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Abstract

Let G = (V, F) be an undirected multigraph without loops. The maximum cycle packing problem
is to find a collection Z* = {1, ..., C,} of edge-disjoint cycles C; C G of maximum cardinality
v(G). In general, this problem is A/P-hard. An approximation algorithm for computing v(G) for
2-connected graphs is presented, which is based on splits of . It essentially uses the representation
of the 3-connected components of G by its SPR-tree. It is proved that for generalized series-parallel
multigraphs the algorithm is optimal, i.e. it determines a maximum cycle packing Z* in linear time.
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1. Introduction

Let G = (V(G), E(G)) be a finite and undirected graph with vertex set V' (G) and edge set
E(G) which may contain multiple edges but no loops. A graph G’ = (V' E') is a subgraph of G
(G'C@G),if V' CVand E' C E. Asubgraph G' = (V') E') C G is induced by E' C E (G’ =
G|g) if V' consists of all vertices that are incident with edges in E’. Similarly, G’ = (V', E') C G
is induced by V' C V (G’ = G|y») if E' consists of all edges e € F, that have both endvertices
in V'. We will write G \ V' := G|y\y and G \ E' := G|\ g, respectively. For v € V the
degree 0¢c(u) is the number of its incident edges in G. A path P of length > 0 is a sequence of
distinct edges (ey, . .., e,) such that e; = (v;_1,v;) € E(G) where the vertices vy, ..., v, € V(G)
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are distinct. We sometimes say P is a vg-v,-path to emphasize the first and the last vertex of a
path. A cycle C of length r > 2 is a sequence (ey,...,e,_1,¢e,.) such that (ey,...,e,_1) is a
path of length » — 1 and e, = (v,_1,vp). Since P can be considered as a subgraph of G we
sometimes say that P is induced by its edgeset £'(P). A graph G is connected if for each pair of
vertices v, w € V there is a v-w-path in G. A set S C V is called a k-separator of G (k > 0,
|S| = k) if G|y\g is not connected. A connected graph G is called k-connected if there is no
(k — 1)-separator in G. The maximum 1-connected subgraphs of G are called 1-components. The
maximum 2-connected subgraphs of G are called blocks. We say G is k-separable if there exist
subgraphs G, G5 of G such that G = G U Gy with |V(G1) NV (Gy)| =k, E(G1) N E(Gy) =0
and |E(G1)| > k,|E(Gs)| > k. The pair {G;, G5} is then called a k-separation of G. Two
subgraphs G’ = (V' E') and G” = (V", E") are called edge-disjoint if E' N E" = (). A packing
of edge-disjoint cycles of cardinality s in G is a set Z = {C, ..., C} of cycles that are mutually
edge-disjoint. A cycle packing Z* of maximum cardinality is called a maximum cycle packing.
Its cardinality | Z*| is denoted by v(G).

Packing edge-disjoint cycles in graphs is a classical graph-theoretical problem. There is a large
amount of literature concerning cycle packing problems for example [12], [11], [10], [1], [20],
[7], [6], [19], [18]. In [14], [2] and [8] simple approximation algorithms are described since cycle
packing problems are typically hard [14].

The basic idea of this paper is to decompose G into suitable subgraphs G; and relate maximum
cycle packings Z; of the G; to a maximum cycle packing Z* of GG. In the case that G; are the
1-components it holds that Z* = |J Z; and v(G) = > v(G;). If G is decomposed into blocks
B; it holds that v(G) = Y v(B;). If G is 2-connected an appropriate tool to represent G by its
3-connected components is the SPR-tree [5]. In Section 2 this tool is used to obtain an algorithm
that provides an approximation of a maximum cycle packing of GG. The proof of optimality of the
algorithm for general series-parallel graphs is given in Section 3.

2. Cycle packing by using SPR-trees

In [2] a greedy type algorithm was suggested for the determination of a large number of edge-
disjoint cycles in an arbitrary graph G (see also [14]). Its basic idea is to search for the shortest
cycle C' in G, then delete it from G and delete also edges that cannot be contained in a cycle of
G\ C. This procedure is continued until there are no edges left. The set of successively deleted
cycles finally provides the approximation of a maximum cycle packing of G (Algorithm 1). The
algorithm has approximation ratio O(logn) (see [2]).

