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Abstract

A signed graph (or, sigraph in short) is a graph G in which each edge x carries a value σ(x) ∈
{−,+} called its sign. Given a sigraph S, the negation η(S) of the sigraph S is a sigraph obtained
from S by reversing the sign of every edge of S. Two sigraphs S1 and S2 on the same underlying
graph are switching equivalent if it is possible to assign signs ‘+’ (‘plus’) or ‘−’ (‘minus’) to
vertices of S1 such that by reversing the sign of each of its edges that has received opposite signs
at its ends, one obtains S2. In this paper, we characterize sigraphs which are negation switching
invariant and also see for what sigraphs, S and η(S) are signed isomorphic.

Keywords: Balanced sigraph, Marked sigraph, Signed isomorphism, Switching equivalence
Mathematics Subject Classification : Primary 05C 22; Secondary 05C 75.

1. Introduction

For standard terminology and notation in graph theory we refer to West (1996) and Zaslavsky
(1998) for sigraphs. Throughout the paper, we consider finite, undirected graphs with no loops or
multiple edges.

Formally, a signed graph (or, sigraph in short) is an ordered pair S = (Su, σ), where
Su = (V,E) is a graph called the underlying graph of S and σ : E → {+,−} is a func-
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tion from the edge set E of Su into the set {+,−}, called the signature (or sign in short) of S.
Alternatively, the sigraph can be written as S = (V,E, σ), with V , E and σ in the above sense.
Further, E+(S) will denote the set of all the edges of Su that are mapped by σ to the element
+ and E−(S) = E(S) − E+(S). The elements of E+(S) are called positive edges and those
of E−(S) are called negative edges of S. We may then regard any graph as a sigraph in which
every edge is positive. In general, a subsigraph S ′ of S is said to be all positive (all negative)
if all the edges in S ′ are positive (negative). A subsigraph of S is said to be homogeneous if it is
either all-positive or all-negative and heterogeneous otherwise. In a pictorial representation of a
sigraph S, its positive edges are shown as bold line segments and negative edges as broken line seg-
ments. An example of such discrete structures is exhibited in Figure 1, where solid line segments
represent edges that are assigned ‘+’ and broken line segments represent those that are assigned
‘−’. Thus, in a pictorial representation of a graph, one would see only unbroken line segments
alone, as every edge of a graph may be assumed to have been designated to be positive. By an
independent positive (negative) edge of S we mean a positive (negative) edge of S at each end
of which no other positive (negative) edge of S is incident. The negation η(S) of the sigraph S is
a sigraph obtained from S by reversing the sign of every edge of S. A sigraph S and its negation
η(S) are shown in Figure 1.

a b

c d

a b

c d

Figure 1. A sigraph and its negation

Sigraphs were introduced by Harary (1953) as prototype models to represent structures of
cognitive inter relations between two individuals in a social group. Ever since, sigraphs have re-
ceived much attention in social psychology because of their extensive use in modeling a verity
of cognitive-based social processes (e.g., see Abelson and Rosenberg, 1958; Harary, 1953,1957;
Katai and Iwai, 1978a, 1978b; Fiksel, 1980; Acharya and Joshi, 2003; Kovchegov, 1994). Further
intensive study of the topic has been due to their subsequently discovered connections with clas-
sical mathematical systems (e.g., Zaslavsky, 1998; Singh, 2004; Acharya and Singh, 2004, 2005)
used in solving a verity of problems of theoretical and practical interest.

Here 〈Vi〉 determines the induced subsigraph of S on the vertex subset Vi of V (S) whereas
〈Vi〉u determines the underlying subgraph of Su which is induced by the vertex subset Vi of V (Su).
Subsigraphs may also be induced by sets of edges. If S ′ is the set of edges, the edge-induced sub-
sigraph 〈S ′〉 is the subsigraph of S whose edge set is S ′ and whose vertex set consists of all ends
of edges of S ′ .
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Two sigraphs S1 and S2 are signed isomorphic (written S1
∼= S2 or sometimes S1 = S2) if

there exists an one-to-one correspondence between their vertex sets which preserve adjacency as
well as sign.

