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Abstract

Let G = (V (G), E(G)) be a path of order n ≥ 1. Let fm(G) be a path with m ≥ 0 independent
dominating vertices which follows a Fibonacci string of binary numbers where 1 is the dominating
vertex. A set F (G) contains all possible fm(G), m ≥ 0, having the cardinality of the Fibonacci
number Fn+2. Let Fd(G) be a set of fm(G) where m = i(G) and Fmax

d (G) be a set of paths
with maximum independent dominating vertices. Let lm(G) be a path with m ≥ 0 independent
dominating vertices which follows a Lucas string of binary numbers where 1 is the dominating
vertex. A set L(G) contains all possible lm(G), m ≥ 0, having the cardinality of the Lucas number
Ln. Let Ld(G) be a set of lm(G) where m = i(G) and Lmax

d (G) be a set of paths with maximum
independent dominating vertices. This paper determines the number of possible elements in the
sets Fd(G), Ld(G), Fmax

d (G) and Lmax
d (G) by constructing a combinatorial formula. Furthermore,

we examine some properties of F (G) and L(G) and give some important results.
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1. Introduction

A Fibonacci number Fn and a Lucas number Ln can be obtained by the following equations
Fn = Fn−2 + Fn−1, for n ∈ {3, 4, 5, · · · }, where F1 = F2 = 1 and Ln = Ln−2 + Ln−1 for
n ∈ {3, 4, 5, · · · } where L1 = 1, L2 = 3 [7]. Fibonacci and Lucas sequences have been widely
studied by many researchers. A Fibonacci string An of length n is a binary string b1b2b3...bn
containing no two consecutive 1s. A Lucas string Bn of length n is a binary string b1b2b3 · · · bn
containing no two consecutive 1s and no 1 in the first and in the last positions simultaneously
[3, 4].

In graph theory, Oystein Ore [5] introduced the concept of a domination set in a graph. The
concept of the domination in graphs provides several applications especially in protection strate-
gies and business networking [1]. Let G = (V (G), E(G)) be a graph. Let v ∈ V (G). Then
neighborhood of v is the set NG(v) = N(v) = {u ∈ V (G) : uv ∈ E(G)}. If Z ⊆ V (G), then
the open neighborhood of Z is the set NG(Z) = N(Z) =

⋃
v∈Z NG(v). The closed neighborhood

of Z is NG[Z] = N [Z] = Z ∪ N(Z). A subset D of V (G) is a dominating set of G if for every
v ∈ V (G) \ D there exists u ∈ D such that uv ∈ E(G), i.e., N [D] = V (G). A dominating set
I ⊆ V (G) is called an independent dominating set ofG if no two dominating vertices in the set are
adjacent. The independent domination number of G, denoted by i(G), is the smallest cardinality
of an independent dominating set of G. An independent dominating set with the cardinality i(G)
is called a i− set [2]. For example, let G = P5, then we have i(G) = 2.

The degree of v ∈ V (G), denoted by deg(v), is the number of edges incident with v in G. A
walk is a sequence u1, u2, u3, · · · , un of vertices of graph G such that {ui, ui+1} ∈ E(G) for each
i = 1, 2, ..., n. Vertices u1 and un are the endpoints of the walk while the vertices u2, u3, · · · , un−1
are internal vertices of the walk. The length of walk is the number of edges on the walk, i.e., the
walk u1, u2, u3, ..., un has length n− 1 . A path is a walk that does not repeat edges and does end
where it starts, i.e., u1 → u2 → ...→ un, u1 6= un. A path of order n and length n− 1 is denoted
by Pn [5, 1, 6].

Let G be a path and fm(G) be a path with m (≥ 0) independent dominating vertices which
follows a Fibonacci string of binary numbers where 1 is the dominating vertex. A set F (G) con-
tains all possible fm(G), m ≥ 0, having the cardinality of the Fibonacci number Fn+2. Thus, a
set F (G) contains paths of order n with no dominating vertex up to the maximum independent
dominating vertices. Let Fd(G) be a set of fm(G) where m = i(G) and Fmax

d (G) be a set of paths
with maximum independent dominating vertices. For example, let G = P3, then we have

and
.

