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Abstract

Interference is one of the major challenges faced by communication networks. Since the inter-
ference leads to packet loss, packet collision and data re-transmission, higher the interference,
higher is the energy consumption. Several algorithms were proposed for reducing the interference
in a wireless sensor network (WSN). By deploying additional nodes at an appropriate position in
a WSN, it is possible to reduce the interference. We propose an algorithm in which, the main
objective is to reduce the maximum Sender interference by deploying the additional nodes in the
network, while the connectivity of the network is preserved. We use the properties of Gabriel graph
to achieve the reduction in interference. We present the simulation results which show the number
of additional nodes to be deployed. The comparison of the maximum Sender interference obtained
by the proposed algorithm with that of the Euclidean minimum spanning tree (MST) of the given
network is presented through simulation. We show that the additional number of nodes required
for deployment has an upper bound of n/2, where n is the number of nodes. We also compute the
average reduction in Sender interference of the network for a various number of nodes.
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1. Introduction

A graph G = (V,E), in which each edge e ∈ E connecting two vertices satisfies a particular
geometric property is called Proximity graph. Proximity means the spatial distance between the
vertices that are placed in a Euclidean plane. In computational geometry, the study of proximity
graphs is a popular topic, since these graphs satisfy some interesting theoretical properties and
also have applications in several fields such as shape analysis, geographic information systems,
data mining, computer graphics, etc. Gabriel graph is one of the proximity graphs named after
K.R. Gabriel, who introduced them in [5], with R.R. Sokal. Some more examples of proximity
graphs [6] include Relative neighborhood graph, Nearest neighbor graph, Delaunay triangulation,
Yao graph, etc. Some properties of Gabriel graphs are mentioned in [9].

Definition 1.1. An undirected graph G = (V,E) with a weight function w : V × V → R+, where
w(uv) denotes the Euclidean distance between u and v, is said to be Gabriel graph if and only
if for each edge uv ∈ E(G), the circle with edge uv as its diameter does not have another point
within its interior. The edge which satisfies this property is called Gabriel edge.

To explain the Gabriel graph geometrically, let us consider a Euclidean plane on which the
nodes are randomly deployed. Now, each vertex vi is located by its coordinates (xi, yi) and let vi =
(xi, yi), vj = (xj, yj) be the two vertices. According to the definition of weight function, we have

w(vi, vj) =
√
(xj − xi)

2 + (yj − yi)
2, i.e., the Euclidean distance between vi and vj . Let C be the

circle with vi and vj , as the endpoints of its diameter and vc = (xc, yc) = ((xi + xj), (yi + yj))/2,
as its center. Any other vertex vk lies inside C, if w(vcvk) < w(vivj)/2, which is the radius of the
circle.

A wireless sensor network (WSN) is a collection of autonomous devices that are responsible
for sensing, processing and forwarding the information to other nodes. Applications of WSN are
environmental monitoring, remote medical systems, surveillance and biological detection, etc. [2].
Since WSN consists of battery driven devices, energy is typically a scarce resource which should
be used in an efficient way. We assign transmission Range to each node in the network such that
the network becomes connected and the total power used by all the nodes is minimized.

Graphs can be used to model many relations and represent many physical problems. A WSN
is modeled as an undirected graph G = (V,E,w) in which, the vertex set V represents the set of
nodes in a network, the edge set E = {u, v | u, v ∈ V, u ̸= v} in which each edge represents
the communication link and w : V × V → R+ is the weight function where w(uv) denotes the
Euclidean weight between u and v. A network is said to be connected if and only if there exists
at least one routing path between every two different sensor nodes u and v, when they transmit
messages at their assigned transmission power levels.

Apart from energy consumption, there is another issue in WSN, i.e., interference. Since the
nodes in a WSN use free space propagation for communication, they may subject to the interfer-
ence. If the communication between two nodes is affected by a third party, then it leads to inter-
ference. The effects of interference such as packet collision, packet loss and packet retransmission
also significantly show the effect on energy consumption. So, reducing the interference leads to
efficient utilization of the available energy. Hence, it is desirable to maintain less interference at
every node in a WSN.
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In a WSN, a node v is assigned Range (or power) R(v) as maximum of all its adjacent edge
weights and given in Eq. 1. We construct a disk centered at v with its Range R(v) as its radius.
Any node v can communicate directly with all the other nodes in its transmission disk which is
defined as follows.

