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Abstract

Let G be a graph and k be a positive integer. A vertex set D is called a k-distance dominating
set of (G if each vertex of (G is either in D or at a maximum distance k£ from some vertex of D.
k-distance domination number of GG is the minimum cardinality among all k-distance dominating
sets of GG. In this note we give upper bounds on the k-distance domination number of a connected
bipartite graph, and improve some results have been given like Theorems 2.1 and 2.7 in [Tian and
Xu, A note on distance domination of graphs, Australasian Journal of Combinatorics, 43 (2009),
181-190].
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1. Introduction

We refer the reader to [9] for terminology and notation on graph theory not given here. In a
simple graph G with vertex set V' (G) = V and edge set £(G) = E, the order and the size of G
is denoted by n = |V (G)| and m = |E(G)]|, respectively. The open neighborhood of a vertex v
is defined as N(v) := {u € V : uv € E}, and the set N[v] = N(v) U {v} is called the closed

Received: 1 July 2017, Revised: 5 April 2020, Accepted: 14 June 2020.

353



On the distance domination number of bipartite graphs | D.A. Mojdeh et al.

neighborhood of v. Similarly, the set N(S) = U,ecgN(v) is called the open neighborhood of a
set S C V and the set N[S| = N(S) U S is the closed neighborhood of S. For a vertex v € V,
the degree of v is deg(v) = deg(v) = |[N(v)|. § = §(G) and A = A(G) denote the minimum
degree and maximum degree, respectively, among all vertices of G. For a vertex v € V, the set
Ni(v) = {u : d(u,v) < k and u # v} is called the open k-neighborhood of v. In the other words,
Ny (v) is the set of all vertices in within distance k of v. The set Ni[v] = Ny (v) U {v} is said to be
the closed k-neighborhood of v.

A set D C V is a dominating set if every vertex in V' — D has a neighbor in D. The minimum
cardinality among all dominating sets of G is called the domination number of GG and is denoted
by v(G). A vertex set K C V is a k-distance dominating set if every vertex in V' — K is within
distance k of some vertex in /. In the other words, if K C V is a k-distance dominating set of
G, then N [K] = V. The k-distance domination number of G, 7, (G), is the minimum cardinality
among all k-distance dominating sets in G, for further see, [3, 4, 5, 8]. The kth power graph
of G is a new graph with V(G*) = V(@) and two vertices z,y € V(G*) are adjacent in G*
if dg(z,y) < k. Note that v4(G) equals to v(G*), where G* is the kth power graph of G, see
[2,4,6,7].

2. Previous known results

Tian and Xu [7] studied k-distance domination number in graphs. They have proved the fol-
lowing results.
Theorem 2.1 (Tian and Xu [7], Theorem 2.1). Let V = {1,2,--- ,n} be the vertex set of a

connected graph G. Then v (G) < min > (p,- +(1—-p) I (1- pj)> where p; €
(p1,p2,,pn)€(0,1)"; 1 JENK (i)
(0, 1) is the probability of existence of the vertex i in a random subset of V.

Then they considered connected bipartite graph.

Lemma 2.1 (Tian and Xu [7], Lemma 2.5). Let G be a connected bipartite graph with bipartition
Vi and Vs, where |V;| = n; and §; = min{deg(v) : v € V}}, for j =1, 2.
For any vertex v € Vi with Ny [v] # V,

[Ne(v) N VA = ([k/6] = 1)(d2 + 1), (D

[Nk(v) N V| = [k/6](61 +1) — 1. 2)
Similarly, for any vertex v € Vy with Ny[v] # V,

[Ne(v) N VA = [k/6](02 +1) — 1, 3)

[Ne(v) N V2| = ([k/6] = 1)(d1 + 1). )

Let GG be a connected bipartite graph. It is said to be perfect if 6195 > 1, na[M (05 + 1) — 1] >
ni[(M —1)(6; + 1)+ 1] and nq[M (61 + 1) — 1] > na[(M — 1)(62 + 1) + 1], where M = [k/6].
A simple calculation shows that a connected bipartite graph is perfect if and only if n; — nydy <
Mny (61 + 1) —na(dy + 1)] < nyd; — no. As a consequence of Lemma 2.1 and Theorem 2.1, Tian
and Xu obtained the following.
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Theorem 2.2 (Tian and Xu [7], Theorem 2.7). Let GG be a perfect bipartite graph and

(M —=1)(61+ 1)+ 1]Inu— [M(6;+1) —1]Inw

@M —1)(0105 — 1) <1

0<p =

(M —=1)(02+ 1)+ 1]lnv—[M(0s+1) —1]Inu

0<p= (2M — 1)(310, — 1)

<1,

n2[M(82+1)—1]—na [(M —1)(61+1)+1]

1 [M(8141)~1]—na[(M —1) (82 +1)+1]
n1(2M—1)(0105—1) : ) : - Then

n2(2M—1)(5162—1)

(1 + In[(2M — 1)(6 + 1)])
(2M —1)(6 + 1) ’

and v =

where u =

Y(G) < h(p1,p2) < Oglplglh(p,p) <

where M = [k/6].

