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Abstract

A proper total weighting of a grapty is a mappingp which assigns to each vertex and each
edge ofG a real number as its weight so that for any edgeof G, >_ ., #(e) + ¢(v) #

> een) P(€) + ¢(u). A (k, k')-list assignment o&+ is a mappingl which assigns to each vertex
v a setL(v) of k permissible weights and to each edga setL(e) of £’ permissible weights.
An L-total weighting is a total weighting with ¢(z) € L(z) for eachz € V(G) U E(G). A
graphd is called(k, k’)-choosable if for everyk, k')-list assignmenL of G, there exists a proper
L-total weighting. As a strenghtening of the well-known B-2onjecture, it was conjectured in
[ Wong and Zhu, Total weight choosability of graphs, J. Grapleory 66 (2011), 198-212] that
every graph without isolated edgg(is 3)-choosable. Itis easy to verified this conjecture for trees,
however, to prove it for wheels seemed to be quite non-trilriethis paper, we develop some tools
and techniques which enable us to prove this conjecturecioeiglized Halin graphs.
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1. Introduction

A total weightingof G is a mappingp : V(G) U E(G) — R. A total weighting¢ is properif
for any edgeuw of GG,

> dle)+ou) # Y dle)+d(v),
)

ecE(u) e€cE(v
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whereF (v) is the set of edges incident to A total weightinge with ¢(v) = 0 for all verticesv is
also called aredge weighting

Proper edge weighting (also called vertex colouring edgghtimg) of graphs was introduced
in [9]. It was conjectured in [9] that every graph with no st@d edges has a proper edge weighting
¢ with ¢(e) € {1,2,3} for e € E(G). This conjecture, now called the-2-3 Conjecture has
received a lot of attention [1, 2, 7, 9, 10, 11, 13, 17]. Itlseimains open, and the best partial
result on this conjecture was proved in [10]: every graplhwib isolated edge has a proper edge
weightinge with ¢(e) € {1,2,3,4,5} for all e € E(G).

Proper total weighting was first studied in [13]. It was catjeed in [13] that every graph has
a proper total weighting with ¢(z) € {1,2} for all = € V(G) U E(G). This conjecture, now
called thel-2 Conjecturéhas also received a lot of attention and the best partialtresis proved
in [8]: for any graphG, there is a proper total weightingwith ¢(v) € {1, 2} for each vertex
ando(e) € {1,2,3} for eache € E(G).

A total list assignment of7 is a mapping. which assigns to each element V(G)U E(G) a
setL(z) of real numbers as permissible weights. BAstotal weighting is a total weighting with
¢(z) € L(z) for eachz € V(G) U E(G). Assumey : V(G)U E(G) — {1,2,...} is a mapping
which assigns to each vertex or edgef GG a positive integer. A total list assignmehntof G is
called ay-total list assignmentf G if |L(z)| = ¢(z) forall z € V(G) U E(G). A graphG is
calledv-choosabléf for every ¢-list assignment. of GG, there exists a propdi-total weighting.

A graph(G is called(k, k')-choosable if5 is ¢)-choosable, where(v) = k for each vertex and
(e) = k' for each edge.

The list version of total weighting are studied in a few padér 12, 14, 19, 18, 20] It is known
[20] thatG is (k, 1)-choosable if and only if7 is (vertex)k-choosable. So the concept (@f, £')-
choosability is a common generalization of vertex chodagjedge weighting and total weighting
of graphs. As strengthening of the 1-2-3 conjecture and {Bednjecture, it was conjectured in
[6, 20] that every graph with no isolated edge§lis3)-choosable and conjectured in [20] that every
graph is(2, 2)-choosable. These two conjectures are called th&)-choosability conjecturand
the (2, 2)-choosability conjecturerespectively.

In the study of total weighting of graphs, one main algebtaat is Combinatorial Nullstellen-
satz.

