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Abstract
Let n be even, let π = (d1, . . . , dn) be a graphic degree sequence, and let π−k = (d1−k, . . . , dn−
k) also be graphic. Kundu proved that π has a realization G containing a k-factor, or k-regular
graph. Another way to state the conclusion of Kundu’s theorem is that π potentially contains a
k-factor. Busch, Ferrara, Hartke, Jacobsen, Kaul, and West conjectured that more was true: π
potentially contains k edge-disjoint 1-factors. Along these lines, they proved π would potentially
contain edge-disjoint copies of a (k−2)-factor and two 1-factors. We follow the methods of Busch
et al. but introduce a new tool which we call a multi-switch. Using this new idea, we prove that
π potentially has edge-disjoint copies of a (k − 4)-factor and four 1-factors. We also prove that π
potentially has (bk/2c+ 2) edge-disjoint 1-factors, but in this case cannot prove the existence of a
large regular graph.
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1. Introduction

Listing out all the degrees of a graph forms its degree sequence or degree list. Conversely,
given a list π = (d1, d2, . . . , dn), we say that π is graphic if it is the degree sequence of a graph G,
and that G realizes π. We can also add an integer to π, where π+k = (d1+k, d2+k, . . . , dn+k).
A k-factor is a k-regular spanning subgraph of a graph. Thus, a 1-factor is a perfect matching, and
a 2-factor is a spanning collection of disjoint cycles.
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Given a sequence π = (d1, d2, . . . , dn), it is said π potentially has property P if there is at least
one realization of π that has property P . One beautiful result along these lines, due to Kundu [3],
characterizes those degree sequences that potententially have a k-factor.

Theorem 1.1 (Kundu [3]). A graphic sequence π potentially has a k-factor if and only if π − k is
graphic.

See Chen [2] for a short and elegant proof of Kundu’s theorem.
We say that π has even length if the length of the list (and hence number of vertices intended in

the resulting graph) is even. Having an even number of vertices is an obvious necessary condition
for a graph to contain a 1-factor. Busch, Ferrara, Hartke, Jacobson, Kaul, and West [1] conjectured
that if π is of even length, then the k-factor from Kundu’s theorem can be decomposed into edge-
disjoint 1-factors.

Conjecture 1 (Busch et al. [1]). The sequences π and π − k are graphic and of even length if and
only if π potentially has k edge-disjoint 1-factors.

Using the vocabulary of edge-colorings, we could also state this result as saying the k-factor
from Kundu’s theorem is potentially of class 1, or is potentially 1-factorizable.

Along these lines, they strengthened Kundu’s theorem by proving:

Theorem 1.2 (Busch et al. [1]). If π and π − k are graphic and of even length, then π has a
realization containing edge-disjoint copies of one (k − 2)-factor and two 1-factors.

It is important to note a classical theorem by Petersen [5], which says that for even k, any
k-regular graph can be decomposed into two-factors.

Theorem 1.3 (Petersen’s 2-factor Theorem [5]). If k is even, then a k-regular graph contains k/2
edge-disjoint 2-factors.

Hence, the k-factor from Kundu’s theorem decomposes into 2-factors without even considering
alternate realizations of π. However, finding 1-factors is a bit more challenging. Indeed – finding
even two 1-factors in a graph (i.e. without degree sequence considerations) is NP-complete [4].

In this note, we improve the Busch et al. result a bit farther, showing

Theorem 1.4. If π and π − k are graphic and of even length, then π has a realization containing
edge-disjoint copies of one (k − 4)-factor and four 1-factors.

We can also get many more 1-factors with the same hypothesis, at the expense of not leaving
the rest of the k-factor intact.

Theorem 1.5. If π and π − k are graphic and of even length, then π has a realization containing
(bk/2c+ 2) edge-disjoint 1-factors.