In this manuscript we improve Theorem 2.2 via improving the Lemma 2.1.

3. Main results
In order to improve Theorem 2.2, we first improve Lemma 2.1.

Lemma 3.1. Let G be a connected bipartite graph with bipartition V, and V,, where |V;| = n;
and §; = min{deg(v) : v € V;}, for j = 1,2. Then
(i) For any vertex v € Vi with Ni[v] # V,

INu(v) N VA| > [(k — 1)/4] max{2, &} + 2| k/4] — [k/2], )

INW(v) (Vo] > 8 + ([k/4] — 1) max{2,8,} + [(k — 1)/2] — 2| (k — 1)/4]. 6)

Furthermore, (5) and (6), improve (1) and (2), repectively.
(1) For any vertex v € Vy with Ny[v] #V,

[Ni(v) O VA| = [k/4] max{2, 6} + [(k = 1)/2] = 2[(k — 1)/4], ()
|INp(v) N Va| > [(k —1)/4] max{2, 01} + 2| k/4] — |k/2]. 8)

Furthermore, (7) and (8) improve (3) and (4), respectively.
Proof. Let G be a connected bipartite graph with bipartition V; and V3, where |V;| = n; and
9; = min{deg(v) : v € V;}, for j = 1,2. For any vertex v and any integer [ with 1 § l § k,
let Xi(v) = {u € V|d(v,u) = [}. Tt is obvious that Ni(v) = X;(v) U Xs(v) U --- U Xi(v).

Furthermore, X (v), X5(v),...,.and ..., Xy (v) are pairly disjoint.
() Let v € V; be a vertex with Vi, [v] # V. Observe that X, (v) U X3(v) U - - - U Xy (jg1)/2)-1(v)
Q ‘/2, XQ(U) U X4(U) u---u XQLk/QJ (’U) Q ‘/1, and

[k/2] [(k+1)/2]
Ne(w) N Vi = | Xom(v), Ni(v)nVs = U Xom-1(
m=1
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[(k+1)/2]
Thus, |Ny.(v) N V1| = Z [ Xom ()| and [Ny (v) N Vol = >0 [Xam-1(v)]. Since Nifv] # V,

m=1

there exists a vertex u such that d(v,u) > k. Therefore, there exists a path, P := vz 2o ... u of
length of at least £ + 1. For l = 1,2,--- |k, X;(v) # 0, because z; € X;(v). Moreover, if [ is
odd, then deg(z;) > max{2, J,}, because x; € V5; while if [ is even, then deg(x;) > max{2,d;},
because x; € V;. We continue with two following claims.
Claim 1. | X5(v)| > max{2,d5} — 1 > 0y — 1.
To see this, note that since x; € X;(v) C V5, we have | X5(v)| = deg(z1) — 1. Since deg(zq) >
max{2,d; }, we find that | X5(v)| > max{2, d,} — 1, as desired.
Claim 2. For2 <1 <k —1, |X;_1(v)] + | X1 (v)| > deg(zy).
To see this, note that for 2 < [ < k — 1, we have Ny(z;) = N(x;) € X;_1(v) U X;41(v), since
x € Xi(v).

By Claim 2, |Xun(v)] + [Xums2(v)] > deg(zamsr) for every m = 1,2, ..., | X221 To

lk/2]—1 2
2

compute | Ni(v) N V;|, we discuss on which may be an integer or not.

First we assume that % is an integer. Hence,

lk/2] [k/2]
M) Vi = 3 X (@)] = X (0) |+ 3 [Xom(0)
m=1 m=2

(Lk/2)-1)/2
= X%+ Y (Xaw (@) + [Xamy2(v)])

m/=1
(Lk/2]-1)/2
> max{2,0,} — 1+ Z max{2,d2} (by Claims 1 and 2).