Thus, we obtain |F (G)| = F5 = 5, |Fd(G)| = 1 and |Fmax
d (G)| = 1.

Let lm(G) be a path with m (≥ 0) independent dominating vertices which follows a Lucas
string of binary numbers where 1 is the dominating vertex. The set L(G) contains all possible
lm(G), m ≥ 0, having the cardinality of the Lucas number Ln. Thus, the set L(G) contains paths
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of order n with no dominating vertex up to the maximum independent dominating vertices and no
two dominating vertices with degree 1. Let Ld(G) be a set of lm(G) wherem = i(G) and Lmax

d (G)
be a set of paths with maximum independent dominating vertices. For example, let G = P3, then
we have

and
.

Thus, we obtain |L(G)| = L3 = 4, |Ld(G)| = 1 and |Lmax
d (G)| = 3.

The sum of paths Pn and Pm is a path of n + m vertices by connecting the last vertex of Pn

to the first vertex of Pm, and it is denoted as PnΦPm = Pn+m. A path with order n and with one
dominating vertex at ith vertex is denoted by P i

n.

2. Results

From the above definitions, the following Remark is immediate.

Remark 2.1. Let G = Pn−1 and H = Pn−2 with order n. If n ≥ 3 and m ≥ 0, then
Fd(Pn) = {P1Φfm(G)} ∪ {P 1

2 Φfm(H)}.
The next theorem is a direct consequence of Remark 2.1.

Theorem 2.1. Let G be a path of order n ≥ 1. Then, |F (G)| = Fn+2.

Proof. Suppose G is a path of order n ≥ 1 and fm(G) ∈ F (G) where m ≥ 0. Then, consider the
following cases.

Case 1. Let G be a path of order 1. Then, the element of F (G) is a trivial graph of either dominat-
ing vertex P 1

1 or non-dominating vertex P1, i.e., |F (G)| = 2 = F3.

Case 2. Now consider a graph H = P2. Since fm(H) ∈ F (H), there exist v ∈ F such that N(v)
is non-dominating vertex. This implies that the element of F (H) are P2, P 1

2 and P 2
2 .

In Remark 2.1 and by cases (1) and (2), F (P3) = {P1Φfm(G)} ∪ {P 1
2 Φfm(H)} where

|{P1Φfm(G)}| = 2 = F3 and |{P 1
2 Φfm(H)}| = 3 = F4. This implies that |F (P3)| = 5 = F5.

By definition we have Fn = Fn−2 + Fn−1 for n ≥ 3 where F1 = F2 = 1. Then, it follows that if
G = Pn, then we obtain |F (G)| = Fn+2. This completes the proof.

Let G = Pn. The maximum independent domination number m in path of order n ≥ 1 is a
path with with maximum number of no two consecutive dominating vertices satisfying Fibonacci
string is denoted by fmax

m (G), where m ≥ 0. A set that contains fmax
m (G), m ≥ 0, is denoted by

Fmax
d (G).
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Theorem 2.2. Let G be a path of order n ≥ 1 and m be a maximum independent domination
number that follows Fibonacci string in G. Then,

m =

{
n+1
2
, n ≡ 1(mod 2),

n
2
, n ≡ 0(mod 2).

Proof. Let G be a graph of order n. First, consider if n is odd integer, then we have the following
cases.

Case 1. If n = 1, then it follows that v ∈ V (G) is a dominating vertex. Thus, it satisfies that
m = 1 = n+1

2
.

Case 2. If n ≥ 3, then the leaves of G are dominating vertices. Since no two consecutive domi-
nating vertices, it follows that the arrangement of ui ∈ I and vi ∈ V (G) \ I for all i, are alternate.
So, we have |V (G) \ I| = |I| + 1 and deg(vi) = 2 for all i. This implies that |V (G) \ I| = n−1

2

and |I| = m = n+1
2

.

Now, consider the following cases for n is even.