The new idea is that of a multi-switch. Using the visualization of different colors representing
the different 1-factors, a multi-switch is finding several paths of length two between a pair of
vertices and swapping the two colors on the edges within each path. While switching moves
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Figure 1. A diagram showing a two-switch on the left, and a multi-switch on the right. The dotted lines represent
white edges.

with multiple colors have been used before, such as proving Vizing’s Theorem (see the proof of
Theorem 7.1.10 in [6]), they can be difficult to work with. The multi-switch, explained in more
detail in Section 2, is relatively simple and seems to be an important tool when dealing with packing
edge-disjoint graphs in degree sequence problems. With this tool in hand, we prove Theorems 1.4
and 1.5 in Sections 4 and 5 respectively.

2. Multi-switch

Consider a degree list π. Given a k such that π and π−k are graphic, suppose π has a realization
G containing edge-disjoint subgraphs A1, A2, . . . , A`, where Ai is a regular spanning subgraph of
degreemi, and

∑
mi = k. We will callG a realization with regular subgraphs. LetB = G−∪Ai,

and let W = Kn − G. Hence the Ai, B and W partition Kn. For ease of visualization, assume
edges in B are colored black, edges in W are colored white, and edges in Ai are colored with color
ci. We will call B, W , and the Ai the colored subgraphs.

The multi-switch is a generalization of a two-switch. One situation yielding a two-switch is as
follows: suppose we have a realization of a degree sequence π with two vertices u and v where
degG(u) ≥ degG(v). Suppose further there exists a path of length two via a third vertex w such
that uw is a non-edge and wv is an edge. Suppose our goal is to swap edges uw and wv, so uw
becomes an edge and wv becomes a non-edge. Since the degree of u is at least that of v, there
must be another vertex z such that uz is an edge and zv is a non-edge. Hence, if we swap uw and
wv, and simultaneously swap uz and zv, we have made the desired change while maintaining the
same degree at each vertex.

The multi-switch is basically this same idea, generalized as to possibly involve more paths of
length two between u and v. See Figure 1.

Lemma 2.1 (Multi-switch). Consider a degree sequence π and a realization with regular sub-
graphs G. Given vertices u, v with degG(u) ≥ degG(v), let x1 and y1 be edges in a path of
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Figure 2. A diagram showing the various edge names from Lemma 2.1.

length two from u to v. Suppose x1 is white, and y1 is some other color c. Let z1 be a c-colored
edge incident to u, and if possible let z2 and z3 be additional c-colored edges incident to u and v
respectively. see Figure 2.

Then there is a switching move that

• swaps the colors of x1 and y1,

• swaps the colors of exactly one of {z1, z2} with another edge incident to v,

• involves only one white edge (x1) incident to u and only one white edge incident to v,

• does not involve z3 or any edge not incident to u or v, and

• maintains the degree of every vertex in every color.

Proof. Set x2 = z1, and let y2 be the edge (possibly white) such that the edges x2y2 form a path
from u to v in Kn. Suppose y2 is a non-white color c′. Then, since u has at least as many incident
edges colored c′ as v, there must be some edge x3 incident to u of color c′. Let y3 be the edge such
that x3y3 is a path of length two from u to v. Similarly, as long as y3 is non-white, there must be
an x4 the same color as y3 incident to u, and we can therefore find a path x4y4 from u to v. By
repeating this argument, we can achieve a list (x1, y1, x2, y2, . . . , xr, yr), where xi+1 has the same
color as yi for all i. This list can be extended until we reach a yr that is white. At which point, by
switching the colors of xi and yi for all i, we will maintain the degree of each color and x1 and y1
will be flipped, as desired.

Note that yr is the first and only white edge on the list incident to v, and hence x1 is the only
white edge incident to u on the list.

Note futher that if z3, the vertex of color c incident to v, is ever used, we can then use z2 as the
next xi, and continue. For example, say z3 = yj; then xj+1 = z2. Then, instead of swapping xi
and yi for all i, we can swap xi and yi for i = 1 and i ≥ j +1. If z3 is never used or does not exist,
then we will avoid using z2. In this way, the requirements regarding exactly one of {z1, z2} being
used and z3 never being used are satisfied.
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Note that we can also achieve the same result using a black edge instead of a white edges if the
degree inequality is reversed. The proof is symmetric and therefore omitted.

