
www.ejgta.org

Electronic Journal of Graph Theory and Applications 9 (1) (2021), 157–??

The structure of the 3x + 1 problem
Alf Kimms

Chair of Logistics and Operations Research,

Mercator School of Management,

University of Duisburg–Essen,

Lotharstr. 65, 47048 Duisburg, Germany

alf.kimms@uni–due.de

Abstract

Paul Erdös said about the 3x+1 problem, “Mathematics is not yet ready for such problems”. And
he is seemingly right. Although we cannot solve this problem either, we provide some results about
its structure. The so–called Collatz graph is iteratively transformed into a sequence of graphs by
making use of some hidden structure information. It turns out that the transformation of graphs
corresponds to a sequence of sets of numbers. It is shown that if the union of these number sets
were equal to the set of integers greater than one, the famous Collatz conjecture would be true.
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1. Basics of the 3x + 1 Problem

The so–called 3x+1 problem is a problem in number theory that has been around for decades.
The exact origin is reported to be obscure and seems to go back to the 1930’s, but for sure it has
been known to the community since 1952 (see Lagarias, 1985, and the references therein). Up to
now, the problem is considered to be unsolved, although many noble mathematicians have tried
to solve it. Depending on who worked on it or where it has been addressed, the problem be-
came known under several different names like, e.g., the Collatz conjecture, the Syracuse problem,
Kakutani’s problem, Haase’s algorithm, Ulam’s problem, and the Thwaites problem.
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The 3x+1 problem can be stated in a very simple manner: Given a positive integer x0, consider
the following sequence of positive integers:

xi+1 =

⇢
xi/2, if xi is even,
3xi + 1, if xi is odd.

As an example, consider x0 = 9. We then get the (infinite) sequence given in Table 1. Some au-
thors mention that the sequence of xi–values behaves somewhat “randomly” (e.g. Lagarias, 1985,
states that it simulates “random” behavior) which might be a reason for the missing proof. Because
of that, the numbers in the sequence are sometimes called hailstone numbers because they seem to
behave as erraticly as hailstones in a cloud.

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
xi = 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 ...

Table 1. The sequence with initial value x0 = 9

Note, the sequence has reached the value one after a finite number of iterations. Those readers
who are not familiar with the problem are invited to try different x0 values to check whether or not
the value one is among the numbers in the sequence. Sometimes a little patience is required as for
x0 = 27, for example.

If there is a need to emphasize the rules that are applied to construct the sequence, we will use
a notation similar to

9
3x+1�! 28

x/2�! 14
x/2�! 7

3x+1�! 22
x/2�! . . .

x/2�! 1.

Often a graph is drawn to illustrate the problem. It is constructed as follows and it is referred to as
the Collatz graph: Numbers are represented by nodes. An arc points from a number xi to a number
xi+1 if and only if xi+1 is the unique number that immediately follows xi in the sequence defined
above. While this is sufficient to draw the graph, one should note that there is a very systematic
way to construct the graph.

Since prime factorization is unique, for each number x that is odd there is a sequence of even
numbers that precedes x. For example, we have 5  10  20  40  . . . in the graph.
We call this the x–spine and the example just given shows the 5–spine. The number x of the
x–spine will be called the head of the spine. Since we will modify this graph later on and find
out that there are similar substructures in the modified graphs, we will refer to such x–spines
more precisely as x–level m–spines, where m denotes the number of modifications that were done
meanwhile unless it is clear from the context what level we talk about. Initially, we are at level 0
and 5  10  20  40  . . . would consequently be the 5–level 0–spine. In a similar manner,
we call the graphs level m–graphs so that the Collatz graph is the level 0–graph.

Furthermore, in the Collatz graph there is an arc from every odd number x to the even number
3x+ 1, i.e., the head x of the x–spine is connected to an even number that occurs in another spine
(there is one exception: 1 connects to 4 which is in the 1–spine). In our example, 5 connects to 16.
We can now arrange the x–spines in such a way (see Table 2) that each x–spine forms a column,
the step x ! x/2 (if x is even) means moving vertically upwards, and the step x ! 3x + 1 (if x
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is odd) means moving horizontally leftwards to the next number. Table 2 also illustrates how we
proceed through the graph given x0 = 9 (compare Table 1).

1

2

4 1

8

16 5

32 10 3

64 21 20 6

128 42 40 13 12

256 85 84 80 26 24

512 170 168 160 53 52 17 48

1024 341 340 113 336 320 106 35 104 34 11 96

2048 682 227 680 226 75 672 640 213 212 70 23 208 69 68 22 7 192

4096 1365 1364 454 151 1360 453 452 150 1344 1280 426 424 141 140 46 15 416 138 136 45 44 14 384

8192 2730 2728 909 908 302 2720 906 904 301 300 2688 2560 853 852 848 282 280 93 92 30 832 277 276 272 90 88 29 28 9 768

Table 2. An illustration of (parts of) the Collatz graph (the level 0–graph)

As of May 2020 it has been verified that at least for all positive integer starting values up to 268

we do indeed reach the value one (see the web sites http://sweet.ua.pt/tos/3x+1.html
maintained by Thomas Oliveira e Silva and http://www.ericr.nl/wondrous/maintained
by Eric Roosendaal, respectively, for recent computational results). This leads to the so–called
Collatz conjecture:

For any positive integer x0, the corresponding sequence of xi–values will reach the

value one in a finite number of steps.

No accepted proof for this conjecture is available yet.
Trying to grasp the nature of the problem, one can draw a graph that illustrates the fixed point

iteration given a starting value x0. Figure 1, for example, shows what is going on when we start
with x0 = 9.

There exists a cycle 4 ! 2 ! 1 ! 4 ! ... which contains the value one. But it is not clear
whether or not other cycles exist which may not contain the value one and which may lead to
infinite looping. Also, it might be that a sequence diverges in the sense that an infinite number of
different numbers is enumerated without getting to the value one.