Any function µ : V (S) −→ {−,+} is called a marking of the sigraph S and Sµ is then called
the marked sigraph. Switching a sigraph S with respect to the given marking µ means to obtain
another sigraph S = Sµ(S) from Sµ by changing the sign of each of its edge x = uv for which
µ(u) = −µ(v) (as shown in Figure 2). The resulting sigraph Sµ(S) is called switched sigraph.
A sigraph S switches to another sigraph S ′ written S ∼ S

′ , whenever there exists a marking µ
such that S ′ ∼= Sµ(S), where ‘∼=’ denotes the usual equivalence relation of isomorphism in the
class of sigraphs. It is obvious that ‘∼’ is an equivalence relation on the class of all sigraphs, and
as such on the class Ψ(G) of all sigraphs S such that their underlying graphs Su are isomorphic to
G. Hence, if S ∼ S

′ we shall say that S and S ′ are switching equivalent.

+

_
+

_

+_

S S'

Figure 2. Two sigraphs S and S
′

such that S ∼ S
′
.

Further, two cycles C1 and C2 are said to be adjacent cycles if and only if they have at least
one vertex in common. A cycle that is an induced subgraph is called chordless cycle.

One can extend the study of a graph equations with respect to isomorphism to a sigraph equa-
tions with respect to switching equivalence (Gill and Patwardhan, 1981, 1986; Acharya, 1986).
In this paper, we initiate study of a new system of switching equivalence relations, i.e., negation
switching invariant, aimed at hopefully facilitating application of results to analyze evolution of
structures of social systems due to local interactions. We also obtain in the sequel conditions for
which S ∼= η(S); infact, it is the subset of the set of solutions of S ∼ η(S).

2. Negation switching invariant sigraphs

Given a sigraph S and a positive integer n, the n-path sigraph (S)n is defined to be a sigraph
on the vertex set V (S) of S, with two vertices u and v joined by an edge e = uv in (S)n provided

34



www.ejgta.org

Negation switching invariant signed graphs | Deepa Sinha and Ayushi Dhama

there is a u-v path of length n in S and with the sign σn(e) of e defined to be ‘−’ if and only if in
every u-v path of length n in S all the edges are negative (as shown in Figure 3). The notion of n-
path graphs was introduced by Escalante et al. (1974), and various studies concerning this notion
may be found in the work of Acharya (1973), Escalante and Montejano (1973, 1974), Harary et al.
(1982), Simic (1983), etc. A graph G for which

(G)n ∼= G (1)
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Figure 3. Showing a sigraph S and its 2-path sigraph (S)2 and 3-path sigraph (S)3.

has been termed as n-path invariant graph by Escalante and Montejano (1974), where the
explicit solutions to (1) are determined for n = 2, 3. The structure of n-path invariant graphs remain
still uninvestigated in literature for all n ≥ 4. Clearly, (S)1 = S for any sigraph S and hence to
solve S ∼ η(S) is the special case for characterizing sigraphs S for n = 1 in (S)n ∼ η(S). The
following result has been already obtained.

Remark 2.1. A sigraph S = (G, σ) is switching equivalent to its negation η(S) if it is a bipartite
sigraph.

Towards this end, the following notion is needed: two sigraphs S1 and S2 are said to be weakly
isomorphic (e.g., see Sozański, 1980) or cycle isomorphic (e.g., see Zaslavsky, 1982) if there
exists an isomorphism f : Su1 → Su2 such that the sign of every cycle Z in S1 equals the sign
in S2 (i.e., f preserves both vertex adjacencies and the signs of the cycles of S1 and S2), where
the sign of any subsigraph of a sigraph is defined as the product of the signs of its edges. The
following theorem will also be useful in our further investigation, where Ψ(G) will denote the set
of all sigraphs whose underlying graph is G.

Theorem 2.1. (Sozański, 1980; Zaslavsky, 1982): Given a graph G, any two sigraphs in Ψ(G)
are switching equivalent if and only if they are cycle isomorphic.

The following theorem determines the solution to S ∼ η(S).

Theorem 2.2. For a connected sigraph S = (Su, σ), S ∼ η(S) if and only if either

(i) Su is bipartite or
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(ii) there exist subsets V1 and V2 of V (S) such that

(a) S = 〈V1〉 ∪ 〈V2〉 and 〈V1 ∩ V2〉 is bipartite,

(b) 〈V1〉u ∼= 〈V2〉u such that degrees of corresponding vertices are preserved in S, and

(c) each odd (even) cycle in 〈V1〉 is of opposite (same) sign to the corresponding cycle in
〈V2〉.

