is a dominating vertex.

Case 2. If n > 3, then by Theorem 2.2, m = ”;rl. This implies that there is only one possibility

for this arrangement. Thus, it follows that | F"**(G)| = 1.

Now, suppose that the order of G is even. Then consider the following cases.
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Case 1. Suppose that u; € I’ and v; € F'. For positive integer 4, are alternate, there are 2 arrange-
ment of this form with no dominating vertex in first and the last in G simultaneously.

Case 2. If there exists dominating vertex in the first and last in G such that the degree are 1 and
there exists 1 edge e € E(G) such that e is incident with 2 non-dominating vertex a and b, then by
Theorem 2.2 we obtained |F'| = m = §. This implies that there are ”T_Q possible arrangement of
this form.

Combining Case (1) and (2), this follows that there are 2 + ”T’Q possible distinct arrangement.
Thus, we have |F***(G)| = “£2. This completes the proof. O
The next results are immediate from above definitions of Lucas numbers.
Remark 2.2. Let G = P,_; and H = P,_3 with order n. If n > 4 and m > 0, then
Ly(P,) ={P®f,,(G)}U{P}®f, . (H)DP }.

Remark 2.3. [7] If F,, is a Fibonacci number and L,, is a Lucas number, then F}, .y + F,,_1 = L,,.
Theorem 2.3. Let G be a path of order n > 1. Then, L(G) = L,,.

Proof. Consider the following cases.
Case 1. Suppose G is a path of order 1, then there is one element in the set |L(G)], i.e., P;. This
implies that |L(G)| = 1 = L.

Case 2. Let H = P;. Then, there exist v € V(G) \ L such that N(v) is a dominating vertex set.
This implies that there are 3 elements including the path P, i.e., |L(G)| = 3 = L.

Case 3. Let G = P, H = P, and J = P;. Then,
|La(J)| = { P DL, (H)} U{P}®l,,(G)}| = L1 + Ly = 4 = L.

Case4. LetG = P,, Gy = P,_; and G5 = P,_3. Then, by Remark 2.2 and 2.3,
IL(G)| = HPi® fin(G1)} U{P; @£, (G2) PP} | = Fupy + Friy = L.

Thus, combining the four cases we have |L(G)| = L, whenever G = P,. This completes the
proof. ]

Let G = P,. The maximum independent domination number m in path of order n > 1 is a path
with with maximum number of no two consecutive dominating vertices satisfying Lucas string is
denoted by ["**((G) where m > 0. A set that contains [["**(G), m > 0, is denoted by L**(G).

Theorem 2.4. Let G be a path of order n > 1 and m be a maximum independent domination
number that follows Lucas string in G. Then,
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Proof. Let G be a path of order n. If n is odd then consider the following cases.
Case 1. If n = 1, then the only element in the set Ly4(G) is lo(G), i.e., P;. Thus, m =0 = ”T_l

Case 2. 1f n > 3, then by Theorem 2.2, i.e., one of the leaf vertex is a dominating vertex. Thus,
n—1

m:2.

n

Now, consider if n is even. Then by Theorem 2.3 it follows that m = 7. This completes the
proof. ]

The next Corollary determines the cardinality of L7'**(G).

Corollary 2.2. Let G be a path of order n > 2. Then,

n, n = 1(mod2),
[Lg*(G)] = _ ( )
2, n=0(mod?2).

Proof. Let GG be a path of order n. If n is odd, then consider the following cases.

Case 1. If n = 3, then by Theorem 2.4, m = 1. Since there are three ways to assign the dominating
vertex in P, it follows that | L% (G)| = 3 = n.

Case 2. If n > 5, then consider the following subcases.

Sub case 2.1. Letu; € I andv; € V(G) \ I. Then, N(u;) C V(G) \ I implies that there is one
arrangement can be form such that u; € I and v; € V(G) \ I are alternate.

Sub case 2.2. Consider that there exists « € I such that deg(u) = 1 and there exists v € V(G) \ [
such that deg(v) = 1 and N(v) € V(G) \ I. Then, there are 2 distinct arrangement of this form.

Sub case 2.3. Suppose that there exists vy, v2 € V(G) \ I and e € E(G) such that e is an internal
edge and incident with v; and v5. Then, there are n—3 distinct possible arrangement can be formed.

Combining Sub cases (2.1), (2.2) and (2.3), it follows that |L**(G)| = n.

Now, consider if n is even. Then, by Theorem 2.8 it implies that u; € [ and v; € V(G) \
must be alternate. Thus, there are only two possible ways, i.e., | L7**(G)| = n. This completes the
proof. ]

The following results are immediate from the definition of an independent dominating set in a
path.
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Remark 2.4. Let GG be a path of order n. Then,

g, n = 0(mod 3),
2

i(6)={ "= n=1(med3),
1

n—;)— , n = 2(mod 3).

Theorems 2.5 and 2.6 are direct consequences of Remark 2.4.