Thus, |[Ny(v)NVi| > (|k/2] + 1) max{2, 02} /2 — 1 and a simple calculation shows that (| k/2] +
)max{2,62}/2 — 1= [(k —1)/4] max{2, 0o} + 2| k/4] — |k/2], as desired.
Next we assume that % is not an integer. Hence,

[%/2] Lk/2] =
[N (v) N V| = Z\Xm )| = Xa(v)] + lezm V)| + | Xajyz)]

(Lk/2]-2)/2
IO+ Y (K@) + Xanesa(0)]) + X
m/=1
(lk/2]-2)/2
> max{2,do} — 1+ Z max{2,62} +1 (by Claims 1 and 2).

m/=1

Therefore, we have |Ny(v) N Vi| > |k/2] max{2,d.}/2 and a simple calculation shows that
|k/2] max{2,d2}/2 = [(k — 1)/4]09 + 2| k/4] — | k/2], as desired.

Consequently, inequality (5) holds. We next prove inequality (6). Since deg(v) > §; and
N(v) = X;(v) C Va, we find that | X (v)| > ;.
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From Claim 2, we can easily see that | Xy,,,—1 (V)| + | Xm11(v)| > deg(z4,,) > max{2, 6, } for
every m = 1,2, ..., | 221 |. We discuss on WHQM which may be an integer or not.

First we assume that W is an integer. Hence,
L(k+1)/2] L(k+1)/2]
Ne() Vol = Y [Xoma ()] = [Xa(@)] + Y [Xom-1(v)]
m=1 m=2

[(k+1)/2]/2—1
=X+ Y (X1 (0) + Xaw (0)]) + [ Xz ny2)-1(0)]

m/=1
[(k+1)/4]-1
>0 + Z max{2,01} +1 (by Claim 2).

m/=1

Thus, | Nk (v) NVa| > 61+ ([ (k+1)/4] — 1) max{2, §; } + 1. Now a simple calculation shows that
N+ (L(E+1)/4] —1)max{2,6;} +1 = &+ ([k/4] —1) max{2,6; } + [(k—1)/2] — 2| (k—1)/4]
as desired.

Next we assume that L(k+_21)/2J is not an integer. Hence,

L(k+1)/2] L(k+1)/2]
INe@) Vol = Y X () = [X1(@)[+ Y [ Xomoa (v))]
m=1 m=2

(L(k+1)/2) -1)/2
=X+ Y (Xaw(0)] + [Xawa (0)])

m/=1
L(k—1)/4]
>0+ max{2,6} (by Claim?2).
m/=1

Thus, | Ng(v) N Va| > 6 + [ (B — 1)/4] max{2, d; }. Now a simple calculation shows that
6+ [(k —1)/4] max{2,8:} = 01 + ([k/4] — 1) max{2,01} + | (k — 1)/2] — 2[(k — 1) /4]

as desired.
We next show that inequality 5 is an improvement of inequality 1. We will show that:

k—1 k k k
e N max(2,5) +215) - 5] > (151 - (6, + 1)
It is obvious that if §, = 1, then the left side of the above inequality is 2[22] +2| 4] — [£] = | £]
and the right side is 2([£] — 1), and clearly 2[51] + 2| %] — |5] = [£] > 2([4] — 1) for k > 1.

Thus assume that d, > 2. We show that

(e L Y L B
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fork > 1. Let L = ([%] — [£] + 1)d2 and R = [£] — 1 —2|%] + |£]. Now, we show that
1

L > R.Letk=12p+ q,where 1 < ¢ < 12. Then
L= 5 s = s (T - 10 4 16
L L N R TR

Since &, > 2, we have pdy > 2p. So we need to show that ([£1] — [E]14+1)02 > [T —1-2[%] +
L%J Since 1 < ¢ < 12, we show this by Table 1.

q 123456 [7]8]9|10]11]12
[T = [4] 4+ 1)d2. || 0| 0s [ ba | o | G2 | 202 | Go | G2 | 02 | 205 | 205 | 265
(4] —1—204]+ 4] |jojt|t]|o|Oo| 1 |[21]|1|2]2]]1

Table 1.

Thus, inequality (5) is an improvement of inequality (1). Next, we show that inequality (6) is an
improvement of inequality (2). We will show that :

51+ (Th/4] — 1) max{2, 61} + [(k — 1)/2) — 2 (k — 1)/4] > [k/6](81 +1) — 1

If §; = 1, then the above inequality becomes 1 + 2([k/4] — 1) + [(k — 1)/2] — 2[(k —1)/4] =
[k/2] > 2[%£] — 1 which is valid for any k& > 1. Thus we assume that §; > 2. It is sufficient to

show that " " " b1 b1

T TENS > o1 — w9 =

(T3] = T8 2 [ 1= | ] +2| ]
fork > 1. Let L = ([4] — [£])01 and R = [£] — 1 — |551] 4 2| %F1]. Thus, we need to show
that L > R. Let k = 12p + g, where 1 < ¢ < 12. Hence,

Lk k B a9 4
L= ([31=T¢Dd = por + (747 = [47)a1.
-k k—1 k-1, 9 L qg—1 u
q 1123456 [7(8[9]10|11]12
(4] = T2])& 0[0/0 [0 |6 [0 |0]0]|d|0d]|6 |0
(4] —1— |5t +2(<2) |ofo|-1|-1|0[0|0|O| 1|1 [0]O

Table 2.