For each: € V(G) U E(G), letz, be a variable associated toFix an arbitrary orientatioy
of G. Consider the polynomial

Pe({z.: 2 V(Q)UEG) ) = ][] ((Zx+x><2x+x>)

e=uveE(D) e€E(u) e€E(v)

Assign a real numbep(z) to the variabler,, and view¢(z) as the weight ot. Let P;(¢) be
the evaluation of the polynomial at. = ¢(z). Then¢ is a proper total weighting of; if and
only if Po(¢) # 0. The question is under what condition one can find an assigtwnir which
Pa(9) # 0.

An index functionof G is a mapping; which assigns to each vertex or edgef G a non-
negative integer)(z). An index functiony of G isvalidif } ., z7(z) = |E|. Note that|E|
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is the degree of the polynomié&k;({z. : z € V(G) U E(G)}). For a valid index functiom, let
c, be the coefficient of the monomidl,_, #7%) in the expansion of;. It follows from the
Combinatorial Nullstellensatz [3, 5] thatdf, # 0, andL is a list assignment which assigns to
eachz € V(G) U E(G) a setL(z) of n(z) + 1 real numbers, then there exists a mappingith
¢(z) € L(z) such that

Pe(¢) # 0.

Therefore, to prove that a graghis (k, k’)-choosable, it suffices to show that there exists an
index functiony with n(v) < k — 1 for each vertex andn(e) < k' — 1 for each edge andc, # 0.

The coefficient,, is related to the permanent of the matrix below (see Equétipn

We write the polynomiaP;({z. : z € V(G) U E(G)}) as

Po({z.: 2 e V() UEG) ) = [] > Agle, 2.

e€E(D) 26V (G)UE(G)

Then fore € E(G) andz € V(G) U E(G), if e = (u,v) (oriented fromu to v), then

1, if z=wv,0rz # eis an edge incident to,
Agle, z] = ¢ =1, if 2=, 0rz # eis an edge incident to,
0, otherwise.

Now A is a matrix, whose rows are indexed by the edge§ @ind the columns are indexed by
edges and vertices ¢f. Given a vertex or edge of G, let A;(z) be the column ofd. indexed
by z. For an index functiom of G, let A¢(n) be the matrix, each of its column is a columnAd,
and each columnl;(z) of A occursy(z) times as a column afl;(n). It is known [4] and easy
to verify that for a valid index function of G,

mpewaw», (1)

whereper(A) denotes the permanent of the square matriRecall that ifA is anm x m matrix,

then
per(A) = > Ali, o (i),
oc€Sm
wheres,, is the symmetric group of ordex.

A square matrixA is permanent-non-singular jfer(A) # 0. A square matrix of the form
Ag(n) is called an(a, b)-matrix if n(v) < a for each vertexo andn(e) < b for each edge:.
Motivated by an edge weighting and an total weighting problef graphs, the following two
conjectures were proposed in [6] and [20], respectively.

C’?:

Conjecture 1. Every graphGG has apermanent-non-singulét, 1)-matrix.

Conjecture 2. Every graphGG without isolated edges haspermanent-non-singuléd, 2)-matrix.
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Conjecture 1 and Conjecture 2 have been studied in many pépee [16] for a survey of
partial results on these two conjectures), and both camjestremain largely open. It is easy to
verify both conjectures for trees. However, proving these tonjectures for wheels seem to be
quite non-trivial. It was proved in [14] that Conjecture ltrige for wheel, and in [21] for Halin
graphs. Quite surprising, Conjecture 2 remained open f@elgfor a long time. In this paper, we
develop some tools and techniques and settle Conjecturegef@ralized Halin graphs.

2. Main theorem and some observations

A Halin graphis a planar graph obtained by taking a plane fe@n embedding of a tree on
the plane) without degrekvertices by adding a cycle connecting the leaves of the relcally.
If the treeT" is allowed to have degreevertices, then the resulting graph is calledemeralized
Halin graph

Theorem 2.1. Every generalized Halin grapi has apermanent-non-singul#®, 2)-matrix.

We will prove this theorem in the next two sections. In thegbrave shall frequently use the
following observations:

Observation 1. If A is a matrix whose columns are integral liner combinations@timns ofd,
andper(A) # 0 and each olumm(z) occurs in at most)(z) times in the combinations, then
there is an index function’ with 1’(z) < n(z) andper(Aq(n')) # 0. Moreover, ifper(A) # 0
(mod p) for some prime, thenper(As (1)) # 0 (mod p).