Proof. Necessity: Let us suppose that S ∼ η(S). It is clear that Su ∼= (η(S))u. Thus, there exists
a bijection, say f , from the vertex set of Su to the vertex set of (η(S))u i.e.,

f : V (Su)→ V ((η(S))u)

such that f(u) = u and f(v) = v and two vertices u and v are adjacent in Su if and only if f(u)
and f(v) are adjacent in (η(S))u. By Theorem 2, of cycle isomorphism, two sigraphs S1 and S2

are switching equivalent if and only if they are cycle isomorphic.

Now S ∼ η(S) implies that there exists a bijection ψ from the set of the cycles of S to the set
of cycles of η(S) such that cycles Z and ψ(Z) are cycle isomorphic. Let Z1, Z2, . . . , Zr be cycles
in S which corresponds to ψ(Z1), ψ(Z2), . . . , ψ(Zr), respectively in η(S). Let n1, n2, . . . , nr be
the number of edges in Z1, Z2, . . . , Zr respectively and n′1, n

′
2, . . . , n

′
r be the number of negative

edges in Z1, Z2, . . . , Zr respectively. Since S ∼ η(S), we have

n′1 + n′2 + · · ·+ n′r + (n1 − n′1) + (n2 − n′2) + · · ·+ (nr − n′r) ≡ 0 (mod 2)

n1 + n2 + · · ·+ nr ≡ 0 (mod 2)

This implies either all the cycles in S are of even length or odd cycles in S are even in number. If
all the cycles are of even length then Su is bipartite.

If S contains odd cycles also, then odd cycles are even in number. Now for every odd cycle
Zi in S, Zi 6∼ η(Zi), but since S is cycle isomorphic to η(S), implies that for each odd cycle Zi
in S there exists another odd cycle Z ′

i in η(S) such that Zi ∼ Z
′
i in such a manner that vertex

adjacencies and sign of other cycles of S and η(S) are preserved. This further implies that there
exists another cycle Zii in S which is of the same length as Zi but with opposite sign. Then, by the
above argument, it is clear that there exists another bijection from the vertex set of Su to the vertex
set of (η(S))u, which is different from f and the sigraphs S and η(S) are switching equivalent with
respect to this bijection. Let g be such a bijection i.e.,

g : V (Su)→ V ((η(S))u)

Thus, there exist two vertices u, v ∈ V (Su) such that g(u) 6= u and two vertices u and v are
adjacent in Su if and only if g(u) and g(v) are adjacent in (η(S))u and S ∼ η(S) with respect to
this bijection.
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Now, we first choose a cycle, say Z1, which is odd and keep all the vertices of Z1 in subset V1
of V (S). Then, since Z1 6∼ η(Z1) there exists another cycle Z ′

1 in η(S) such that Z1 ∼ Z
′
1 and

vertex adjacencies and sign of other cycles of S and η(S) are preserved. Put the vertices of Z ′
1,

which are also the vertices of a cycle say Z11 in S, in subset V2 of V (S). Clearly Z1 ∼ η(Z11).

Next, we choose another cycle, say Z2, in S such that Z2 is adjacent to Z1 and Z2 is different
from Z11. If no such Z2 exists in S, then result is already proved. Next, if Z2 exists then consider
two cases:

Case I: If Z2 is an odd cycle then by the above argument we can find a cycle Z22 in S such
that Z2 ∼ η(Z22) and vertex adjacencies and sign of other cycles of S and η(S) are preserved and
〈V (Z1) ∪ V (Z2)〉 ∼ 〈V (η(Z11)) ∪ V (η(Z22))〉. Put the vertices of cycle Z2 in S in subset V1 and
vertices of cycle Z22 in S in subset V2.

Case II: If Z2 is an even cycle then again there exists a cycle Z22 in S such that Z2 ∼ η(Z22)
and 〈V (Z1)∪V (Z2)〉 ∼ 〈V (η(Z11))∪V (η(Z22))〉. Now Z2 being an even cycle, the cycle Z2 may
be same as Z22 or it may be distinct.

If Z2 and Z22 are not distinct, put the vertices of Z2 or Z22 in both the vertex subsets V1 and V2.
If Z2 and Z22 are distinct cycles then put the vertices of Z2 in V1 and the vertices of Z22 in V2.