Nevertheless, many insightful results have been gained. Jeffrey Lagarias eagerly collected pa-
pers on that problem and published surveys (Lagarias, 1985) and an edited volume of important
papers (Lagarias, 2010) which makes him become a historian of that problem. Because his collec-
tion of literature is extremely comprehensive, we do not review here the many papers that exist and
refer to the reviews published by Lagarias instead (updated versions are available online: Lagarias,
2011 and 2012). The book by Wirsching (1998) also contains a lot of material. Chamberland
(2003) provides an overview of major trends. The work that comes closest to our paper is by
Andaloro (2002) who investigates the connectivity of the Collatz graph.

With this paper, we contribute to the problem by revealing some properties of the structure
of the problem which, to the best of our knowledge, have not been used before. The paper is
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Figure 1. The fixed point iteration with x0 = 9
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organized as follows: Section 2 shows a systematic way to reduce the 3x+1 problem to a problem
with a reduced set of numbers. While not only the original problem can be represented as a
graph (the Collatz graph), the reduced problem can be represented by a graph, too. We show that
there is a very systematic way of transforming one graph into the other. In Section 3, we will
demonstrate that this systematic process can be iterated to get a sequence of graphs. While doing
so, the set of numbers that are contained in these graphs is reduced from one level to the next. This
allows us to reformulate the Collatz conjecture based on the numbers that are eliminated. Section
4 demonstrates how the eliminated numbers can be computed in a systematic manner. A final
Section 5 concludes the paper and points to some conjectures that we have and that may inspire
future work.

2. Sequences of Odds

By studying the numbers in the Collatz graph carefully, we can derive some properties that
relate certain numbers to each other. This will be done in this section and we will show that the
sequence of xi–values can be replaced by a sequence of yj–values where most of the yj–numbers
are odd and only the starting value y0 might be even.

Case 1. Let us begin with assuming xi being an even number. Since there is a unique prime
factorization, an even xi is of the form xi = 2kP with k � 1 and P odd. Thus, the sequence would
evolve from xi to xi+k = P by repeatedly divide the incumbent number by 2:

xi = 2kP
x/2�! xi+1

x/2�! . . .
x/2�! xi+k = P.

That means that we can consider a sequence yj = xi and yj+1 = P in order to find out whether
or not we can eventually reach the value one. As an example, consider xi = 40 = 23 · 5. We will
jump to 5 then (see Table 2) and Case 1 is an obvious shortcut.

Case 2. Let us now consider an odd number x. In the Collatz graph x connects to the even
number 3x+ 1 which belongs to some spine. In that spine 3x+ 1 is preceded by 6x+ 2 which in
turn is preceded by 12x+ 4. It is important to note that there cannot be any odd integer number x0

which connects to 6x+ 2 in the Collatz graph. This is easy to see by contradiction. Assume there
is an odd integer x0 such that 3x0 + 1 = 6x+ 2 holds. This implies x0 = 2x+ 1

3 which contradicts
to the assumption that x0 is an integer. On the other hand there exists an odd integer x00 so that
3x00 + 1 = 12x + 4. The value of x00 is x00 = 4x + 1. We can turn this round to observe that if we
face an odd integer xi such that xi � 1 can be divided by 4 giving a result that is an odd integer,
we can jump to (xi � 1)/4 instead. The reason is that both, xi and (xi � 1)/4, are connected to
the very same spine so that for the task of finding out whether or not we reach the value one in
the sequence, a starting point (xi � 1)/4 is equivalent to xi (if (xi � 1)/4 is an odd integer). This
allows us to define yj = xi and yj+1 = (yj � 1)/4 in such circumstances. Figure 2 illustrates this
case. Consider the example xi = 21 which is connected to the 1–spine. Instead of 21, we will
consider (21� 1)/4 = 5 which is connected to the 1–spine, too (see Table 2).

In Case 3 and 4, finally, assume xi is an odd number, i.e. xi = 2n + 1 with n being a non–
negative integer, and (xi � 1)/4 is not an odd integer. In such a case, the next number in the
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3x+ 1

6x+ 2

12x+ 4

yj+1 = x

yj = xi = 4x+ 1

Figure 2. The case where xi and (xi � 1)/4 are odd

sequence is defined to be xi+1 = 3xi + 1 and it is clear that xi+1 is even because xi+1 = 3(2n +
1) + 1 = 6n+ 4. Depending on n two cases exist.

Case 3. n is even. For example, consider xi = 9 = 2 · 4 + 1 (n = 4 is even). If n is even it can
be written as n = 2n0 with n0 being a non–negative integer. Thus, we have xi = 4n0 + 1. Recall
that we have assumed that (xi � 1)/4 is not odd. Consequently, n0 must be even. It turns out that
xi+1 = 6n + 4 = 12n0 + 4. xi+1 can now be divided by 4 to get xi+3 = 3n0 + 1. Since n0 is even,
xi+3 is odd and we can define yj = xi and yj+1 = (3yj + 1)/4. Compare Table 2 to check that we
can take a shortcut and jump from 9 to (3 ·9+1)/4 = 7. To repeat how this relates to the definition
of the sequence, note that the following subsequence was considered:

xi
3x+1�! xi+1

x/2�! xi+2
x/2�! xi+3.

Case 4. n is odd. As an example, one may consider xi = 11 = 2 · 5 + 1 (n = 5 is odd). In that
case n is of the form n = 2n0+1 with n0 being a non–negative integer and xi = 4n0+3. Applying
the definition of the sequence we get xi+1 = 6(2n0+1)+4 = 12n0+10. And xi+2 = 6n0+5 turns
out to be an odd number. With this observation, we can define yj = xi and yj+1 = (3yj + 1)/2.
Again, we can refer to Table 2 as an example to see that once we have reached 11 we can go to
(3 · 11 + 1)/2 = 17 next. The following subsequence illustrates what we did:

xi
3x+1�! xi+1

x/2�! xi+2.
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In summary we have proven that, given a positive integer value y0 = x0, it is sufficient to
investigate the following sequence of positive integers in order to find out if the 3x + 1 problem
eventually reaches the value one in all cases:

yj+1 =

8
>><

>>:

yj/2k, if yj is even and of the form 2kP (P odd),
(yj � 1)/4, if yj and (yj � 1)/4 are odd,
(3yj + 1)/4, if yj and (3yj + 1)/4 are odd and (yj � 1)/4 is no odd integer,
(3yj + 1)/2, if yj and (3yj + 1)/2 are odd and (yj � 1)/4 is no odd integer.