Case 1. If n is even, then there exist u ∈ F such that deg(u) = 1 with no dominating vertex
in the first and last in G simultaneously. Also, since the arrangement is alternate, it follows that
|V (G) \ F | = |F |. Thus, this implies m = n

2
.

Case 2. If there exist two dominating vertices u and v such that deg(u) = deg(v) = 1, then
there exists one edge e ∈ E(G) such that e is incident with two non-dominating vertices a and b.
This also follows that N(a) and N(b) are sets with two elements, dominating and non-dominating
vertices. So, this implies that |V (G) \ F | = |F | = m = n

2
. This completes the proof.

The next Corollary determines the cardinality of Fmax
d (G).

Corollary 2.1. Let G be a path of order n ≥ 1. Then,

|Fmax
d (G)| =

{
1, n ≡ 1(mod 2),
n+2
2
, n ≡ 0(mod 2).

Proof. (i) Suppose that the order of G is odd, then consider the following cases.

Case 1. If n = 1, then it follows that v ∈ V (G) is a dominating vertex.

Case 2. If n ≥ 3, then by Theorem 2.2, m = n+1
2

. This implies that there is only one possibility
for this arrangement. Thus, it follows that |Fmax

d (G)| = 1.

Now, suppose that the order of G is even. Then consider the following cases.
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Case 1. Suppose that ui ∈ F and vi ∈ F . For positive integer i, are alternate, there are 2 arrange-
ment of this form with no dominating vertex in first and the last in G simultaneously.

Case 2. If there exists dominating vertex in the first and last in G such that the degree are 1 and
there exists 1 edge e ∈ E(G) such that e is incident with 2 non-dominating vertex a and b, then by
Theorem 2.2 we obtained |F | = m = n

2
. This implies that there are n−2

2
possible arrangement of

this form.

Combining Case (1) and (2), this follows that there are 2 + n−2
2

possible distinct arrangement.
Thus, we have |Fmax

d (G)| = n+2
2

. This completes the proof.

The next results are immediate from above definitions of Lucas numbers.

Remark 2.2. Let G = Pn−1 and H = Pn−3 with order n. If n ≥ 4 and m ≥ 0, then
Ld(Pn) = {P1Φfm(G)} ∪ {P 1

2 Φfm(H)ΦP1}.
Remark 2.3. [7] If Fn is a Fibonacci number and Ln is a Lucas number, then Fn+1 + Fn−1 = Ln.

Theorem 2.3. Let G be a path of order n ≥ 1. Then, L(G) = Ln.

Proof. Consider the following cases.
Case 1. Suppose G is a path of order 1, then there is one element in the set |L(G)|, i.e., P1. This
implies that |L(G)| = 1 = L1.

Case 2. Let H = P2. Then, there exist v ∈ V (G) \ L such that N(v) is a dominating vertex set.
This implies that there are 3 elements including the path P2, i.e., |L(G)| = 3 = L2.

Case 3. Let G = P1, H = P2, and J = P3. Then,
|Ld(J)| = |{P1Φlm(H)} ∪ {P 1

2 Φlm(G)}| = L1 + L2 = 4 = L3.

Case 4. Let G = Pn, G1 = Pn−1 and G2 = Pn−3. Then, by Remark 2.2 and 2.3,
|L(G)| = |{P1Φfm(G1)} ∪ {P 1

2 Φfm(G2)ΦP1}| = Fn+1 + Fn−1 = Ln.

Thus, combining the four cases we have |L(G)| = Ln whenever G = Pn. This completes the
proof.

LetG = Pn. The maximum independent domination numberm in path of order n ≥ 1 is a path
with with maximum number of no two consecutive dominating vertices satisfying Lucas string is
denoted by lmax

m (G) where m ≥ 0. A set that contains lmax
m (G), m ≥ 0, is denoted by Lmax

d (G).

Theorem 2.4. Let G be a path of order n ≥ 1 and m be a maximum independent domination
number that follows Lucas string in G. Then,

m =

{
n−1
2
, n ≡ 1(mod 2),

n
2
, n ≡ 0(mod 2).
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Proof. Let G be a path of order n. If n is odd then consider the following cases.