In the special case that G is 2-connected we, additionally, will exploit the splits of G into 3-
components during the algorithmic procedure. By this we can relate the edge-disjoint cycles within
each of these components to cycles in a cycle packing of G. Let GG be a 2-connected multigraph
and let {G1, G2} be a 2-separation of G. If {u,v} = V(G;) N V(G3), we call the 2-separation a
split, if Gy or G has no 0- or 1-separator and G \ {u, v} or G2\ {u, v} is non-empty and connected
[16]. In [21] it was proved that 2-connected graphs that have no splits are either 3-connected or
cycles of length > 3 or a bundle of parallel edges between two vertices, respectively. For a split
{G1,Gs} let G, and G, be the graphs obtained from G; and G, by adding an edge (u, v) to each
of them where (u, v) is determined by the common vertices {u, v} = V(G1) N V(G3). The added
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Algorithm 1 Greedy algorithm for the maximum cycle packing problem
Require: Biconnected multigraph G = (V, E) without loops.
Ensure: Cycle packing C of size v(G).

I: C+ Pand v(G) «+ 0

2: while G # 0 do

3: for all vertices v € V with §(v) < 1 do

4: delete v

5: end for

6: for all vertices v € V' with §(v) = 2 do

7: replace ¢’ = (u,v) and e’ = (v, w) by e = (u, w)
8: end for

9: search for a shortest cycle C € G

10: C+CcucC

11: v(G) + v(G)+1

12: for all edges e € C do

13: deletee € G

14: end for

15: end while

16: return Cycle packing C and lower bound v(G) of v(G).

edges are called virtual edges. Since G} and G, are 2-connected one may repeat the split process
as long as the obtained graphs admit splits. Each of the resulting graphs finally constructed in this
way is called a split component of GG. A split component contains edges from £ and some virtual
edges determined by its consecutive split operations. In [15] and [21] it was shown, that split
components of G are uniquely determined and independent of the sequence in which consecutive
split operations were performed.

By this G can be represented using the SPR-tree 7 (G) = (M, A) of G as defined in [3], which
is an alternative to the definition of [5, 9]. If no ambiguity is possible we write 7 for short. A
SPR-tree 7 of a 2-connected multigraph G is the smallest tree with the following properties

1. To every node' ;o € M a multigraph G, = (V,,, E,,) (called skeleton of 1) is associated.
2. Depending on their skeletons the nodes of 7 are of one of the following three types
e ;1 is a S-node if G, is a cylce of length > 3,
e 1 is a P-node if G, is a bundle of parallel edges,
e ;1 is a R-node if G, is a simple 3-connected graph.
3. There is an edge (i, ;') € A if and only if there is u,v € V such that G, and G, have
() = (u,v) as a common virtual edge.
4. The graph G can be recovered by applying the following operation on the nodes of 7 : for

(1) € Aset Gy = (G \ €(uyy) U (G \ €(upy) and merge the two nodes p, 1 to a
new single node.

In [3] it was proved that a SPR-tree 7 of a 2-connected multigraph G exists and is unique.
Moreover, it has neither two adjacent S-nodes nor two adjacent P-nodes. Since there is a strong

IThe vertices in 7~ are usually called nodes.
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relation between SPR-trees and SPQR-trees introduced in [4], its size as well as the complexity of
its determination is linear (in O(|V| + |E|)) (cf. [3]).

In the sequel we assume that G is a 2-connected multigraph with no loops. Let 7 be the
SPR-tree of G and p be a leaf in 7 (i.e. a node in 7 such that d7(x) = 1). The following
approximation procedure applies Algorithm 1 in some of the iterations. It essentially exploits the
SPR-tree representation of GG and uses property 4 of 7 for an iterative construction of a large cycle
packing Z in G. These cycles will be constructed from paths P, for u € 7. We initialize the sets
P, by P, ={P(e) | eis areal edge in E,,} with P(e) := e and Z = ().

During the procedure leaf nodes ;. and the corresponding set P, are successively inspected.
Leaf nodes of S-type are always processed first, followed by R-leaves and P-leaves. Note, that for
a leaf node ;v € M there is a unique node ;/ € M such that (4, ') € A and the edge set E,
contains exactly one virtual edge &, ,/y = (u,v). Within the procedure we set pred(p) := 1 the
predecessor of 1. An inspection looks for the existence of edge-disjoint cycles on the real edges
in £,. Such cycles correspond to edge-disjoint cycles in G. If there still remains an u-v-path on
the real edges in F,, there remains a corresponding u-v-path P, in G. In this case the virtual edge
€(u) in E,y is replaced by the real edge (u,v) and P((u,v)) is set to P,,. If the virtual edge can
not be replaced in such a way, it is deleted from £,.

Depending on the type of leaf node 1 and its edge set £, the edge set £,/ of pred(y) is treated
differently according to the following rules:

1s pis S-node: If the real edges in F,, induce an u-v-path in £, replace €, € £,/ by the
real edge (u,v). Assign the u-v-path induced by | J{E(P) | P € P,} to P((u,v)). Set
Pu=Pu U P((u,v)), v, = 0 and delete  from 7.