The question is, given any positive integer y0 = x0, does the sequence of yj–values eventually
reach the value one? Appendix Appendix A provides details for the odd numbers yj from 1 to
767.

Since only y0 might be even, we can focus on odd numbers. The possible sequences of yj–
values can be represented as an infinite graph, the level 1–graph, as shown in Table 3. For a each
odd number y for which (y� 1)/4 is not an odd integer, there is a set of odd numbers which result
from calculating 4y+1 repeatedly (compare Figure 2). 9 37 149 . . . is an example. These
numbers are connected in monotonic order. In Table 3 you will see these numbers as columns to
form a level 1–spine. The example 9 37 149 . . . is the 9–level 1–spine. Each odd number
y where (y � 1)/4 is not an odd integer (such a number is the head of a level 1–spine; see Table
3) is connected to either (3y + 1)/4 (if this is an odd number) or (3y + 1)/2 (in Figure 3 you have
to move horizontally to the next number in such cases). As an example, for y0 = 9 we get the
following sequence:

9
(3y+1)/4�! 7

(3y+1)/2�! 11
(3y+1)/2�! 17

(3y+1)/4�! 13
(y�1)/4�! 3

(3y+1)/2�! 5
(y�1)/4�! 1.

1 1

5 3

21 13 17 11 7 9
85 113 75 53 35 23 15 69 45 29 19 25 33 37 49 65 43 57

341 227 151 201 453 301 401 267 213 141 93 61 81 277 369 181 241 321 117 77 51 101 67 89 59 39 133 177 149 99 197 131 87 261 173 115 153 229 305 203 135

Table 3. The sequences of odd numbers can be represented by a graph, the level 1–graph

It might be worth to note that hidden in the definition of the sequence of yj–values there is
a systematic pattern for the sequence of odd numbers. Remember that each odd number yj can
be represented as yj = 2n + 1 where n is a non–negative integer. The rule that determines what
number comes next in the sequence is clearly defined above. So, let us first look at those odd
numbers yj for which (yj � 1)/4 is an odd integer (see Table 4). Let na be a counter of these
numbers in increasing order starting with zero. The counter na relates to n in the following way:
n = 4na + 2. These numbers have the form yj = 8na + 5 and the odd number that follows in the
sequence is yj+1 = 2na + 1. The distance between yj and yj+1 in terms of n is �n = �(3na + 2).

In a similar manner we can study the structure of those odd numbers yj for which the subse-
quent number yj+1 is calculated by the rule (3yj + 1)/4 (see Table 5). Let nb be a counter of these
numbers. The relation to n is n = 4nb. We have yj = 8nb + 1 and the subsequent number is
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yj = 5 13 21 29 37 45 53 ...
na = 0 1 2 3 4 5 6 ...
n = 2 6 10 14 18 22 26 ...
yj+1 = 1 3 5 7 9 11 13 ...

Table 4. Odd numbers yj where the next number in the sequence is (yj � 1)/4

yj+1 = yj � 2nb. The distance between these two numbers is �n = �nb.

yj = 1 9 17 25 33 41 49 ...
nb = 0 1 2 3 4 5 6 ...
n = 0 4 8 12 16 20 24 ...
yj+1 = 1 7 13 19 25 31 37 ...

Table 5. Odd numbers yj where the next number in the sequence is (3yj + 1)/4

Finally, we look at odd numbers yj where the follower yj+1 is defined to be (3yj + 1)/2 (see
Table 6). Let nc be a counter for those numbers so that we have n = 2nc + 1. yj is of the form
yj = 4nc + 3 and yj+1 = yj + 2(nc + 1). The distance is �n = nc + 1.

yj = 3 7 11 15 19 23 27 ...
nc = 0 1 2 3 4 5 6 ...
n = 1 3 5 7 9 11 13 ...
yj+1 = 5 11 17 23 29 35 41 ...

Table 6. Odd numbers yj where the next number in the sequence is (3yj + 1)/2

Figure 3 illustrates the relationships between the odd numbers and indicates which number
follows a particular number.

3. Level m–Graphs and the Collatz Conjecture

In this section we will carefully study what the transformation of the level 0–graph to the
level 1–graph, which was described in the previous section, really does. This process can then be
iterated so that we will learn something about the problem that allows us to reformulate the Collatz
conjecture.

To start with, let us have a look at the graph at a level m. It consists of level m–spines where
the head of each spine is connected to some other spine. Figure 4 illustrates the structure of the
level m–graph (compare Table 2 for an illustration of the level 0–graph). Note that it will turn out
to be convenient to consider several copies of the number one in the graph (in the level 0–graph,
for instance, we have one node x1 = 1 for the number one because x = 2 results in x1 = 1, we
have a second node for the number one because x2 = 1 yields x = 4 which means that the node
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1 3 5 7 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 519
y

Figure 3. An illustration of the internal structure of the sequence of odds

for x2 = 1 connects to the x1–spine, we have a third node for the number one because x3 = 1
connects to the x2 = 1–spine, and so on).

1

1

1

Figure 4. Sketch of the level m–graph

There are certain relationships among the numbers in the level m–graph that can be described
by distinct functions (see Figure 5) where the domains and the codomains are subsets of the set
IN := {1, 2, 3, . . .} of positive integers: First of all, there is a function sm : IN ! IN that is applied
whenever we move along a spine from one number to another. A second function gm : IN ! IN
describes what happens when we jump from the head of a spine to the spine this head number
is connected to. The head nodes of all the spines which are connected to a common spine can
be related to each other by a function fm : IN ! IN . And finally, we can derive a function
hm : IN ! IN that describes the relationship between the last node that connects to a particular
spine to the head of that spine.