R(v) = max{w(uv) | uv ∈ E}. (1)

Definition 1.2. Let G = (V,E,w) be an undirected graph modeled as a WSN, where V is a set of
vertices and w : V × V → R+ is the weight function. A circle centered at v and its transmission
Range R(v) as its radius is called Transmission disk and is denoted by D(v,R(v)).

Definition 1.3. Let G = (V,E,w) be an undirected graph with V as a set of vertices and w :
V × V → R+ as the weight function. The Sender interference of a vertex v is defined as the
number of vertices in its transmission disk and mathematically given as follows:

IS(v) = |{u ∈ V \ {v}, u ∈ D(v,R(v))}|. (2)

Definition 1.4. The maximum Sender interference of a graph G, denoted by IS(G) and is given
by IS(G) = max{IS(v) | v ∈ V (G)}.

Figure 1. Sample of four nodes with their corresponding Sender interference.

Figure 1 shows a network with four nodes with their corresponding Sender interference val-
ues. Bilò and Proietti [3] proposed an algorithm for minimizing the maximum Sender interference
that gives an optimal solution and also studied the computational hardness of several minimization
problems with some constraints on the connectivity predicate. Panda and Shetty [11] considered
the two dimensional networks with sender centric model and proposed an algorithm for minimiz-
ing the maximum interference that gives an optimal solution. The authors also proposed a 2-factor
approximation algorithm for minimizing the average interference. Agrawal and Das [1] proposed
algorithms for minimizing the maximum interference and total interference of a network. For min-
imizing the total interference, the authors proposed an optimum algorithm of O(n) running time
for the connectivity predicate Broadcast. Same authors proposed a heuristic for minimizing the
total interference for strongly connected predicate case. Rangwala et al. [12] presented algorithms
to construct network topologies for minimizing or approximately minimizing the maximum (or
average) link (or nodal) interference of a network.
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Liu and Mohapatra [8] studied the sensor placement problem in WSNs. The authors formulated
the following problem: For a given required lifetime of a WSN along with initial energy at each
sensor node and the number of sensor nodes, the objective is to determine how large an area
this network can cover. They proposed a near-optimal greedy algorithm for this problem. Niati
et al. [10] proposed a deployment scheme which enables the use of additional nodes in a WSN
whenever required. This scheme deploys the spare nodes in the network to substitute the exhausted
nodes. The authors presented the simulation results by considering a various number of spare nodes
and studied the effect of the deployment in a WSN. Langetepe et al. [7] introduced a strategic
deployment problem which aims to minimize the number of agents required to traverse the graph,
subject to some particular conditions. Authors also proved that the problem of computing the
optimal number of agents is NP-hard and gave an efficient, O(n log n) algorithm for trees and a
2-approximation (by Minimum Spanning Tree) algorithm for a general graph.

Deployment of vertices in an efficient way leads to a proper topology which optimizes the
energy consumption of a given network. It is possible to reduce the interference by using the
technique of deploying additional nodes at a suitable position. In the proposed algorithm, we make
use of the same technique to reduce the interference of a given network. We deploy the additional
nodes in the existing network so that the network remains connected and it minimizes the maximum
Sender interference of the network. The idea of deploying additional nodes is motivated by the
theoretical properties of Gabriel graphs. In this paper, we explore the properties of the Gabriel
graph and try to minimize the maximum Sender interference of the given network. Rest of the
paper is organized as follows: Section 2 explains the problem statement, section 3 presents the
algorithm and its detailed explanation. Section 4 presents the results and analyzes it and finally,
section 5 concludes the paper.