2r p is R-node: Determine cycle packings C; and C, for the graphs induced by E,, and £, \
€(u,u)> Tespectively. Set v, = |C,|, add the corresponding edge-disjoint cycles in G to Z and
delete the related paths from P,. If |C;| = |Co| delete €, 1y € E. If |C1| > |Csf, there
is an u-v-path in £, not contained in any of the cycles of C;. Replace €(, ) € E,s by the
real edge (u,v). Assign the u-v-path P,, induced by (J{E(P) | P € P,} to P((u,v)). Set
P=Pu U P((u,v)) and delete i from 7.

3p  is P-node:

(¢) If |E,| is even, there is a cycle packing Cp with v, = ‘E—2“| — 1 cycles of length 2.
Add the corresponding edge-disjoint cycles in G to C. Then delete the related paths
from P,. There remains an real edge e in £, not contained in any of the cycles of Cp.
Replace é(,,,/) € E,s by the real edge (u,v) and assign the u-v-path P,, induced by e

to P((u,v)). Set P,y,=P, U P((u,v)) and delete y from 7.

(¢1) If |E,| is odd, there is a cycle packing Cp with v, = % cycles of length 2. Add the
induced edge-disjoint cycles in G to C. Further delete €, ,/y € E,s and delete p from
T.

The procedure terminates inspecting the final node:
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Algorithm 2 Approximation algorithm for the maximum cycle packing problem

Require: Biconnected multigraph G without loops.

Ensure: Lower bound v(G) for the maximum cycle packing number v(G).
1: 7¢ + SPR(G)
22C+0,v(G)+0and P, + 0 VpeM
3: while 3 SPR-node p in 7 do

4 for all S-leaves 1 do
5: w' = pred(p)
6: if 6(v) = 2 Vv € V,, then
7 replace e(,, /) € £, by real edge
8: 'P/L/ — 'P/L/U P(é(mu’))
9: end if
10: V< 0and T T \ p
11: v(G) « v(G) + v,
12: end for
13: for all R-leaves . do
14: p' = pred(u)
15: C1 « Algorithm 1(G},)
16: Cy < Algorithm 1(G, \ €, 1))
17: if |C1| == |C5| then
18: delete e(,, ) € B,
19: else if |C;| > |Cz| then
20: replace €(,, ) € E,/ by real edge
21: 7)#’ <—'PH/U P(é(ﬂyﬂ/))
22: end if
23: vy < |Coland T < T \ p
24: v(G) + v(G) + v, and C < CUCy
25: end for
26: for all P-leaves . do
27: p' = pred(u)
28: if |[E,| is not even then
29: v, « Be=t
30: delete e(,, vy in By
31 else if |E,| is even then
32: Vy 4 @ -1
33: replace €(,, ) in £, by real edge
34: PH' — PM' @] P(é(IMM'))
35: end if
36: v(G)«v(G@)+v,and T < T\ p
37: C+ Ccu{{pP@-D pCi}| PO cPVi=1,...,1v,}
38: end for
39: for the final node . do
40: if 1 is S-leaf and 6(v) = 2 Vv € V), then
41: v, < 1and C+CuU P|E(UeeEu P(e))
42: else if 11 is R-leaf then
43: Cy + Algorithm 1(G,), v, + |Cx|and C <+~ CUCy
44: else if 1 is P-leaf then
45: vy Bl land €« cU {{P®=D P} | PO e PVi=1,...,1,}
46: end if
47: v(G)«+v(@)+v,and T < T\ p
48: end for

49: end while
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F If 1 is the final node, determine a cycle packing Cr in the graph induced by E,,. Set v, = |Cp|
and add the induced edge-disjoint cycles in G to C.

Theorem 2.1. Algorithm 2 determines a cycle packing Z of G of cardinality

EEDA

neT

Proof. Let T be the SPR-tree of G.

When inspecting a S-node i, the real edges in E, never induce a cycle, hence, v, = 0. If
the real edges induce an u-v-path in F, the corresponding u-v-path P,, in G may contribute to
an additional cycle C'in Z. Therefore, the virtual edge e, in E,, is replaced by the real edge
(u,v), P((u,v)) is set to P, and y is deleted from 7. The possible cycle C' might be determined
when inspecting 1/’

When inspecting a R-node i, two cycle packings C; and C, are determined for £, and E,, \
€(u,u)» Tespectively. F, induces at least a cycle packing of cardinality v, = |Cs|in G. If |C1| > |Cs,
P((u,v)) may also contribute to one more cycle C' in Z. Therefore the virtual edge é(, ) is
replaced in £, by (u,v) and a C' might be determined when inspecting ;'.