For the level 0–graph s0 is defined to be

s0 : IN ! IN, s0(x) = x/2,

and the domain of s0 is the set of even integers, i.e. dom(s0) = IN even := {x 2 IN |x is even}. The
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Figure 5. Functions in the level m–graph that relate nodes

function g0 is defined as
g0 : IN ! IN, g0(x) = 3x+ 1,

the domain is the set of odd integers, i.e. dom(g0) = IN\dom(s0) = IN odd := {x 2 IN |x is odd},
and the codomain is the set of even integers, i.e. codom(g0) = IN even. By construction, a compo-
sition of sm and gm defines fm and hm. To be precise,

fm(x) = g�1
m � skxm � gm(x)

for a proper value kx � 1 that may or may not depend on the argument x (g�1
m denotes the inverse

of gm). The previous section taught us (compare Case 2 and Figure 2) that

f0(x) = (x� 1)/4, if (x� 1)/4 2 IN odd.

Regarding hm we have
hm(x) = skxm � gm(x)

where skm = sm � . . . � sm| {z }
⇥kx

and kx � 0 is appropriately chosen possibly depending on the argument

x. For m = 0 we have already derived in the previous section (see Cases 3 and 4) that

h0(x) =

⇢
(3x+ 1)/4, if (3x+ 1)/4 2 IN odd and x 62 dom(f0),
(3x+ 1)/2, if (3x+ 1)/2 2 IN odd and x 62 dom(f0).

Note, one is a fixed point of h0, i.e. h0(1) = 1.
Up to here we have just recalled what we know about the Collatz graph (i.e. the level 0–graph).

From that we have derived the sequences of odds in the previous section using among other things
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the simple insight that each even number can be reduced to an odd number by applying the function
s0 repeatedly (i.e. by moving along the spine to a smaller number). In other words, those numbers
which belong to dom(s0) could have been eliminated from further consideration. Let INm be the
set of numbers that are considered at level m. Initially, we have IN0 := IN . At level 1 we have
IN1 := IN0\dom(s0) = IN odd.

The remaining numbers (i.e. the numbers in IN1) can be partially ordered and arranged in a
graph (see Table 3). The way this graph is constructed can be generalized as follows: Let INm

be the set of numbers that are considered at level m. Given the level m–graph (and, thus, the
functions sm, gm, fm, and hm) the level (m + 1)–graph consists of level (m + 1)–spines which
are made out of those numbers that are linked by the function fm. The set INm+1 therefore is
INm+1 := INm\dom(sm). The number to which the head of such a level (m+1)–spine is connected
to in the level (m+1)–graph is determined by the function hm. Numbers to which the function sm
is applied do not show up any more in the level (m + 1)–graph. Again, we refer to Tables 2 and
3 where the level 0–graph and the level 1–graph are illustrated, respectively. Additionally, Figure
6 highlights some key numbers to emphasize the underlying idea of the graph transformation. To
wrap up, the resulting functions for the level (m+ 1)–graph are:

sm+1 = fm
gm+1 = hm

By construction, there is a 1–spine in the level (m + 1)–graph (and in all graphs with a lower
level). The functions fm+1 and hm+1 can then be derived using the basic cooking rule from above,
i.e.

fm+1(x) = g�1
m+1 � skxm+1 � gm+1(x) with kx � 1

and
hm+1(x) = skxm+1 � gm+1(x) with kx � 0,

while taking into account that dom(fm+1) ⇢ INm+2 = INm+1\dom(sm+1), codom(fm+1) =
INm+2 ⇢ INm+1, dom(hm+1) = INm+1\(dom(sm+1)[dom(fm+1)), and codom(hm+1) = INm+2 ⇢
INm+1.

For m = 1 we get

s1(x) = f0(x) = (x� 1)/4, if (x� 1)/4 2 IN1 = IN odd

g1(x) = h0(x) =

⇢
(3x+ 1)/4, if (3x+ 1)/4 2 IN1 = IN odd and x 62 dom(s1),
(3x+ 1)/2, if (3x+ 1)/2 2 IN1 = IN odd and x 62 dom(s1).

where
dom(s1) = {x 2 IN1 = IN odd|(x� 1)/4 2 IN1 = IN odd},

= {5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, . . .}.
We can iterate this procedure to construct a sequence of level m–graphs. The fundamental

lesson to learn is that if we can prove that all numbers included in the level (m+ 1)–graph reduce
to the value one by applying the functions sm+1 and gm+1, we can then be sure that all numbers
in the set

Sm
i=0 dom(si) eventually lead to the value one as well. That means to prove the Collatz
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Figure 6. Transformation of the level 0–graph into the level 1–graph
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conjecture it is sufficient to show that for every positive integer x0 greater than one there is a level
m such that x0 2 dom(sm). In mathematical terms the Collatz conjecture can be reformulated as

8x0 2 IN\{1} : 9m � 0 : x0 2 dom(sm).

4. The Domains of the Spine Functions

What remains to do is to determine the domains of the spine functions sm. We do this level by
level. For m = 0 and m = 1 we do have some results already.
Level m = 0 (see above):

dom(s0) = IN even

= {2, 4, 6, 8, 10, 12, 14, . . .}.
Level m = 1 (see above):

dom(s1) = {x 2 IN1 = IN odd|(x� 1)/4 2 IN1 = IN odd},
= {5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, . . .}.

For higher levels, we will need f1. We know that f1 is of the form

f1(x) = g�1
1 � skx1 � g1(x)

where

s1(x) = f0(x) = (x� 1)/4, if (x� 1)/4 2 IN1 = IN odd

g1(x) = h0(x) =

⇢
(3x+ 1)/4, if (3x+ 1)/4 2 IN1 = IN odd and x 62 dom(s1),
(3x+ 1)/2, if (3x+ 1)/2 2 IN1 = IN odd and x 62 dom(s1).

is known from above. This is equivalent to

x = g�1
1 � s�kx

1 � g1(f1(x)).