Theorem 2.5. Let G be a path of order n > 3 and n # 4. If f,,(G) and l,,,(G) are independent
domination in G and for each u € I satisfies deg(u) = 2, then

1, n = 0(mod 3),
n? —b5n +4
|Fy(G)] = |La(G)| = 21—, n = 1(mod 3),
no : n = 2(mod 3).
3
Proof. Let G be a path of order n. If n = 0(mod 3) then by Remark 2.10 we have G has an
independent domination, i.e., i(G) = %. Let uj,up,...,up3 € I. Then, N(up) N N(ug) N

-+ N N(uy/3) = ¢ where each u; € I is adjacent with two non-dominating vertices which is
the only arrangement in a path of order divisible by 3. Thus, |Fy(G)| = |L4s(G)| = 1 whenever
n = 0(mod 3).

Now, let n > 7 and n = 1(mod 3). Then, by Remark 2.4, i(G) = ”TJ’Q and there exist u,
v € V(G)\ I such that deg(u) = 1 = deg(v) and N(u) U N(v) C I. Moreover, there exists edges
such that incident of two non-dominating vertices when G has order n > 10 and let e; be that
edges. Also, P7 and P, are in the first and last in G, respectively. Hence, the order of G — Pf U P
is n — 4 and the dominating vertex remaining is "g4. This implies that there are "T_7 edges incident
of two non-dominating vertices, i.e., €1, €2, . . ., €(,—7)/3. It follows that the number of ways of two
vertices u and v and edges ey, €2, . .., €(,—7)/3 can be arranged is ("7_4)2. But since vertices © and

v and edges ey, €3, . . ., €(,—7)/3 are not distinct, then the possible distinct arrangement is given by

n—4

3
S i. Thus, | Fy(G)| = |La(G)| = 2=t
i=1

Letn > 5and n = 2(mod 3). Then, by Remark 2.4, i(G) = %+ and there exists u € V(G) \ I
with deg(u) = 2 such that N(u) C I. Furthermore, there exists e; € F(G) such that the incident
vertices are dominating vertices. So, P22 and P21 are in the first and the last in G, respectively.

Hence, G — P; U P; has order n — 4 with ”T_E’ dominating vertex remaining. It follows that there

are ”55 non-distinct edges namely ey, ez, ..., €,—5)/3 . Thus, there are ”T_5 + 1 ways of distinct
arrangement for vertex u and edges ey, es, ..., €(m_5)3, .., |[Fa(G)| = |La(G)| = 25%. This
completes the proof. O
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Theorem 2.6. Let G be a path of order n > 1. If f,,(G) and l,,,(G) are independent domination
in G, then the following holds.

(i) |Fy(G)| = |La(G)| = 1 whenever n = 0(mod 3),

(ii) | Fa(G)| = ”2%5“0 and |Ly(G)| = "2+1—7§1_8 whenever n = 1(mod 3), and

(iii) | Fy(G)| = |La(G)| = “£* whenever n = 2(mod 3).

Proof. Let G be a path of order n. If n = 0(mod 3), then by Remark 2.4, Z(G) = %. This follows
that there is only one arrangement in which w; € I and N (u;) NN (ug) N N (un/3) = ¢. Now,
consider the following cases.

Case 1. Suppose that there exists u,v € [ such that deg(u) = deg(v) = 1, then this implies that
only one arrangement can be formed.

Case 2. By Theorem 2.5, |F,(G)| = |L4(G)| = % where u; € [ are independent and for
each of them has degree 2.

Case 3. Suppose that there exists u € [ and v € V(G) \ I such that deg(u) = deg(v) = 1 and
N(v) C I, then ( Y independent domination in G can be formed

Combining Cases (1), (2) and (3), it implies that there are 1+ “—=22+4 4 2n A
ments can be formed as an independent domination in f,,(G). It follows that | Fy(G)

L distinct arrange-
| _ n?4+7Tn+10
- 1’

n?=Sntd 4 20D distinet arrangement for [, (G).

Combining cases (2) and (3) implies that there are *—3%

La(G)] = mem=s,

Now, consider n = 2(mod 3). Then, there are two possible arrangements where there exists
ue[andveV()\Isuchthatdeg()—deg() land N(v) C V(G) \ I. Also, by
Theorem 2.11 there are =2 arrangements for independent domination where u; € I are 1ndepen—
dent dominating vertices and for each of them has degree 2. This implies that there are 2 + "=
distinct arrangements can be formed to be independent dominations for both f,,(G) and [,,,(G),
ie., |Fy(G)| = |La(G)| = . This completes the proof. O

The following Remark is immediate from the definition of Fy(G), Ly(G) and triangular num-
bers.

Remark 2.5. Let GG be a path of order n > 7 and n = 1(mod 3). If f,,(G) and [,,(G) is an
independent domination in G and for each u € I satisfies deg(u) = 2, then |Fy(G)| and |Lq4(G)|
are (“5*)™ triangular numbers.
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