2. Problem statement

For a given set V of n nodes, a weight function w and a set V ′ of additional nodes, the aim is
to build a connected network T , with vertex set V ∪ V ′ that minimizes the maximum Sender in-
terference of the network. The main idea is to reduce the Sender interference of the given network
by deploying the additional nodes. The position of the n nodes will be the same but, the additional
nodes are deployed to reduce the Sender interference. The above problem is formally defined as
follows:

Problem: Minimizing Sender interference by Deployment of additional nodes.
Instance: A complete graph G = (V,E,w) where w : V × V → R+ is weight function and set
V ′ of additional nodes.
Objective: To construct a spanning tree T with vertex set V ∪ V ′, that minimizes the maximum
Sender interference.

3. Algorithm for minimizing the Sender interference

The idea of the algorithm: We have n nodes deployed on a Euclidean plane with a weight function
w. Initially, we join each vertex with its nearest neighbor so that, each edge formed is Gabriel. Let
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the induced spanning forest be T which consists of one or more connected components. Let the
Euclidean MST of the graph be T1 which is also Gabriel. Every Gabriel graph has the Euclidean
MST as its subgraph and it is obvious that T ⊂ T1. Now we assign Range to all the vertices in T
as the distance to its farthest neighbor, as given in Eq. 1. Let E ′ be the set of all edges which are
present in T1 but not in T , i.e., E ′ = {e ∈ T1 | e /∈ T}. At this step, we deploy the additional
nodes at an appropriate location to reduce the maximum Sender interference without changing the
position of the original nodes. An additional vertex u ∈ V ′, is deployed at the bisection point of
the edge e = pq ∈ E ′, and half of the Euclidean distance between p and q is assigned as Range
to the vertex u. Each time, an additional vertex is deployed only if there is a reduction in the
maximum Sender interference of the network. We repeat this procedure for all the edges in E ′. We
present MSD (Minimizing Sender interference by Deployment of additional nodes) algorithm for
the above formulated problem and given in Algorithm 1.

Algorithm 1: MSD
Input: A complete graph G = (V,E,w) where w : V × V → R+ is weight function and set

V ′ of additional nodes.
Output: A spanning tree T with vertex set V ∪ V ′, with corresponding Range assignment

R, minimizing the maximum Sender interference.
1 begin
2 Let IS(T ) be the maximum Sender interference at any instance.
3 for each vertex v ∈ V do
4 Let v′ be the nearest vertex to v
5 T = T ∪ {vv′}
6 R[v] = w(vv′)

7 end
8 Let T1 be the Euclidean MST of the given set of nodes.
9 Let E ′ = {e | e ∈ T1 && e /∈ T}

10 for each edge e = vx ∈ E ′ do
11 if deployment of an additional vertex u ∈ V ′, at the bisection point of e reduces the

IS(T ) then
12 T = T ∪ {vu, ux}
13 R[u] = w(vx)/2
14 E ′ = E ′ \ {e}
15 end
16 end
17 for each vertex v ∈ V (T ) do
18 Let u be the farthest adjacent vertex to v in T .
19 R[v] = w(uv)

20 end
21 return T, IS(T )

22 end
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Figure 2. Illustration of Algorithm 1

Remark 3.1. The number of additional nodes to be deployed is not taken as an input, since the
deployment of additional nodes may not always guarantee the reduction in the maximum Sender
interference.

Example 3.1. In Figure 2, (a) shows a complete graph in which the Euclidean distance between
every two nodes mentioned, (b) shows the spanning forest T formed by joining each vertex with its
nearest vertex and (c) shows the Euclidean MST of the deployed nodes, denoted by T1, for the same
set of vertices. For this graph, we have E ′ = {ad}, since ad is the only edge such that, ad ∈ T1 and
ad /∈ T . So we require single additional vertex, as |E ′| = 1, say V ′ = {f}. Now, if we place the
new vertex f ∈ V ′, at the bisection point of the edge ad and assign Range to f as w(ad)/2, then
the resultant spanning tree is as shown in (d). The maximum Sender interference of the Euclidean
MST is 3 but, after deploying the additional vertex f , it is reduced to 2. We see that the output
is a spanning tree T with maximum Sender interference 2. The Range, Sender interference of
each vertex in MST as well as the resultant spanning tree T obtained after the deployment of an
additional vertex are reported in Table 1. We also observe that there is a decrease in the Range of
vertices a and d after deploying the additional vertex f .