It is crucial to take into account that all intermediate results must belong to IN1, i.e. we must
have g1(f1(x)) 2 IN1, s�1

1 (g1(f1(x))) 2 IN1 and so on (or, which is equivalent, g1(x) 2 IN1,
s1(g1(x)) 2 IN1 and so on).

Two cases can occur:

(i) f1(x)
g1�! (3f1(x) + 1)/4

s�1
1�! 4((3f1(x) + 1)/4) + 1 = 3f1(x) + 2

g�1
1�! (2(3f1(x) + 2)�

1)/3 = 2f1(x) + 1. That is,
f1(x) = (x� 1)/2.

(ii) f1(x)
g1�! (3f1(x)+1)/2

s�1
1�! 4((3f1(x)+1)/2)+1 = 6f1(x)+3

s�1
1�! 4(6f1(x)+3)+1 =

24f1(x) + 13
g�1
1�! (4(24f1(x) + 13)� 1)/3 = 32f1(x) + 17. That is,

f1(x) = (x� 17)/32.
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The function h1 will be needed on higher levels, too, because g2 = h1 will be used. From the
deduction of f1 we can conclude the definition of h1:

h1(x) =

⇢
g1(x), if g1(x) 62 dom(s1),
((3x+ 1)/4� 1)/4, if g1(x) 2 dom(s1).

Note that the number one is a fixed point of h1, i.e. h1(1) = 1.
Level m = 2:

Since s2(x) = f1(x) with x 2 IN2 and s2(x) 2 IN2, we can determine dom(s2) as follows:
dom(s2) = {x 2 IN2| (3x+ 1)/2 2 IN1 and

((3x+ 1)/2� 1)/4 2 IN1 and
(x� 1)/2 2 IN2}

[ {x 2 IN2| (3x+ 1)/4 2 IN1 and
((3x+ 1)/4� 1)/4 2 IN1 and
(((3x+ 1)/4� 1)/4� 1)/4 2 IN1 and
(x� 17)/32 2 IN2}

= {3, �7,⇢⇢11,⇢⇢15, 19,⇢⇢23,⇢⇢27,⇢⇢31, 35,⇢⇢39,⇢⇢43,⇢⇢47, 51, . . .}
[ {⇢⇢49, 113,��177, 241,��305, 369,��433, 497, . . .}.

Note that we have listed odd numbers x 2 IN2 where (x � 1)/2 or (x � 17)/32, respectively,
is odd and we then canceled out all those x–values which do not belong to dom(s2) to emphasize
that the conditions under which a number x belongs to dom(s2) is a bit more complex than one
might expect. Some examples which show why certain numbers do not belong to dom(s2) are
given here: 11 62 dom(s2) because (11 � 1)/2 = 5 2 dom(s1) 6✓ IN2. 7 62 dom(s2) because
7

g1�! 11
s1�! (11� 1)/4 62 IN1. 49 62 dom(s2) because 49

g1�! 37
s1�! 9

s1�! 2 62 IN1.
Further levels can be investigated in a similar manner. We stop here because we assume that

there is in infinite sequence of levels to consider and the inductive construction of the domains of
the functions sm will not terminate.

5. Conclusion

The so–called Collatz conjecture states that the 3x+1 problem generates a sequence of numbers
that will reach the value one in a finite number of steps. Many people including us believe that this
is true, but no proof is available yet. As many others before, we also failed to provide a complete
proof and the 3x+ 1 problem remains to be a mystery.

We studied the so–called Collatz graph. We suggested to transform this graph into another
graph which is transformed into just another graph and so on. Each transformation reduces the
numbers to be considered. We have shown the following result: if the union set of the numbers
that are eliminated during the course of transformation equals the set of positive integers greater
than one then the Collatz conjecture is true. Unfortunately, we assume that the sequence of graphs,
which are constructed in this way, is infinite and this idea does not lead to a constructive proof.
This defines an open question to be tackled during future work: (1) We conjecture that the number
m⇤ of levels to consider is infinite. If that was false we have a proof of the Collatz conjecture
readily at hand: We simply need to check if dom(s0) [ dom(s1) [ . . . [ dom(sm⇤) = IN\{1}.

170



www.ejgta.org

The structure of the 3x+ 1 problem | Alf Kimms

However, it is interesting to mention that the numbers that are eliminated in each transformation
step have a very systematic pattern. At level 0 we eliminate all even numbers, i.e. all integers of
the form 2 + 21n where n � 0 is an integer. At level 1 the eliminated numbers are 5 + 23n with
n � 0 being a non–negative integer. At level 2 all numbers of the form 3 + 24n and 113 + 27n are
eliminated (n � 0 and integer). It might be interesting to investigate this further during future work
and to work on a second open question: (2) We conjecture that the numbers which are eliminated
do always have the form p+ 2kn (with integer values n � 0) where p is an integer (odd, for levels
m � 1) and k � 1 is an integer. If that was true the question to proof the Collatz conjecture is
whether or not all odd numbers can be written in that form using the specific values of p and k that
we get from the different levels of the graph transformation process.

It should be noted by the way that the latter discussion somehow reminds of so–called obstinate
numbers (see Pickover, 2005, Chapter 2, page 62): In 1848 Alphonse Armand Charles Georges
Marie (a.k.a. Prince de Polignac) conjectured that every odd number greater than one is of the form
p + 2k (with p being a prime number and k > 0). This conjecture turned out to be false (127, for
instance, is a counterexample).
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Appendix A. The Sequences of Odds in Detail from 1 to 767

For the odd numbers yj from 1 to 767 we provide here the successors in the sequence of yj–
values. Tables A.7 and A.8 provide the number yj , the rule that has to be applied, and the successor
yj+1. In addition the tables contain the number �j of steps that are required to reach the value one,
some authors call �j the total stopping time. For instance, given yj = 11, we would apply the rule
(3y + 1)/2 next to get 17. If we proceeded, we would see that we reach the value one �j = 5
steps later, i.e. yj+5 = 1.
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yj [�j] rule�! yj+1

1 [0]
(3y+1)/4�! 1 65 [10]

(3y+1)/4�! 49 129 [52]
(3y+1)/4�! 97 193 [51]