This can be derived directly from the multilinear properfypermanent.

Observation 2. ([20]) For an edgeec = uv of G,
Ac(e) = Ag(u) + Ac(v). (2)

The above follows easily from the definition of the matry (cf. [20]):

A balloonis a graph obtained by attaching a path to a cycle (i.e., iiyembe end vertex of
a path with a vertex of a cycle). If the cycle is of odd lengtker the balloon is called an odd
balloon. The path could be a single vertex, in which case #ildn is simply a cycle. If the
path is not a single vertex, then the unique vertex of degriesecalled theroot of the balloon
Otherwise, the root of the balloon (which is a cycle) is artraaby vertex of the cycle.

Observation 3. If B is an odd balloon with root, then2A4(v) is an integral linear combination
of Ag(e) fore € E(B).

Indeed, ifP = (vy,va,...,vx) @NdC' = (uq, us, ..., us+1) and the balloon is obtained by
identifying vy, with u,, lete; = v (for1 <i <k —1) ande, = u;u;q (for1 <7 <2p+1and
Ugp+2 = UL ), then

2A4c(v1) = 24g(e1) — ...+ (=1)"24q(epr) + (=D HAg(e) — ... + Ag(egpi1))-
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3. Non-bipartite generalized Halin graphs
In this section, we consider non-bipartite generalizedriHglaphs.

Lemma 3.1. Let G be a connected non-bipartite graph. If there is a matdixvhose columns
consists of vertex columns df; andper(A) # 0 (mod p) for some odd prime, thenG has a
permanent-non-singuléd, p — 1)-matrix.

Proof. Sincep is an odd prime, by replacing each colump(v) with 2A4(v) in A, the resulting
matrix A" hasper(A’) = 2"per(A4) # 0 (mod p). SinceG is connected and non-bipartite, for any
vertexv, there is an odd balloo® of G with rootv. By Observation 32 A (v) can be written as
an integral linear combination of edge columngbfBy Observation 1, there is an index function
n with n(v) = 0 for each vertex such thaper(As(n)) # 0 (mod p). Itis obvious that ify’ is an
index function for whichy’(e) > p for some edge, thenper(Ag(n')) = 0 (mod p). Therefore
n(e) < p — 1for eache € E(G). l.e., Az(n) is a permanent-non-singulé, p — 1)-matrix of
G. O

Corollary 3.1. If p is a prime,G is a connected non-bipartitey — 1)-degenerate graph, thet
has apermanent-non-singuléd, p — 1)-matrix.

Proof. Order the vertices,, 19, ..., v, in such a way that each vertex has back-degreé, <
p — 1, i.e.,v; has at mosp — 1 neighbours; with j < i. Let A be the matrix consisting; copies
of the column ofA.; indexed byy; fori = 1,2,...,n. Itis easy to verify thatper(A)| =[]}, d;!.
Henceper(A) # 0 (mod p). It follows from Lemma 3.1 tha& has a permanent-non-singular
(0,p — 1)-matrix. O

Lemma 3.2. Assume is an odd prime(= is a connected non-bipartite graphjs a vertex ot of
degreed and G — v has apermanent-non-singul&®, p — 1)-matrix Ag_,(n). If there aret edge
disjoint odd balloond3;, B, . .., B, with rootv such that foranyl < i < tande € B;,n(e) =0
andt > d/(p — 1), thenG has apermanent-non-singulé®, p — 1)-matrix.