Continuing in this manner we have a set of chordless cycles Z1, Z2, . . . , Zr such that 〈V (Z1)∪
V (Z2) ∪ · · · ∪ V (Zr)〉 ∼ 〈V (η(Z11)) ∪ V (η(Z22)) ∪ · · · ∪ V (η(Zrr))〉, where the vertices of half
of the odd cycles in S are in V1 and the vertices of other half odd cycles are in V2. The remain-
ing cycles, which are symmetric difference of these cycles, are automatically settled. Thus, by
S ∼ η(S), it is clear that if V (Zi) 6= V (Z ′i), then vertices of Zi are put in V1 and vertices of Z ′i are
put in V2 and if V (Zi) = V (Z ′i), then vertices of Zi(= Z ′i) are put in both the subsets V1 and V2,
where Z ′i = f(Zi) and Z ′i ∈ η(S). Since, V (S) = V (η(S)), the vertices of Z ′i are also in V (S).
Thus all the vertices, which are in any cycle of S, are in V1 or in V2. Now, we discuss only about
those vertices which are not in any cycle of S.

Next, suppose v ∈ V (S) is any vertex (if any) such that v dose not lie in any cycle of S, but
adjacent with a vertex which lies on any cycle in S. If the vertex v is such that g(v) = v, then put
the vertex v in both the subsets V1 and V2.

Now, suppose v ∈ V (S) is such that g(v) 6= v. Then, consider two cases. If v is adjacent with
a vertex which lies in V1 (V2), then put the vertex v in V1 (V2) and if v is adjacent with the vertex
which is in both the subsets V1 and V2, then put v in V1 and g(v) in V2 or vice-versa.

Next, we choose another vertex v1 (if any), which is adjacent with v, such that v1 is not in any
cycle of S. Again, if g(v1) = v1, then put v1 in both the subsets V1 and V2 and if g(v1) 6= v1, then
if v is in V1 (V2) put v1 in V1 (V2). Continuing in this manner we put all the vertices in V1 or in
V2. Then, V1 and V2 are subsets of V (S) such that 〈V1〉u ∼= 〈V2〉u and S = 〈V1〉 ∪ 〈V2〉. Clearly,
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if V (Zi) = V (Z ′i), then Zi cannot be an odd cycle. Thus, there can not be an odd cycle whose
vertices are in V1 and V2 both and hence 〈V1 ∩ V2〉 is bipartite. Thus, conditions are necessary.

Sufficiency: If Su is bipartite then it is trivially true that S ∼ η(S). On the other hand if Su is
not bipartite then it contains at least one odd cycle. By (ii)(b) there exist two subsets V1 and V2 in S
such that 〈V1〉u ∼= 〈V2〉u. Since, Su ∼= (η(S))u and V (S) = V (η(S)), the same subsets V1 and V2
exist in η(S) also. Also, by the same condition, degrees of corresponding vertices are preserved in
η(S) also. It is clear that there exist at least two isomorphism. One where every element is mapped
to itself and another where element of V1− V2 of S gets mapped to the element of V2− V1 of η(S)
and the element of V2−V1 of S gets mapped to the element of V1−V2 of η(S). Thus, there exists a
bijection from the vertex set of Su to the vertex set of (η(S))u such that every element in Su is not
an image of itself in (η(S))u. If there is an odd (even) cycle in 〈V1〉 (〈V2〉) in S, then by condition
(ii)(c), there is an odd (even) cycle in 〈V2〉 (〈V1〉) in S of same length but of opposite (same) sign.
By our bijection there is an odd (even) cycle of same length and same sign in 〈V2〉 (〈V1〉) of η(S).
Thus, S and η(S) are cycle isomorphic. Hence, by Theorem 2.1, S ∼ η(S).

Lemma 2.1. For a disconnected sigraph S = (Su, σ), S ∼ η(S) if and only if either

(i) Su is bipartite or

(ii) there exist subsets V1 and V2 of V (S) such that

(a) S = 〈V1〉 ∪ 〈V2〉 and 〈V1 ∩ V2〉 is bipartite,

(b) 〈V1〉u ∼= 〈V2〉u such that degrees of corresponding vertices are preserved in S, and

(c) each odd (even) cycle in 〈V1〉 is of opposite (same) sign to the corresponding cycle in
〈V2〉.

The result immediately follows from Theorem 2.2.

The following theorem determines the solution to S ∼= η(S).

Theorem 2.3. For a given sigraph S = (Su, σ), S ∼= η(S) if and only if the edge set E(S) can be
partitioned into two subsets E1 and E2 such that 〈E2〉 ∼= 〈η(E1)〉 and degrees of corresponding
vertices are preserved in S.