Case 1. If n = 1, then the only element in the set Ld(G) is l0(G), i.e., P1. Thus, m = 0 = n−1
2

.

Case 2. If n ≥ 3, then by Theorem 2.2, i.e., one of the leaf vertex is a dominating vertex. Thus,
m = n−1

2
.

Now, consider if n is even. Then by Theorem 2.3 it follows that m = n
2
. This completes the

proof.

The next Corollary determines the cardinality of Lmax
d (G).

Corollary 2.2. Let G be a path of order n ≥ 2. Then,

|Lmax
d (G)| =

{
n, n ≡ 1(mod 2),

2, n ≡ 0(mod 2).

Proof. Let G be a path of order n. If n is odd, then consider the following cases.

Case 1. If n = 3, then by Theorem 2.4,m = 1. Since there are three ways to assign the dominating
vertex in P3, it follows that |Lmax

d (G)| = 3 = n.

Case 2. If n ≥ 5, then consider the following subcases.

Sub case 2.1. Let ui ∈ I and vi ∈ V (G) \ I . Then, N(ui) ⊆ V (G) \ I implies that there is one
arrangement can be form such that ui ∈ I and vi ∈ V (G) \ I are alternate.

Sub case 2.2. Consider that there exists u ∈ I such that deg(u) = 1 and there exists v ∈ V (G) \ I
such that deg(v) = 1 and N(v) ∈ V (G) \ I . Then, there are 2 distinct arrangement of this form.

Sub case 2.3. Suppose that there exists v1, v2 ∈ V (G) \ I and e ∈ E(G) such that e is an internal
edge and incident with v1 and v2. Then, there are n−3 distinct possible arrangement can be formed.

Combining Sub cases (2.1), (2.2) and (2.3), it follows that |Lmax
d (G)| = n.

Now, consider if n is even. Then, by Theorem 2.8 it implies that ui ∈ I and vi ∈ V (G) \ I
must be alternate. Thus, there are only two possible ways, i.e., |Lmax

d (G)| = n. This completes the
proof.

The following results are immediate from the definition of an independent dominating set in a
path.
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Remark 2.4. Let G be a path of order n. Then,

i(G) =


n

3
, n ≡ 0(mod 3),

n+ 2

3
, n ≡ 1(mod 3),

n+ 1

3
, n ≡ 2(mod 3).

Theorems 2.5 and 2.6 are direct consequences of Remark 2.4.

Theorem 2.5. Let G be a path of order n ≥ 3 and n 6= 4. If fm(G) and lm(G) are independent
domination in G and for each u ∈ I satisfies deg(u) = 2, then

|Fd(G)| = |Ld(G)| =


1, n ≡ 0(mod 3),
n2 − 5n+ 4

18
, n ≡ 1(mod 3),

n− 2

3
, n ≡ 2(mod 3).

Proof. Let G be a path of order n. If n ≡ 0(mod 3) then by Remark 2.10 we have G has an
independent domination, i.e., i(G) = n

3
. Let u1, u2, . . . , un/3 ∈ I . Then, N(u1) ∩ N(u2) ∩

· · · ∩ N(un/3) = φ where each ui ∈ I is adjacent with two non-dominating vertices which is
the only arrangement in a path of order divisible by 3. Thus, |Fd(G)| = |Ld(G)| = 1 whenever
n ≡ 0(mod 3).

Now, let n ≥ 7 and n ≡ 1(mod 3). Then, by Remark 2.4, i(G) = n+2
3

and there exist u,
v ∈ V (G) \ I such that deg(u) = 1 = deg(v) and N(u)∪N(v) ⊆ I . Moreover, there exists edges
such that incident of two non-dominating vertices when G has order n ≥ 10 and let ei be that
edges. Also, P 2

2 and P 1
2 are in the first and last in G, respectively. Hence, the order of G−P 2

2 ∪P 1
2

is n−4 and the dominating vertex remaining is n−4
3

. This implies that there are n−7
3

edges incident
of two non-dominating vertices, i.e., e1, e2, . . . , e(n−7)/3. It follows that the number of ways of two
vertices u and v and edges e1, e2, . . . , e(n−7)/3 can be arranged is (n−4

3
)2. But since vertices u and

v and edges e1, e2, . . . , e(n−7)/3 are not distinct, then the possible distinct arrangement is given by
n−4
3∑

i=1

i. Thus, |Fd(G)| = |Ld(G)| = n2−5n+4
18

.