Proof. Let '(z) = n(z) except thaty(v) = d. Let A’ be obtained fromA.(n’) by replacing
each copy ofA;(v) by 245 (v). Thenper(Ag(n')) = 24d'per(Ag_.(n)) # 0. By Observation
3, each copy o2A4(v) can be written as integral linear combination of edge colsiry(e) for
e € E(By), i.e., 3 cpp,) tieAc(e) for eachi, wherea; . are integers. A$ > d/(p — 1), we
can replace the copies 0f2A¢(v) with integral linear combinations_ ., ai.Ac(e), so that
eachB; is used at most — 1 times. Therefore we can write each colummn4ef(n’) as linear
combination of edge columns dff;, and each edge column is used at most1 times. SoG has
a permanent-non-singulél, p — 1)-matrix. O

By Lemma 3.1, to prove that a non-bipartite generalizedHgitaphG has a permanent-non-
singular (0, 2)-matrix, it suffices to show that there is a matrxconsisting of vertex columns
of Ag andper(A) # 0 (mod 3). By Equation (1), this is equivalent to the existence of adval
index functionn of G such that)(v) < 2 for each vertex, n(e) = 0 for each edge andc, # 0
(mod 3).
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Recall that the graph polynomial 6f is defined ag); ({z, : v € V(G)}) = [Luep@) (®u —

Ty), where( is an orientation of7. So Q¢ is obtained fromP; by letting x, = 0 for each
edgee of G. Therefore, ifp(e) = 0 for all edges, ¢, is indeed the coefficient of the monomial
Hvev(G) 27" in the expansion of the graph polynom@}; of G. For the purpose of calculating
¢, for such an index function, we use a result of Alon and Tarsi [5].

A sub-digraphH (not necessarily connected) of a directed grdpis called Eulerian if the
in-degreed,; (v) of every vertexy of H is equal to its out-degre&,; (v). An Eulerian sub-digraph
H is even if it has an even number of edges, otherwise, it is bddE E(D) and EO(D) denote
the sets of even and odd Eulerian subgraph® ofespectively. The following result was proved
in [5].

Lemma 3.3. [5] Let D = (V, E) be an orientation of an undirected gragh andd; is the out-
degree ofy; in D. Then the coefficient [\, % in the graph polynomial of? is +(| EE(D)| —
|[EO(D))).

Lemma 3.4. Let G be a non-bipartite generalized Halin graph. Théhhas apermanent-non-
singular(0, 2)-matrix.

Proof. Assume( is obtained from a tree plariE by adding edges connecting its leaves into a
cycleC'. We choose non-leave vertex Bfas the root of/’. If 7" has an even number of leaves,
then we orient the edges 6fin such a way that the edges in the tfiéare all oriented towards to
the root vertex, and orient the edgeg'0$o that it becomes a directed cycle. In such an orientation
D of G, by repeated deleting sink vertices (that must isolatetioesy in any Eulerian subgraph),
the resulting graph is a directed even cy€le As D has no odd Eulerian sub-digraph, and bBas
even Eulerian sub-digraph (the empty digraph and As each vertex has out-degree at niast
The conlcusion follows from Lemmas 3.1, 3.3 and Observalion

Assumel” has an odd number of leaves. Heri¢és an odd cycle.

Assume first that7 is not a wheel. Let be a non-leaf vertex ot all its sons are leaves.
Assumev hask leaf sonsvy, vs, . . ., V.

If k& is even, then we orient the cycte as a directed cycle, orient the tréewith all edges
towards the root, except that the edge. is oriented fromw to v,. Straightforward counting
shows that among Eulerian sub-digraphd€ontaining the directed edgey, k/2 are odd and
k/2 — 1 are even. The empty Eulerian subgraph is even, and the eliregtle is odd. Hence
|EE(D)| — |OE(D)| #0 (mod 3). As each vertex has out-degree at niyste are done.

If k£ is odd, then we oriented the edgesiohs in the case thdtis even, except that the edge
in C oriented towards, is reversed as an edge oriented away frgnfso v, becomes a source
vertex in the cycle”). Straightforward counting shows that among Eulerian digibaphs ofD
containing the directed edgey, (k — 1)/2 are even andk — 1)/2 are odd.

There is one even Eulerian sub-digraph not using the edgé&he empty sub-digraph) and no
odd Eulerian sub-digraph not using the edgg. Again each vertex has out-degree at niste
are done.