Theorem 3.2. Let V be the set of all nodes deployed on a Euclidean plane and S = {uv |
uv is Gabriel edge for u, v ∈ V }. Then the graph T = (V, S) is always connected.

Proof. If possible, let us suppose that T is disconnected. Then there exist at least two connected
components in T , say c1 and c2. Let the number of vertices in c1 and c2 be n1 and n2 respectively.
Now, to establish the connectivity between these two components, we need to join them by an edge
which does not belong to T . Totally, we have n1.n2 possible edges to join these two components.
Let e be the edge with minimum value of w(e) among all the possible edges. Since it is the
minimum among all the possible edges, the circle with edge e as its diameter does not have any
other vertex in its interior. Therefore, the edge e is Gabriel but it does not belong to T , which
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Table 1. Range and Sender interference of each vertex of the graph shown in Figure 2.

T1 T
Vertex R(v) IS(v) R(v) IS(v)

a 4.6 2 3.6 2
b 3.6 1 3.6 1
c 1.7 1 1.7 1
d 4.6 3 2.3 2
e 1.7 2 1.7 2
f - - 2.3 2

contradicts the statement that T contains the set of all Gabriel edges of G. Hence, the set of all
Gabriel edges of a complete graph forms a connected subgraph.

Theorem 3.3. [13] The graph formed by joining each vertex to its nearest vertex is acyclic.

Theorem 3.4. The graph formed by joining each vertex to its nearest vertex is always Gabriel.

Proof. Let T be the graph obtained by joining each vertex to its nearest vertex. If possible, let us
suppose that T is not Gabriel, then there exists an edge uv in T which is not Gabriel. Since uv is
not Gabriel, there exists a vertex x in the interior of the circle with u and v as the endpoints of its
diameter. Then x is the nearest vertex to both u and v which contradicts the statement that u is the
nearest vertex of v (or v is the nearest vertex of u). Therefore, each and every edge in T is Gabriel
and thereby the graph formed by joining each vertex to its nearest vertex is always Gabriel.

Theorem 3.5. The Euclidean MST of a complete graph is always Gabriel.

Proof. From Theorem 3.2 it follows that every complete graph has a connected Gabriel graph as its
subgraph. Every Gabriel graph has the Euclidean MST as its subgraph [9], which is also Gabriel.
Therefore, the Euclidean MST of a complete graph is always Gabriel.

Theorem 3.6. [9] A tree with a vertex of degree greater than or equal to six is not Gabriel.

Corollary 3.1. The maximum degree of the Euclidean MST of a complete graph is less than 6.

Proof. If possible, let us suppose that the maximum degree of the Euclidean MST of a complete
graph is greater than or equal to 6. Theorem 3.5 says that the Euclidean MST of a complete graph
is always Gabriel. But, according to Theorem 3.6, if a tree has a vertex of degree greater than or
equal to six, then it is not Gabriel. This is a contradiction to our assumption that the maximum
degree of Euclidean MST is greater than or equal to 6.

Theorem 3.7. The algorithm MSD always results in a connected network.
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Proof. MSD algorithm starts with the formation of a spanning forest T by joining each vertex with
its nearest vertex. Next, it computes the Euclidean MST i.e., T1 which has exactly n−1 edges. We
use E ′, the set of all edges which belong to T1 but not to T , to establish the connectivity between
the components in the spanning forest T . It is obvious that to achieve the connectivity in T , the
set of edges in E ′ are sufficient enough. For each edge in e ∈ E ′, we deploy an additional vertex
from the set V ′, at the bisection point of the edge and the Range assigned to that additional vertex
is w(e)/2. Deployment is done only if there is a reduction in maximum Sender interference. For
each edge in E ′, either the edge is added to the resultant spanning tree (if there is no deployment)
or it is bisected by an additional vertex which divides the existing edge into two edges. So, the
connectivity is preserved in the resultant subgraph.