Lemma 2.2. Lemma 2.1 is also true in the case where degG(u) ≤ degG(v) and x1 is black.

Also note that the existence of z2 and z3 in the statement of Lemma 2.1 is to ensure that not too
many edges swap colors in certain circumstances. If no such z2 or z3 exist, the conclusion of the
lemmas still hold with reference to z2 and z3 omitted.

3. Matchings in regular graphs

To prove Theorem 1.4, we will also need a structural result very similar to Lemma 3.7 of Busch
et al. [1], which was used in the proof of Theorem 1.2. They used the Edmonds-Gallai Structural
Theorem. In the interest of being more self-contained, we give an edge-switching proof instead.
Given a matching M in a graph G, an odd cycle C is fully matched if every vertex in C is matched
with another vertex in C, except for one.

Lemma 3.1. Let G be a k-regular graph. Then there exists a maximum size matching M such that
every vertex not covered by M is contained on a fully matched odd cycle, and any two vertices not
covered by M are contained in disjoint fully matched odd cycles.

Proof. Let M be a maximum matching of G, and let v be a vertex uncovered by the matching.
Given any even length path P that starts with v and alternates edges not in M with edges in M , we
can toggle all the edges in P from in M to not in M , and vice versa, to move the uncovered vertex
from v to the last vertex of P .

Let D be the set of all possible locations for the uncovered vertex by such switching moves
starting at v. Let N be all the neighbors of vertices in D. Every vertex in N must be matched with
a vertex in D, or otherwise we could increase the size of D. Notice that |D| > |N |, since every
vertex in N is matched with a vertex in D, and D also has v. Suppose D is an independent set.
All of D’s neighbors are then in N , and therefore D has k|D| edges leaving it, but there is no way
for N to absorb all of these edges. Hence, D contains a non-matched edge e connecting vertices x
and y.

Suppose P1 is the alternating path that ends at x, and P2 is the alternating path that ends at y,
and let z be the last vertex P1 and P2 have in common. This creates an odd cycle C going from x to
z along P1, then from z to y along P2, and finally going from y back to x using e. C is then a fully
matched cycle with z the only vertex not matched with another vertex on C. By switching edges
along the path P1 from v to z, we can change the uncovered vertex from v to a vertex z, and then
the uncovered vertex will be on a fully matched odd cycle. See Figure 3. Note if any such path
P1 intersects with a fully matched odd cycle of another unmatched vertex u, then we could extend
P to create an alternating path between two unmatched vertices, contradicting the maximality of
M . Hence none of the other fully match odd cycles belonging to other unmatched vertices are
disturbed.

Finally, note that for any two vertices uncovered by M , their fully matched odd cycles must be
disjoint. Otherwise, there would be a alternating path from one to the other, and we could increase
the size of the matching.
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Figure 3. This shows an example of the paths P1 and P2 from the proof of Lemma 3.1, where P1 is the entire path
from v to x, and P2 is the entire path from v to y. Here, the solid edges are those in the matching M while the dotted
edges are those not in the matching. By swapping the edges along the path from v to z, we can move the unmatched
vertex to a fully matched odd cycle.

4. Proof of Theorem 1.4

Consider a realization of π containing a (k − i)-factor and i edge-disjoint 1-factors. Suppose
we choose π to first maximize i, and then to maximize the number of edges in a matching of the
(k − i)-factor. Suppose, by way of contradiction, that i ≤ 3.

For ease of discussion, supoose the (k − i)-factor has blue edges, edges not colored blue or
contained in a 1-factor in π are black, and the rest of the edges ofKn not included in the realization
of π are white.

By Lemma 3.1, there exists a maximum size matching M in the blue graph such that two
vertices missed by M are contained on fully matched odd cycles C1 and C2. There cannot be any
blue edges between C1 and C2, since otherwise we could extend the matching M to include these
missed vertices.