Assume(F is an odd wheel with/' (G) = {w, vy, v, ... v, }, andw is the center of the wheel. If
n < 5, then it can be checked directly th@thas a permanent-non-singul@r 2)-matrix. Assume
n > 7. Consider the grapt — v,,. We order the vertices & — v,, asvy, w,vy...,v,_1. Then
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each vertex has back-degree at mbsAs in the proof of Corollary 3.1, for the index function
with n(w) = 1,n(v;) = 2fori =2,3,...,n — 1, per(Ag(n)) # 0 (mod 3). Itis easy to check
that each vertex, vs, vs, . . ., v,,_1 IS the root of an odd balloon i& — v,, that does not contain any
edge incident te;, and does not contain the edges;w andv,w. By Observation 3 (cf. the proof
of Lemma 3.1), we know that there is an index functiprof G — v,, with per(Ag_,,(17')) # 0
(mod 3) such thaty’(v) = 0 forallv € V(G — v,), 1'(e) < 2 for any edgee of G — v,,, and
n'(e) = 0 fore € E(v,) U E(v1) U {v,_1w,vw}. Now the vertexv, is the root of two edge
disjoint odd balloong3; with V(B;) = {v,, w,v,_1} and By with V(Bs) = {v,, v1,ve, w}. AS
2 > dg(v,)/2, by Lemma 3.2( has a permanent-non-singular 2)-matrix. O

4. Bipartite generalized Halin graphs

Lemma4.l. If pis a prime,G is a connected bipartitép — 1)-degenerate graph; is a vertex of
degreel, thenG has apermanent-non-singulanatrix in which each edge column occurs at most
p — 1 times, the vertex column indexeddygccurs once and there are no other vertex column.

Proof. Order the verticesy, vs, ..., v, in such a way that each vertex has back-degreé;, <
p—1,i.e.,v; has at mosp — 1 neighbours); with j < 4, andv,, = v. Let A be the matrix consisting
d; copies of the column afl; indexed byy; fori = 1,2, ..., n. Similarly, |per(A)| =[], di! #0
(mod p).

AssumeA(v;) is a column inA indexed byy; andi # n. Let A’ be the matrix obtained from
A by replacingAg(v;) by Ag(v). SinceA’ has two copies of the columag(v), which has only
one nonzero entry, we know thadr(A’) = 0. Therefore, if we replacé(v;) by Ag(v;) £ Ac(v),
the resulting matrix has the same permanemt as

For each vertex column i of the form A (v;) for i # n, we replace it byAs(v;) £ Ag(v),
where thet sign is determined by the parity of the distance betweenvtibeserticesv; andv: if
the distance is odd, then choose and otherwise choose. Denote the resulting matrix bhy*.
Thenper(A*) = per(A’) # 0 (mod p).

Similarly as in the proof of Corollary 3.1, each column4f other than the column indexed
by v can be written as an integral linear combination of edgernakiof A;. As in the proof of
Lemma 3.1, there is a matrig* consisting of edges columns df,, plus one column indexed by
v, such thaper(A#) # 0 (mod p), where each edge column occurs at most1 in A%. O

AssumeG is a graph andX, Y are subsets df' (G). We denote byF[X, Y] the set of edges
with one end vertex itX' and one end vertex with. Let E[X]| = E[X, X].

Lemma 4.2. Assumé= is a connected graph, and(G) = X U Y is a partition of G. If the
subgraphH induced by edges i&#[X] U F[X, Y] has apermanent-non-singuld6, 2) matrix A
which contains no columns indexed by edgeg[X, Y] and G[Y] is 2-degenerate, the@ has a
permanent-non-singul&d, 2)-matrix.

Proof. Assume([Y'| has connected componeidt§y; |, G[Y3], ..., G[Y,]. Foreachl <i < g, let

e; = x;y; be an edge connecting € X toy; € Y;. LetG,; = G[Y;] + ¢;. By Lemma 4.1(G; has

a permanent-non-singular matr in which each edge column occurs at most twice, the vertex
column index byr; occurs once and there are no other vertex column.
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Letn; be the index function ofr; so that4; = Ag, (7;).

Let A, be the matrix obtained from, by deleting the column indexed by and the row index
by e;. Since the column indexed hy has only one nonzero entry, we conclude that A;) # 0.