Theorem 3.8. The number of additional nodes required to be deployed in a network to minimize
the maximum Sender interference is always bounded above by |E(T1)| − |E(T )|.

Proof. Let T be the spanning forest formed by connecting each vertex with its nearest vertex and
|E(T )| be the number of edges in T . Let T1 be the Euclidean MST of the given set of vertices
and |E(T1)| be the number of edges in T1. In the algorithm MSD, we consider E ′ i.e., the set
of all edges present in T1 but not in T , for the deployment of the additional nodes. It is clear that
|E ′| = |E(T1)|−|E(T )|, whose value in worst case is n/2−1. So, the upper bound on the number
of additional nodes to be deployed is |E(T1)| − |E(T )|.

Theorem 3.9. The algorithm MSD runs in O(n2) time.

Proof. In the MSD algorithm, the formation of the spanning forest T takes O(n2) running time.
Computing Euclidean MST by Prim’s algorithm [14] using the adjacency matrix takes O(n2) run-
ning time. In worst case, T contains n/2 components as each vertex in T will be connected to at
least one vertex. The set E ′ consisting of all edges present in T1 but not in T , contains at most
(n−1)− (n/2) = (n/2)−1 edges. So, the for loop in step 10 of the algorithm takes O(n) running
time. The set V ′ of additional nodes to be deployed has the cardinality n/2 at the most. The Range
assignment to all the vertices of V in step 17 of the algorithm takes O(n2) running time. Hence
the algorithm is of O(n2) running time.

4. Results

We deployed n number of vertices randomly (using rand() function which claims to be of
uniform distribution) on a Euclidean plane of 1000×1000. The function w computes the Euclidean
distance between each pair of vertices and an adjacency matrix is maintained whose entries are the
weights as explained in section 1. We computed the Euclidean MST using Prim’s algorithm and
deployed the additional nodes in the network to reduce the maximum Sender interference further.
We compared the maximum Sender interference of the MST and that of the resultant spanning tree
obtained by the proposed algorithm after deploying the additional nodes.

Table 2 compares the maximum Sender interference of the MST of the considered complete
graph and that of the spanning tree obtained by MSD algorithm after deployment of additional
nodes. It shows the number of additional nodes required to be deployed in the network to reduce
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Table 2. Maximum Sender interference of MST of and that of the resultant spanning tree T .

Number of Maximum Sender Number of Maximum Sender
initial nodes interference of T1 new nodes interference of T

5 3 1 2
10 5 2 3
15 5 2 3
20 8 2 6
25 6 3 3
30 6 1 5
35 10 1 4
40 12 1 8
45 9 1 7
50 9 3 5
55 8 3 4
60 8 2 6
65 7 5 5
70 7 2 5
75 7 1 6
80 7 1 6
85 12 2 6
90 7 1 6
95 11 1 9
100 8 1 6

Table 3. Average reduction and the decrease percentage of maximum Sender interference.

Number Average Sender interference Decrease
of nodes T1 T Difference percentage

10 5.6 4.5 1.1 19.64
20 6.7 5.0 1.7 25.37
30 7.0 4.5 2.5 35.71
40 6.6 5.2 1.4 21.21
50 7.0 5.4 1.6 22.85
60 7.5 5.5 2.0 26.66
70 7.3 5.7 1.6 21.91
80 8.5 6.1 2.4 28.23
90 8.0 5.7 2.3 28.75

100 8.1 6.1 2.0 24.69
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Table 4. Average additional number of nodes and decrease percentage of the Sender interference.

Number Average Additional Average reduction
of nodes number of nodes Sender interference

10 1.5 2.3
20 1.2 2.6
30 1.2 2.9
40 1.4 3.4
50 1.2 3.9
60 1.5 4.0
70 1.5 4.1
80 1.6 4.0
90 1.2 4.0

100 1.3 4.7

the Sender interference. In Figure 3, we plotted the initial number of nodes, the final number of
nodes after deployment and the maximum Sender interference of MST and that of the resultant
spanning tree by MSD algorithm. Table 3 shows the average maximum Sender interference of
the MST and that of the spanning tree obtained after deployment for which we ran the proposed
algorithm 100 times for each value of n in order to establish the stability of the proposed algorithm.
It also depicts the reduction percentage of the maximum Sender interference of the given network.
Figure 4 indicates the average maximum Sender interference of MST and that of the resultant
spanning tree by MSD algorithm for a various number of nodes.