Since C1 is an odd cycle, we must have three consecutive vertices u1, u2, u3 along C1 such that
deg(u1) ≥ deg(u2) ≥ deg(u3). Similarly, we have three consecutive vertices v1, v2, v3 along C2

such that deg(v1) ≥ deg(v2) ≥ deg(v3). Without loss of generality, assume deg(u2) ≥ deg(v2).
Then we have deg(u1) ≥ deg(u2) ≥ deg(v2) ≥ deg(v3).

Let e1 = u1v2, e2 = u1v3, e3 = u2v2 and e4 = u2v3. If any of {e1, e2, e3, e4} are black or white
edges, then we can perform multi-switches that will allow us to extend M . For example, suppose
e3 is a white edge. Then apply Lemma 2.1 using u = u2, v = v3, x1 = e3, y1 = v2v3, z1 = u1u2,
and z2 and z3 being the other incident blue edge of u along C1 and v along C2 respectively. After
applying the lemma, the multi-switch will swap either z1 and y1, or it will swap z2 and y1, and no
other edges of C1 or C2 were affected. Thus, we can now extend M to cover C1 and C2 completely
by using y1 and then alternating edges around both cycles.

Hence, none of these four edges are black or white, so they are all contained in 1-factors.
Therefore, there are two edges in the same 1-factor. These edges must be parallel: either e1 and e4
or e2 and e3. Either way, a simple two-switch will combine the cycles C1 and C2 into a large even
cycle, and we can increase the size of the matching by alternating edges around this combined
cycle. By contradiction, we have i ≥ 4.
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5. Proof of Theorem 1.5

By Theorem 1.4, there exists a realization of π containing a (k − 4)-factor and four edge-
disjoint 1-factors. If k is even, we will partition the (k − 4)-factor into k

2
− 2 two-factors using

Petersen’s two-factor theorem. If k is odd, we will take three 1-factors and partition the remaining
(k − 3)-factor into k−1

2
− 1 two-factors using Petersen’s theorem. This will be our initial setup.

During the course of the proof, we will at any given stage have a realization of π containing several
edge-disjoint 1-factors and 2-factors. Our goal will be to repeatedly change one of the 2-factors
into a 1-factor.

Let us focus on a particular 2-factor, F . Let M be a matching that covers as many vertices as
possible of the graph, using edges from F and black edges that go between distinct odd cycles of
F . If M covers all the vertices of the graph, then we remove F from our list of 2-factors, and add
M to our list of 1 factors, and move on to the next 2-factor.

Suppose M does not cover all the vertices of the graph. Any even length cycles of F can be
easily covered by M using edges in F , so this leaves the odd cycles. Given a pair of odd cycles,
if there is a black edge between the odd cycles, then if we use this black edge in the matching, we
can alternate around the two odd cycles to cover both completely. Therefore, suppose we have a
pair of odd cycles C1 and C2 with no black edges between them.

We will think of all the edges of C1 and C2 as being black for the time being. Without loss of
generality, assume there exists a vertex u ∈ C1 and v ∈ C2 with deg(u) ≤ deg(v). Let w be a
neighbor of u along C1. Apply Lemma 2.2 with u = u, v = v, x1 = uw, y1 = wv, z1 as a neighbor
of u the same color as y1, and we need not set z2 or z3 specifically. After this switch, uw will no
longer be a black edge, but wv will be a black edge. We can now increase M so that it covers C1

and C2 using wv which is now black, and then alternate using black edges around C1 and C2. Note
that none of the edges in C1 and C2 needed to extend the matching were affected, since at most
two black edges are used in Lemma 2.2, and these are incident to w and v. Further note that the
use of Lemma 2.2 does not affect any other cycles besides C1 and C2 in F , since all the affected
edges are incident to u and w and hence are not contained in other cycles in F .

Repeating with all pairs of odd cycles in F , this gives an additional 1-factor in the graph for
our list. Repeating this argument with all of the 2-factors gives a total of k

2
− 2 one-factors if k is

even, or k−1
2
− 1 one-factors if k is odd. Adding in the four or three 1-factors we removed in the

beginning gives a total of
⌊
k
2

⌋
+ 2 one-factors.
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