Let A be a permanent-non-singuldy, 2) matrix of H# which contains no columns indexed by
edges inE[X,Y]. Letn be the index function off so thatA = Ay (n).

For each edge of G, let

n(e), ifee F[X],
n'(e) = mile), ifee E(G),
0, ifec E[X,Y]—{e1,ea,...,¢e}.

Let A" = As (7). Note thaty'(e) < 2 for each edge of G. Now A’ is of the form

Thereforeper(A’) = per(A)per(A})...per(A;) # 0, and henced’ is a permanent-non-
singular(0, 2)-matrix of G. O

Observe that any proper subgraph of a generalized Halirhgrap 2-degenerate. Therefore to
prove that a generalized Halin gragthas a permanent-non-singu(8r 2)-matrix, by Lemma 4.2,
it suffices to find a partitiol’ (G) = X UY so thatG[X]|U E[X, Y] has a permanent-non-singular
(0,2) matrix which contains no columns indexed by edge&jX, Y.

Let G be an oriented graph arde an edge id:. We calle asink edgef all edgese’ adjacent
to e are oriented towards (i.e, towards the common end vertex«cénde’) and asource edgéf
all edges’ adjacent t@ are oriented away from

Lemma 4.3. Assume? is a connected graph and U Y is a partition of V' (G). If there is an
orientation of edges [ X| U E[X, Y] and a mapping : F[X]U E[X,Y] — E[X] such that
for eache € E[X]| U E[X,Y], ¢(e) # e is a source or a sink edge incident ¢pand for each
e € E[X], |¢~ (e)| < 2, then the subgraplii = G[X] U E[X, Y] has apermanent-non-singular
(0, 2) matrix which contains no columns indexed by edgées|if, Y.

Proof. Let H be the subgraph a¥ induced by edges i&[X| U E[X, Y]. Let D be an orientation
of edges inH, and¢ be a mapping fron®'[X| U E[X,Y] — FE[X] such that for eacla €
E[X]UE[X,Y], ¢(e) is a source or a sink edge incidentt@and for eaclke € E[X], |¢!(e)| < 2.

Let n(e) = |¢~'(e)| for each edge € E[X]. We shall show thati;(n) has non-zero per-
manant. Note that the column vectdy, (e) is non-negative it is a sink edge and non-positive
if e is a source edge. Thus to prove thgi(n) has non-zero permanant, it suffices to find a one-
to-one mappingr between the rows and columns @f;(n) such that for each row, the entry
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Ap(n)le,m(e)] # 0. The rows ofdy (n) are indexed by edges [ X | U E[X, Y] and columns are
indexed by a multiset of edges ] X |, with eache € E[X] occursy(e) = |¢~!(e)| times. Since
edges inp~!(e) are incident ta;, the mappingp is such a one-to-one mapping. O

Lemma4.4. LetG be a bipartite generalized Halin graph. Théhhas apermanent-non-singular
(0, 2)-matrix.

Proof. By Lemma 4.2, it suffices to choose a sétsuch that the subgrapt = G[X] U E[X,Y]
has a a permanent-non-singul@r 2) matrix which contains no columns indexed by edges in
E[X,Y]. In all the figures below, vertices df are indicated by open dots, and vertices'ore
indicated by solid dots.

Recall that’7 is obtained from a plane tréé by adding a cycle connecting its leaves in order.
If T is a path, by choosing with three consecutive vertices and using twice of edges|iXi] as
column vectors, then it can easily be verified that this isran@@ent-non-singuldp, 2)-matrix of
H. AssuméT’ is not a path. We choose a vertex V' (T') of degree at leastas the root of". Let
vy be a leaf with maximum depth. Sinceis bipartite, the father, of v; has only one son (i.e.
d(ve) = 2). Letws be the father of.

Case 1: v3 has two or three sons.

Let w be a leaf son ofi; and chooseX = {v3, v2, v1, w}. We orient the edges iff so thatv;
is a sink vertex and; is a source vertex.