(3y+1)/4�! 145 257 [52]
(3y+1)/4�! 193 321 [9]

(3y+1)/4�! 241

3 [2]
(3y+1)/2�! 5 67 [11]

(3y+1)/2�! 101 131 [11]
(3y+1)/2�! 197 195 [52]

(3y+1)/2�! 293 259 [53]
(3y+1)/2�! 389 323 [43]

(3y+1)/2�! 485

5 [1]
(y�1)/4�! 1 69 [5]

(y�1)/4�! 17 133 [11]
(y�1)/4�! 33 197 [10]

(y�1)/4�! 49 261 [11]
(y�1)/4�! 65 325 [10]

(y�1)/4�! 81

7 [6]
(3y+1)/2�! 11 71 [44]

(3y+1)/2�! 107 135 [16]
(3y+1)/2�! 203 199 [52]

(3y+1)/2�! 299 263 [34]
(3y+1)/2�! 395 327 [62]

(3y+1)/2�! 491

9 [7]
(3y+1)/4�! 7 73 [50]

(3y+1)/4�! 55 137 [39]
(3y+1)/4�! 103 201 [7]

(3y+1)/4�! 151 265 [53]
(3y+1)/4�! 199 329 [21]

(3y+1)/4�! 247

11 [5]
(3y+1)/2�! 17 75 [5]

(3y+1)/2�! 113 139 [17]
(3y+1)/2�! 209 203 [15]

(3y+1)/2�! 305 267 [8]
(3y+1)/2�! 401 331 [10]

(3y+1)/2�! 497

13 [3]
(y�1)/4�! 3 77 [9]

(y�1)/4�! 19 141 [6]
(y�1)/4�! 35 205 [11]

(y�1)/4�! 51 269 [12]
(y�1)/4�! 67 333 [49]

(y�1)/4�! 83

15 [7]
(3y+1)/2�! 23 79 [15]

(3y+1)/2�! 119 143 [45]
(3y+1)/2�! 215 207 [39]

(3y+1)/2�! 311 271 [17]
(3y+1)/2�! 407 335 [30]

(3y+1)/2�! 503

17 [4]
(3y+1)/4�! 13 81 [9]

(3y+1)/4�! 61 145 [50]
(3y+1)/4�! 109 209 [16]

(3y+1)/4�! 157 273 [12]
(3y+1)/4�! 205 337 [49]

(3y+1)/4�! 253

19 [8]
(3y+1)/2�! 29 83 [48]

(3y+1)/2�! 125 147 [51]
(3y+1)/2�! 221 211 [17]

(3y+1)/2�! 317 275 [40]
(3y+1)/2�! 413 339 [22]

(3y+1)/2�! 509

21 [2]
(y�1)/4�! 5 85 [3]

(y�1)/4�! 21 149 [9]
(y�1)/4�! 37 213 [5]

(y�1)/4�! 53 277 [6]
(y�1)/4�! 69 341 [4]

(y�1)/4�! 85

23 [6]
(3y+1)/2�! 35 87 [12]

(3y+1)/2�! 131 151 [6]
(3y+1)/2�! 227 215 [44]

(3y+1)/2�! 323 279 [18]
(3y+1)/2�! 419 343 [54]

(3y+1)/2�! 515

25 [9]
(3y+1)/4�! 19 89 [12]

(3y+1)/4�! 67 153 [14]
(3y+1)/4�! 115 217 [11]

(3y+1)/4�! 163 281 [18]
(3y+1)/4�! 211 345 [54]

(3y+1)/4�! 259

27 [48]
(3y+1)/2�! 41 91 [40]

(3y+1)/2�! 137 155 [37]
(3y+1)/2�! 233 219 [22]

(3y+1)/2�! 329 283 [26]
(3y+1)/2�! 425 347 [54]

(3y+1)/2�! 521

29 [7]
(y�1)/4�! 7 93 [7]

(y�1)/4�! 23 157 [15]
(y�1)/4�! 39 221 [50]

(y�1)/4�! 55 285 [45]
(y�1)/4�! 71 349 [13]

(y�1)/4�! 87

31 [46]
(3y+1)/2�! 47 95 [46]

(3y+1)/2�! 143 159 [23]
(3y+1)/2�! 239 223 [31]

(3y+1)/2�! 335 287 [18]
(3y+1)/2�! 431 351 [36]

(3y+1)/2�! 527

33 [10]
(3y+1)/4�! 25 97 [51]

(3y+1)/4�! 73 161 [42]
(3y+1)/4�! 121 225 [22]

(3y+1)/4�! 169 289 [12]
(3y+1)/4�! 217 353 [54]

(3y+1)/4�! 265

35 [5]
(3y+1)/2�! 53 99 [10]

(3y+1)/2�! 149 163 [10]
(3y+1)/2�! 245 227 [5]

(3y+1)/2�! 341 291 [51]
(3y+1)/2�! 437 355 [13]

(3y+1)/2�! 533

37 [8]
(y�1)/4�! 9 101 [10]

(y�1)/4�! 25 165 [48]
(y�1)/4�! 41 229 [13]

(y�1)/4�! 57 293 [51]
(y�1)/4�! 73 357 [13]

(y�1)/4�! 89

39 [14]
(3y+1)/2�! 59 103 [38]

(3y+1)/2�! 155 167 [29]
(3y+1)/2�! 251 231 [55]

(3y+1)/2�! 347 295 [24]
(3y+1)/2�! 443 359 [21]

(3y+1)/2�! 539

41 [47]
(3y+1)/4�! 31 105 [16]

(3y+1)/4�! 79 169 [21]
(3y+1)/4�! 127 233 [36]

(3y+1)/4�! 175 297 [32]
(3y+1)/4�! 223 361 [18]

(3y+1)/4�! 271

43 [11]
(3y+1)/2�! 65 107 [43]

(3y+1)/2�! 161 171 [53]
(3y+1)/2�! 257 235 [55]

(3y+1)/2�! 353 299 [51]
(3y+1)/2�! 449 363 [18]