Let n ≥ 5 and n ≡ 2(mod 3). Then, by Remark 2.4, i(G) = n+1
3

and there exists u ∈ V (G)\I
with deg(u) = 2 such that N(u) ⊆ I . Furthermore, there exists ei ∈ E(G) such that the incident
vertices are dominating vertices. So, P 2

2 and P 1
2 are in the first and the last in G, respectively.

Hence, G− P 2
2 ∪ P 1

2 has order n− 4 with n−5
3

dominating vertex remaining. It follows that there
are n−5

3
non-distinct edges namely e1, e2, . . . , e(n−5)/3 . Thus, there are n−5

3
+ 1 ways of distinct

arrangement for vertex u and edges e1, e2, . . . , e(n−5)/3, i.e., |Fd(G)| = |Ld(G)| = n−2
3

. This
completes the proof.
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Theorem 2.6. Let G be a path of order n ≥ 1. If fm(G) and lm(G) are independent domination
in G, then the following holds.

(i) |Fd(G)| = |Ld(G)| = 1 whenever n ≡ 0(mod 3),

(ii) |Fd(G)| = n2+7n+10
18

and |Ld(G)| = n2+7n−8
18

whenever n ≡ 1(mod 3), and

(iii) |Fd(G)| = |Ld(G)| = n+4
3

whenever n ≡ 2(mod 3).

Proof. Let G be a path of order n. If n ≡ 0(mod 3), then by Remark 2.4, i(G) = n
3
. This follows

that there is only one arrangement in which ui ∈ I and N(u1)∩N(u2)∩ · · · ∩N(un/3) = φ. Now,
consider the following cases.

Case 1. Suppose that there exists u, v ∈ I such that deg(u) = deg(v) = 1, then this implies that
only one arrangement can be formed.

Case 2. By Theorem 2.5, |Fd(G)| = |Ld(G)| = n2−5n+4
18

where ui ∈ I are independent and for
each of them has degree 2.

Case 3. Suppose that there exists u ∈ I and v ∈ V (G) \ I such that deg(u) = deg(v) = 1 and
N(v) ⊆ I , then 2(n−1)

3
independent domination in G can be formed.

Combining Cases (1), (2) and (3), it implies that there are 1+ n2−5n+4
18

+ 2(n−1)
3

distinct arrange-
ments can be formed as an independent domination in fm(G). It follows that |Fd(G)| = n2+7n+10

18
.

Combining cases (2) and (3) implies that there are n2−5n+4
18

+ 2(n−1)
3

distinct arrangement for lm(G).
Thus, |Ld(G)| = n2+7n−8

18
.

Now, consider n ≡ 2(mod 3). Then, there are two possible arrangements where there exists
u ∈ I and v ∈ V (G) \ I such that deg(u) = deg(v) = 1 and N(v) ⊆ V (G) \ I . Also, by
Theorem 2.11 there are n−2

3
arrangements for independent domination where ui ∈ I are indepen-

dent dominating vertices and for each of them has degree 2. This implies that there are 2 + n−2
3

distinct arrangements can be formed to be independent dominations for both fm(G) and lm(G),
i.e., |Fd(G)| = |Ld(G)| = n+4

3
. This completes the proof.

The following Remark is immediate from the definition of Fd(G), Ld(G) and triangular num-
bers.

Remark 2.5. Let G be a path of order n ≥ 7 and n ≡ 1(mod 3). If fm(G) and lm(G) is an
independent domination in G and for each u ∈ I satisfies deg(u) = 2, then |Fd(G)| and |Ld(G)|
are (n−4

3
)th triangular numbers.
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