Proof. Necessity: Let S ∼= η(S). We know that the two sigraphs are signed isomorphic if and
only if there exists an one-to-one correspondence between the vertices of the two sigraphs such
that adjacencies along with signs of the two sigraphs are preserved. Let f be a bijection from the
vertex set V (S) to the vertex set V (η(S)) i.e.,

f : V (S)→ V (η(S))

such that any two vertices u and v of S are adjacent if and only if f(u) and f(v) are adjacent in
η(S) and are of the same signature. Let

σ
′
: E(η(S)) −→ {−,+}
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Then
σ(uv) = σ

′
(f(u)f(v))

If f(u) = u1 and f(v) = v1 such that u, v ∈ V (S), then f(u) 6= u and f(v) 6= v, since otherwise
f will not be signed isomorphism. Hence there exist u1, v1 ∈ V (η(S)) such that u corresponds to
u1 and v corresponds to v1 under f and if uv ∈ E(S) then f(u)f(v) = u1v1 ∈ E(η(s)). Also,
S ∼= η(S) implies that Su ∼= η(S)u, so there exists a bijection

g : V (Su) −→ V (η(S)u)

such that g(u) = u and g(v) = v but σ(uv) = −σ′
(g(u)g(v)) = −σ′

(uv).

There also exists another isomorphism g
′ from vertex set of Su to the vertex set of η(S)u which

also preserve adjacencies i.e.,
g

′
: V (Su) −→ V (η(S)u)

such that g′
(u) = u

′ and g′
(v) = v

′ and any two vertices u and v are adjacent in S if and only if u′

and v′ are adjacent in η(S) and σ(uv) = σ
′
(u

′
v

′
) where u, v ∈ V (S) and u′

, v
′ ∈ V (η(S)).

Under suitable choice of u′ and v′

σ
′
(g

′
(u)g

′
(v))g

′
(u)g

′
(v) = f(u)f(v)

and σ′
(u1v1) = σ

′
(u

′
v

′
).

Now, we first choose an edge, say e1 = uv, and keep this edge in subsets E1 of E(S). Since
S ∼= η(S) and f is a bijection from the vertex set V (S) to the vertex set V (η(S)) such that
f(u) = u1 and f(v) = v1, so by the definition of isomorphism u1v1 = e

′
1 is an edge in η(S) and

σ(uv) = σ
′
(u1v1). If u1v1 is an edge in η(S) then, since the vertices of S and η(S) are same and

Su ∼= η(S)u, u1v1 = e11 is an edge in S and σ′
(u1v1) = −σ(u1v1). So put the edge u1v1 = e11

of S in subset E2 of E(S). It is easy to see that u corresponds to u1, v corresponds to v1 in S and
σ(uv) = −σ(u1v1) such that u, v, u1, v1 ∈ V (S).

Next, we choose another edge, say e2, in S such that it is adjacent to uv and it is different from
u1v1. Now we can find an edge in S, say e22, such that 〈e1 ∪ e2〉 ∼= 〈η(e11) ∪ η(e22)〉. Every time
we choose an edge in S which is neither selected in subset E1 nor in E2 of E(S).

Continuing in this manner we have a set of edges e1, e2, . . . , er and e11, e22, . . . , err in S such
that 〈e1 ∪ e2 ∪ · · · ∪ er〉 ∼= 〈η(e11) ∪ η(e22) ∪ · · · ∪ η(err)〉. Thus we can partition the edge set
E(S) into two subsets E1 = 〈e1 ∪ e2 ∪ · · · ∪ er〉 and E2 = 〈η(e11)∪ η(e22)∪ · · · ∪ η(err)〉 such that
〈E2〉 ∼= 〈η(E1)〉 and it is also clear that the degrees of corresponding vertices are same in S.

Sufficiency: Now, let we assume that we can partition the edge set E(S) into two subsets E1

and E2 such that 〈E2〉 ∼= 〈η(E1)〉 and the degrees of corresponding vertices are same in S.
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Since, 〈E2〉 ∼= 〈η(E1)〉 thus there exists an one-to-one correspondence between 〈E2〉 and
〈η(E1)〉. Since subsigraph 〈E1〉 is isomorphic to 〈η(E1)〉 or 〈E2〉 and 〈E2〉 is isomorphic to
〈η(E2)〉 or 〈E1〉 in η(S) such that adjacencies are also preserve and degrees of corresponding
vertices are same in S. So there exists an isomorphism from the vertex set of V (S) to the vertex
set of V (η(S)). Hence, S ∼= η(S), which completes the proof.
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