(3y+1)/2�! 545

45 [6]
(y�1)/4�! 11 109 [49]

(y�1)/4�! 27 173 [12]
(y�1)/4�! 43 237 [14]

(y�1)/4�! 59 301 [6]
(y�1)/4�! 75 365 [41]

(y�1)/4�! 91

47 [45]
(3y+1)/2�! 71 111 [30]

(3y+1)/2�! 167 175 [35]
(3y+1)/2�! 263 239 [22]

(3y+1)/2�! 359 303 [17]
(3y+1)/2�! 455 367 [19]

(3y+1)/2�! 551

49 [9]
(3y+1)/4�! 37 113 [4]

(3y+1)/4�! 85 177 [12]
(3y+1)/4�! 133 241 [8]

(3y+1)/4�! 181 305 [14]
(3y+1)/4�! 229 369 [7]

(3y+1)/4�! 277

51 [10]
(3y+1)/2�! 77 115 [13]

(3y+1)/2�! 173 179 [13]
(3y+1)/2�! 269 243 [42]

(3y+1)/2�! 365 307 [15]
(3y+1)/2�! 461 371 [19]

(3y+1)/2�! 557

53 [4]
(y�1)/4�! 13 117 [8]

(y�1)/4�! 29 181 [7]
(y�1)/4�! 45 245 [9]

(y�1)/4�! 61 309 [10]
(y�1)/4�! 77 373 [8]

(y�1)/4�! 93

55 [49]
(3y+1)/2�! 83 119 [14]

(3y+1)/2�! 179 183 [41]
(3y+1)/2�! 275 247 [20]

(3y+1)/2�! 371 311 [38]
(3y+1)/2�! 467 375 [20]

(3y+1)/2�! 563

57 [12]
(3y+1)/4�! 43 121 [41]

(3y+1)/4�! 91 185 [18]
(3y+1)/4�! 139 249 [20]

(3y+1)/4�! 187 313 [56]
(3y+1)/4�! 235 377 [27]

(3y+1)/4�! 283

59 [13]
(3y+1)/2�! 89 123 [19]

(3y+1)/2�! 185 187 [19]
(3y+1)/2�! 281 251 [28]

(3y+1)/2�! 377 315 [15]
(3y+1)/2�! 473 379 [23]

(3y+1)/2�! 569

61 [8]
(y�1)/4�! 15 125 [47]

(y�1)/4�! 31 189 [46]
(y�1)/4�! 47 253 [48]

(y�1)/4�! 63 317 [16]
(y�1)/4�! 79 381 [47]

(y�1)/4�! 95

63 [47]
(3y+1)/2�! 95 127 [20]

(3y+1)/2�! 191 191 [19]
(3y+1)/2�! 287 255 [21]

(3y+1)/2�! 383 319 [24]
(3y+1)/2�! 479 383 [20]

(3y+1)/2�! 575

Table A.7. Sequences of odds in greater detail (1 to 383)
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385 [13]
(3y+1)/4�! 289 449 [50]

(3y+1)/4�! 337 513 [14]
(3y+1)/4�! 385 577 [12]

(3y+1)/4�! 433 641 [20]
(3y+1)/4�! 481 705 [13]

(3y+1)/4�! 529

387 [52]
(3y+1)/2�! 581 451 [23]

(3y+1)/2�! 677 515 [53]
(3y+1)/2�! 773 579 [13]

(3y+1)/2�! 869 643 [10]
(3y+1)/2�! 965 707 [55]

(3y+1)/2�! 1061

389 [52]
(y�1)/4�! 97 453 [5]

(y�1)/4�! 113 517 [53]
(y�1)/4�! 129 581 [51]

(y�1)/4�! 145 645 [43]
(y�1)/4�! 161 709 [13]

(y�1)/4�! 177

391 [52]
(3y+1)/2�! 587 455 [16]

(3y+1)/2�! 683 519 [26]
(3y+1)/2�! 779 583 [12]

(3y+1)/2�! 875 647 [16]
(3y+1)/2�! 971 711 [27]

(3y+1)/2�! 1067

393 [25]
(3y+1)/4�! 295 457 [55]

(3y+1)/4�! 343 521 [53]
(3y+1)/4�! 391 585 [24]

(3y+1)/4�! 439 649 [63]
(3y+1)/4�! 487 713 [10]

(3y+1)/4�! 535

395 [33]
(3y+1)/2�! 593 459 [55]

(3y+1)/2�! 689 523 [54]
(3y+1)/2�! 785 587 [51]

(3y+1)/2�! 881 651 [44]
(3y+1)/2�! 977 715 [10]

(3y+1)/2�! 1073

397 [11]
(y�1)/4�! 99 461 [14]

(y�1)/4�! 115 525 [12]
(y�1)/4�! 131 589 [52]

(y�1)/4�! 147 653 [11]
(y�1)/4�! 163 717 [14]

(y�1)/4�! 179

399 [53]
(3y+1)/2�! 599 463 [56]

(3y+1)/2�! 695 527 [35]
(3y+1)/2�! 791 591 [25]

(3y+1)/2�! 887 655 [63]
(3y+1)/2�! 983 719 [22]

(3y+1)/2�! 1079

401 [7]
(3y+1)/4�! 301 465 [14]

(3y+1)/4�! 349 529 [12]
(3y+1)/4�! 397 593 [32]

(3y+1)/4�! 445 657 [21]
(3y+1)/4�! 493 721 [18]

(3y+1)/4�! 541

403 [8]
(3y+1)/2�! 605 467 [37]

(3y+1)/2�! 701 531 [54]
(3y+1)/2�! 797 595 [33]

(3y+1)/2�! 893 659 [22]
(3y+1)/2�! 989 723 [19]

(3y+1)/2�! 1085

405 [11]
(y�1)/4�! 101 469 [9]

(y�1)/4�! 117 533 [12]
(y�1)/4�! 133 597 [10]

(y�1)/4�! 149 661 [49]
(y�1)/4�! 165 725 [8]