When inspecting a P-node p, different pairs of real edges in £, always induce edge-disjoint
cycles in G. If |E,| is even, there are v, = ‘E—2’| — 1 of such pairs. The path P,, induced by the
remaining real edge may contribute to an additional cycle C' in Z. For this reason the virtual edge

€(u,p 1s replaced in E,, by (u,v) and C' might be determined when inspecting 4. If |E,| is odd,
|Eul-1
2

there are v, = pairs of real edges inducing the same number of additional cycles in Z. [

Algorithm 2 has approximation ratio O(logn), the same as Algorithm 1. If the SPR-tree T of
G has no R-nodes we next proof in Section 3 that Algorithm 2 is optimal.
3. Proof of optimality for General Series-Parallel Graphs

Let GG be a multigraph without loops. G is called generalized series-parallel, if it can be reduced
to the K5 by performing a sequence of simple operations:

(a) Replace two parallel edges by a single edge;
(b) replace two edges with a common incident node of degree 2 by a single edge;
(c) delete vertices of degree 1.

If there is no vertex of degree 1 to delete, G is called series-parallel. Tt is known that outerplanar
graphs are generalized series-parallel [13]. A 2-connected generalized series-parallel multigraph
G is reducable to K, by only performing operations (a) and (b). We will assume the input graph
is 2-connected, since the algorithm could be launched on each block of G. The SPR-tree 7 of GG
has no R-nodes (cf. [17]). In this case the iterations of Algorithm 2 reflect a systematic sequence
of operations of type (a) and (b) for the reduction of G. It leads to optimality of Z.
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Theorem 3.1. Let G be a 2-connected, generalized series-parallel multigraph without loops. Then

G) = ZVM,

HET
i.e. Algorithm 2 determines a maximum cycle packing of G.

Proof. For the proof we will use induction on the number N of nodes in the SPR-tree 7 (G) of G.

Let N = 1, i.e. T(G) is either a P-node or a S-node, respectively. Hence, the series-parallel
multigraph G is either a set of r parallel edges (r > 3) or a cycle of length > 3. In the first case
v(G) = |5]. in the second case v(() = 1. In both cases v/(() is the output of Algorithm 2 (step F).

Let N > 2 and let us assume that Algorithm 2 determines v(G") for all series-parallel multi-
graphs G’ such that 7(G’) has at most N — 1 nodes. Let G be a series-parallel multigraph such
that 7 (G) has N nodes. Now, we apply Algorithm 2. When selecting the first node p € T (G) for
inspection, the following cases can occur.

(a) g is a S-leaf. Then Algorithm 2 treats y according (1g). The multigraph G’ = G\ (E, \
€(uy)) U (u,v) is series-parallel and 7(G') = T(G) \ p, i.e. T(G') has N — 1 nodes.
Moreover, v(G') = v(G). By hypothes1s v(G) = ZMGT(G,) vj; and therefore ZﬂeT @ Vi =

(b) p is aP-leaf in 7 (G), then all leaf nodes are P-nodes.

(bl) There exists at least one leaf 1 with an odd number of real edges, i.e. |E,| is even. Its
predecessor 1’ is a S-node. Algorithm 2 treats y according (3p, (7)). The multigraph
G' =G\ (E,\ €(uuw)) U (u,v) is series-parallel and 7(G') = T (G) \ i, i.e. T(G’) has

N —1 nodes. Moreover y(G’) = y(G)—(‘E—;l—l). By hypothesis v(G") = >, Va

and, therefore, Y . ) Vi = D_percr) Vi T Ve = V(G') + (lEQ—" - 1) =v(G).

(b2) All P-leaves have an even number of real edges. Then a leaf y is treated accord-
ing (3p, (i9)). Let ' = pred(u). We assume that ' is adjacent to k& > 1 P-leaves

P, - pu (et g = p). Let E be the set of real edges in UZE{1 ..... y B, o~ E,,. Then for

,,,,,
-----

-----

.....

a P-node and must contain at least two parallel edges with endvertices, say u” v” One
of them corresponds to the subgraph G when recovering G from 7 (G) (according to
property 4). Since G is series-parallel, G” = G’ U (u”, v") is series-parallel. Since there
is at least one more virtual edge parallel to (v”,v") in E,,», there must be a subgraph
G C G such that G is reducible to a parallel edge of (v”,v") and E(G) N E(G) = 0.
According to property (b) of definition G\ (v”, v") = G’ must be series-parallel. Obvi-

77777

V(G') = et va and v(G) = ZueT(G’) Vi + Zze{l ky Vi = 2pero) Vi D

77777
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The SPQR-tree of a 2-connected multigraph can be determined in linear time [9]. This holds
also for the SPR-tree (see [3]) and we immediately get:

Corollary 3.1. If G is a 2-connected, generalized series-parallel multigraph without loops, then a
maximum cycle packing of G can be determined in linear time.
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