Figure 1.X andH

If v3 has two sons, as depicted in Figure 1, thenddie the matrix consisting two copies of
columns ofA 5 indexed byv, vy, v9v3, v3w and one copy of the column af; indexed by, w. l.e.,
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V1Vg, V1V2, V2V3, VU3, V3W, UV3W, V1W

[—1 —1 0 0 0 0 —1]
0 0 1100 —1
A -1 -1 0011 0
-1 -1 0011 0
0 0 1111 0
0 0 1100 —1
0 0 00 1 1 1]

Thenper(A) = —24, and we are done.

If v3 has three sons, as depicted in Figure 2, we choose twice e of A5 indexed by
V1V2, V2U3, U3W, V1W.

Figure 2.X andH

Then

V102, V1V2, V3W, V3W, VU3, V2U3, V1W, V1W

1 1000 0 —1 —1]
0 0 0011 —1 —1
-1 -1 1100 0 0
A= |-1 11100 0 0
0 0 1111 0 0
0 0 0011 —1 —1
0 0 1100 1 1
(0 0 1111 0 0]

Thenper(A) = —48 and we are done.

Case 2: v3 has at least four sons of.
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Let X be the set consisting; and all its descendants. L&t = VV — X. Again, orient the
edges ofH so thatus is a sink vertex, and all vertices at distaricom v3 are source vertices as
in Figure 3.

Figure 3.X andH

Then all the edges iR[X] N E(T") are source or sink edges.

As v3 has at least four sons, there is at least one somwsgyv,, such thatw is not a leaf of
T. Letw' be the son ofv (note that sincé&- is bipartite, if a son of; is not a leaf off’, then it has
exactly one son), and, be the father ofi;. Lete; = v3vy, €5 = w309, €3 = v9v1, ¢4 = v3w and
es = ww'.

Each edge in E[X] N E(T) is either incident ta; or is of the formuw’, whereu is a son of
vg andu’ is the son ofu. Let¢ : E[X]|U E[X,Y] — E[X] be the mapping defined as follows:
Cyclically order the edges o [X| — {e,} incident tovs asej, ey, ..., e, ande] = ey. Let
¢(€;) = €., where the indices are modujoLet ¢(e,) = e5. For each som of v3 which is not a
leaf of T', let v’ be the son ofi, and lety(uu') = uvs. In particular,g(es) = e; andep(es) = ey.

Assumee € (E[X] — E(T)) U E[X,Y]. If e = e, theng(e;) = e4. Otherwisee € E(C), if
e is to the left ofv;, theng(e) is the tree edge incident toand to the right o#; if e is to the right
of vy, theng(e) is the tree edge incident toand to the left ok. (In particular, both cycle edges
incident tov; are mapped tes = vyvy).

It is easy to verify that for eache E[X|UE[X, Y], ¢(e) is a source or a sink edge incident to
e € E[X], and for eacke € E[X], |¢~'(e)] < 2. So it follows from Lemma 4.3 that the subgraph
H = G[X]UE[X,Y] has &0, 2) matrix which contains no columns indexed by edgeB X, Y].

Case 3: v3 has only one son.

Let v, be the father ob3. If there is a sonv of v, with dr(w) > 3, then the depth ofv is
the same as3;. We choosew to play the role ofv;, and we are in Cases 1 and 2. Hence, we may
assume that each son@fhas degree at most two in. Let X be the set consisting af, and all
the descendants ef; that have distance at moatto v,. LetY = V — X. Orient the edges in
E[X]UE[X,Y] sothat, is a sink vertex, and all vertices at distar2deom v, are source vertices
as in Figure 4.
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Figure 4.X andH

In this orientation, all the edges iR[X| N E(T") are source or sink edges. Similarly as in
the previous case, it is easy to find a mapping £[X] U F[X,Y] — E[X] such that for each
e € E[X]U E[X,Y], ¢(e) is a source or a sink edge incidentdpand for eache € E[X],
|7 (e)] < 2. By Lemma 4.3, the subgrapii = G[X] U E[X,Y] has a(0,2) matrix which
contains no columns indexed by edgesipnY, Y.