(y�1)/4�! 181

407 [16]
(3y+1)/2�! 611 471 [56]

(3y+1)/2�! 707 535 [9]
(3y+1)/2�! 803 599 [52]

(3y+1)/2�! 899 663 [11]
(3y+1)/2�! 995 727 [19]

(3y+1)/2�! 1091

409 [16]
(3y+1)/4�! 307 473 [14]

(3y+1)/4�! 355 537 [9]
(3y+1)/4�! 403 601 [24]

(3y+1)/4�! 451 665 [22]
(3y+1)/4�! 499 729 [14]

(3y+1)/4�! 547

411 [58]
(3y+1)/2�! 617 475 [11]

(3y+1)/2�! 713 539 [20]
(3y+1)/2�! 809 603 [28]

(3y+1)/2�! 905 667 [64]
(3y+1)/2�! 1001 731 [61]

(3y+1)/2�! 1097

413 [39]
(y�1)/4�! 103 477 [15]

(y�1)/4�! 119 541 [17]
(y�1)/4�! 135 605 [7]

(y�1)/4�! 151 669 [30]
(y�1)/4�! 167 733 [42]

(y�1)/4�! 183

415 [58]
(3y+1)/2�! 623 479 [23]

(3y+1)/2�! 719 543 [59]
(3y+1)/2�! 815 607 [18]

(3y+1)/2�! 911 671 [42]
(3y+1)/2�! 1007 735 [20]

(3y+1)/2�! 1103

417 [57]
(3y+1)/4�! 313 481 [19]

(3y+1)/4�! 361 545 [17]
(3y+1)/4�! 409 609 [56]

(3y+1)/4�! 457 673 [25]
(3y+1)/4�! 505 737 [60]

(3y+1)/4�! 553

419 [17]
(3y+1)/2�! 629 483 [9]

(3y+1)/2�! 725 547 [13]
(3y+1)/2�! 821 611 [15]

(3y+1)/2�! 917 675 [50]
(3y+1)/2�! 1013 739 [8]

(3y+1)/2�! 1109

421 [17]
(y�1)/4�! 105 485 [42]

(y�1)/4�! 121 549 [40]
(y�1)/4�! 137 613 [15]

(y�1)/4�! 153 677 [22]
(y�1)/4�! 169 741 [19]

(y�1)/4�! 185

423 [13]
(3y+1)/2�! 635 487 [62]

(3y+1)/2�! 731 551 [18]
(3y+1)/2�! 827 615 [30]

(3y+1)/2�! 923 679 [26]
(3y+1)/2�! 1019 743 [40]

(3y+1)/2�! 1115

425 [25]
(3y+1)/4�! 319 489 [20]

(3y+1)/4�! 367 553 [59]
(3y+1)/4�! 415 617 [57]

(3y+1)/4�! 463 681 [27]
(3y+1)/4�! 511 745 [36]

(3y+1)/4�! 559

427 [21]
(3y+1)/2�! 641 491 [61]

(3y+1)/2�! 737 555 [12]
(3y+1)/2�! 833 619 [57]

(3y+1)/2�! 929 683 [15]
(3y+1)/2�! 1025 747 [19]

(3y+1)/2�! 1121

429 [44]
(y�1)/4�! 107 493 [20]

(y�1)/4�! 123 557 [18]
(y�1)/4�! 139 621 [38]

(y�1)/4�! 155 685 [54]
(y�1)/4�! 171 749 [20]

(y�1)/4�! 187

431 [17]
(3y+1)/2�! 647 495 [41]

(3y+1)/2�! 743 559 [35]
(3y+1)/2�! 839 623 [57]

(3y+1)/2�! 935 687 [17]
(3y+1)/2�! 1031 751 [62]

(3y+1)/2�! 1127

433 [11]
(3y+1)/4�! 325 497 [9]

(3y+1)/4�! 373 561 [18]
(3y+1)/4�! 421 625 [10]

(3y+1)/4�! 469 689 [54]
(3y+1)/4�! 517 753 [8]

(3y+1)/4�! 565

435 [12]
(3y+1)/2�! 653 499 [21]

(3y+1)/2�! 749 563 [19]
(3y+1)/2�! 845 627 [57]

(3y+1)/2�! 941 691 [55]
(3y+1)/2�! 1037 755 [28]

(3y+1)/2�! 1133

437 [50]
(y�1)/4�! 109 501 [48]

(y�1)/4�! 125 565 [7]
(y�1)/4�! 141 629 [16]

(y�1)/4�! 157 693 [13]
(y�1)/4�! 173 757 [47]

(y�1)/4�! 189

439 [23]
(3y+1)/2�! 659 503 [29]

(3y+1)/2�! 755 567 [27]
(3y+1)/2�! 851 631 [16]

(3y+1)/2�! 947 695 [55]
(3y+1)/2�! 1043 759 [24]

(3y+1)/2�! 1139

441 [11]
(3y+1)/4�! 331 505 [24]

(3y+1)/4�! 379 569 [22]
(3y+1)/4�! 427 633 [12]

(3y+1)/4�! 475 697 [55]
(3y+1)/4�! 523 761 [13]

(3y+1)/4�! 571

443 [23]
(3y+1)/2�! 665 507 [14]

(3y+1)/2�! 761 571 [12]
(3y+1)/2�! 857 635 [12]

(3y+1)/2�! 953 699 [28]
(3y+1)/2�! 1049 763 [65]

(3y+1)/2�! 1145

445 [31]
(y�1)/4�! 111 509 [21]

(y�1)/4�! 127 573 [46]
(y�1)/4�! 143 637 [24]

(y�1)/4�! 159 701 [36]
(y�1)/4�! 175 765 [20]

(y�1)/4�! 191

447 [43]
(3y+1)/2�! 671 511 [26]

(3y+1)/2�! 767 575 [19]
(3y+1)/2�! 863 639 [58]

(3y+1)/2�! 959 703 [75]
(3y+1)/2�! 1055 767 [25]

(3y+1)/2�! 1151

Table A.8. Sequences of odds in greater detail (385 to 767)
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