Table 4 shows the average additional number of nodes and the average reduced maximum
Sender interference after deploying the additional nodes. For each value of n, the algorithm was
run 100 times. In Figure 5, the average additional number of nodes and average reduced Sender
interference are plotted. Table 5 compares the total Range of the Euclidean MST with that of the
spanning tree obtained after deployment and shows the difference. We observe that the total Range
reduces after deployment most of the times. Although the increase in Range is found in few cases,
it is significantly low. For computing the total Range, we used the function f(si, sj) = t.dα [4], for
two different nodes si and sj , where α is a constant related to path loss and t is the threshold value.
In this experiment, we fix α = 2 and t = 1. Though the theoretical upper bound on the number
of additional nodes is |E(T1)| − |E(T )|, the simulation results show that the maximum number of
additional nodes deployed is 1.6 and the average reduction in the Sender interference is 4.7 for the
networks of varying size.

5. Conclusion

In this paper, we proposed an algorithm for minimizing the maximum Sender interference of
a WSN by deploying the additional nodes in the network. We explored the theoretical properties
of Gabriel graphs to arrive at the proposed algorithm. The Sender interference of the Euclidean
MST of the given set of nodes with that of the spanning tree obtained by proposed MSD algorithm
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Table 5. Comparison of Range of MST and that of the spanning tree obtained by MSD.

Number Number of Reduced Range Range Difference
of nodes new nodes interference of MST by MSD in Range
10 1 3 2360.017 2124.214 235.803
15 1 4 2908.526 2694.510 214.016
20 1 3 4514.073 4515.457 -1.384
25 1 1 4364.436 4359.812 4.624
30 1 6 3695.214 3599.839 95.375
35 1 5 5446.438 5307.238 139.2
40 2 4 5239.623 5126.469 113.154
45 1 4 5553.782 5466.333 87.449
50 1 3 6254.478 6196.371 58.107
55 1 5 6452.161 6363.571 88.59
60 1 3 6885.42 6766.571 118.849
65 1 2 6142.201 6166.646 -24.445
70 1 3 7154.01 7029.977 124.033
75 1 9 7215.844 7194.791 21.053
80 1 3 7382.623 7350.221 32.402
85 2 2 7576.701 7485.605 91.096
90 2 5 8472.303 8365.898 106.405
95 1 3 7825.011 7756.247 68.764
100 1 7 8571.695 8480.457 91.238
200 1 4 11530.458 11468.851 61.607
300 1 4 14226.611 14180.234 46.377
400 1 4 16378.671 16352.799 25.872
500 1 3 18195.529 18191.765 3.764
600 1 3 20060.55 20038.535 22.015
700 2 2 21332.992 21285.335 47.657
800 1 3 22625.677 22604.13 21.547
900 1 3 24035.476 24008.373 27.103
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Figure 3. Maximum Sender interference of MST and the resultant spanning tree.
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Figure 4. Average maximum Sender interference of MST and that of the resultant spanning tree.

are compared, through extensive simulation for a various number of nodes. We observed that
the deployment of the additional nodes in the network reduces the maximum Sender interference
of the network. The theoretical properties of the Gabriel graphs can be further explored for a
study on interference in a WSN. Though the upper bound on the number of additional nodes is
|E(T1)| − |E(T )|, the maximum number of additional nodes deployed is 1.6 and the maximum
reduction in sender interference is 4.7 on an average. Simulation results also show that the average
reduced Sender interference after deployment of additional nodes is 25.5 percentage. From the
result, it is concluded that the number of additional nodes used does not increase as a function of n
and the increase is by a small constant. It is also observed that as the number of nodes increases, the
reduction in Sender interference also increases which demonstrates the scalability of the proposed
algorithm.
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