This completes the proof of Lemma 4.4. O

It was proved in [22] that every grapgh has a permanent-non-singular 2)-matrix. However,
the following two conjectures which are weaker than Conjexs 1 and 2, respectively, remain
open.

Conjecture 3. There is a constarit such that every grapty has apermanent-non-singulék;, 1)-
matrix.

Conjecture4. There is a constarit such that every grapy without isolated edges hagp@rmanent-
non-singular0, k)-matrix.
Acknowledgement

This paper is finished while the 2nd author is visiting PretesShinya Fujita at Yokohama
City University. She thanks the hospitality of Professojitland Yokohama City University.

References

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, and B.A. Regdertex colouring edge partitions,
J. Combin. Theory Ser. B4 (2005), 237-244.

[2] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed, amél Thomason, Vertex-colouring
edge-weightingsCombinatorica27 (2007), 1-12.

[3] N. Alon, Combinatorial NullstellensatZombin. Prob. Compu8 (1999), 7—29.

22



Total weight choosability for Halin graphs | Yu-Chang Liang et al.

[4] N. Alon and M. Tarsi, A nowhere zero point in linear mapgsnCombinatoricad (1989),
393-395.

[5] N. Alon and M. Tarsi, Colorings and orientations of grapombinatorical2 (1992), 125—
134.

[6] T.Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosg# of graphs,J. Graph Theor60
(2009), 242-256.

[7] G.J.Chang, C. Lu, J. Wu, and Q.L. Yu, Vertex coloring 2yedveighting of bipartite graphs,
Taiwanese Journal of Mathematits (4) (2011), 1807-1813.

[8] M. Kalkowski, A note on 1, 2-Conjectuyenanuscript.

[9] M. Karonhski, T. Luczak, and A. Thomason, Edge weights aertex colours,). Combin.
Theory Ser. B1 (2004), 151-157.

[10] M. Kalkowski, M. Karohski, and F. Pfender, Vertex-oahg edge-weightings: towards the
1-2-3- Conjecture]). Combin. Theory Ser. B)0 (2010), 347-349.

[11] H. Lu, Q. Yu, and C.-Q. Zhang, Vertex-coloring 2-edgeighting of graphsEuropean J.
Combin.32 (2011) 21-27.

[12] H. Pan and D. Yang, On total weight choosability of greph Comb. Optim25 (2013),
766-783.

[13] J. Przybyto and M. Wozniak, On a 1-2 conjectuBgscrete Math. Theor. Comput. Sdi2
(2010), 101-108.

[14] J. Przybylo and M. Wozniak, Total weight choosabilif/graphs,Electron. J. Combinl8
(2011), no. 1, Paper 112, 11 pp.

[15] U. Schauz, Algebraically solvable problems: desagigpolynomials as equivalent to explicit
solutions Electron. J. Combinl5 (2008), no. 1, Research Paper 10, 35 pp.

[16] B. Seamone, The 1-2-3 conjecture and related problenss: survey, submitted
(http://arxiv.org/abs/1211.5122).

[17] T. Wang and Q. L. Yu, A note on vertex-coloririg-edge-weightingFrontier Math. 4 in
China,3(2008), 1-7.

[18] T. Wong, D. Yang, and X. Zhu, List total weighting of gfag Fete of combinatorics and
computer science837—-353, Bolyai Soc. Math. Stud., 20, Janos Bolyai Matle. 38udapest,
2010.

[19] T. Wong, J. Wu, and X. Zhu, Total weight choosability dr@sian product of graphSuro-
pean J. Combinatoric83 (2012), 1725-1738.

23



Total weight choosability for Halin graphs | Yu-Chang Liang et al.
[20] T. Wong and X. Zhu, Total weight choosability of graplisGraph Theory66 (2011), 198—
212.

[21] T. Wong and X. Zhu, Permanent index of matrices assediaiith graphsklectron. J. Com-
bin. 24 (2017), no. 1, Paper 1.25, 11 pp

[22] T. Wong and X. Zhu, Every graph {&, 3)-choosableCombinatorica36 (2016), 121-127.

24