Since §; > 2, we have pd, > 2p. Therefore, it is sufficient to show that ([{] — [Z])d; >
[4] — 1 — |%}] + 2| % ]. We do this in Table 2, since 1 < ¢ < 12. Thus (6) is an improvement
of (2).

The proof of part (i2), (i.e. (7) and (8)) is similar and straightforward, and therefore is omitted.

O

358



On the distance domination number of bipartite graphs | D.A. Mojdeh et al.

Theorem 3.1. If G is a bipartite graph and k is a positive integer, then

G)< min  ”h¥(p1,p2),
(G) < i (p1,p2)

where  h*(p1,pa) = mapy + nye P ATDTRAR gy g An TP (de )

Ay = [(k—1)/4] max{2,0:} + 2| k/4] — | k/2]
Ay =01 + ([k/4] = 1)max{2,6,} + [(k —1)/2] = 2[(k —1)/4]
Ay = 0o + ([k/4] — 1) max{2,6,} + [(k —1)/2] — 2[(k —1)/4]
Agy = [(k — 1)/4] max{2, 0:} + 2| k/4] — |k/2]

This bound improve the given bound in Theorem 2.2.

Proof. By Theorem 2.1, we have

G) < min + (1 — | N (v)NV1[+1 1— |Ng (v)NVa|
%( ) "~ (p1,p2)€(0,1)? (12‘;1 [pl ( pl) ( p2) }

+ Z [pZ + (1 . p1>|Nk(v)ﬁV1|(1 o p2)|Nk(v)ﬂV2|+1}) )

vEVS

By Lemma 3.1, we have

’Yk(G) S min < Z [pl + (1 _ pl)A11+1(1 _ p2)A12]

,p2)€(0,1)2
(1.p2)€01)? \ &7

+> [pe+ (L—p)*(1— p2)"‘”+1]>

veEVS

< min napr + ni(1 — p) A1+ (1 = py) 2
" (p1,p2)€(0,1)2 <[ 1P1 1< pl) ( p2) }

+ [n2p2 +np(1—p1)* (1 - p2)A22+l])

: —p1(A 1)—p2A —p1 A1 —pa(A 1
< min nip1 + nye p1(A114+1)—p2Aiz + NPy + noe p1Az1—p2(A22+1) .
(p1,p2)€(0,1)2

That is v,(G) < ( II)llI(l )Qh* (p1, p2). To show that our bound is an improvement of the bound
p1,p2)€(0,1
given in Theorem 2.2, note that by Lemma 3.1 one can easily see that A*(p1, p2) < h(p1,p2), since

exp(—x) is a decreasing function. O

Example 3.1. It remains to show that there are perfect graphs that our bound is better than the
older one. For this purpose, let G be a connected bipartite graph with ny = ny = 3, 01 = 0y =
0>2,andk =4m + 1withm = 1,2,3,---. We can easily see that the graph is perfect. Now we
have AH = Agg = m5, Alg = A21 = (m + 1)5 and

n

[p1 + po + e P+ D=p2(mA1)8  o=pr(mA1)d—pa(mo+1)]
2

h*(p1,p2) =
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By using of calculus method, we see that the unique minimum of h* occurs at

In[(2m + 1)d + 1]
2m+1)d+1

b1 =DP2 =

Y

: : 1+ In[(2m + 1) + 1]
since 0 < = < 1, we have min  h*(p1, =n
b g 1 P p2) = (o e

we note that the function f(x) = "2 js decreasing on interval (1,00) and also we have (2m +
1)0 + 1> (2[k/6] — 1)(0 + 1), thus the new bound refinements the bound in Theorem 2.2.

). By calculus,

3.1. Minimizing h*(py, p2)

In this part of paper we wish to minimize h*(py, po). For this purpose, we consider two different
cases and we use calculation methods.

3.1.1. kiseven

In this case we will show that either ~* hasn’t local extremum or it has infinitely local minimum
on (0,1)2. However h* has local minimum on closed unit square [0, 1]2, thus we extend the domain
of h* into [0, 1]2.

Before introducing our main results, we explain an observation in calculus :

Observation 3.1. Consider the function f(x) = “*jﬁ” where x > 0 and a > 0. f has a unique
maximum in v = €'~ < e thus f(z) < f(e!'™*) = e* L. Now, ifa < 1, then f(z) < 1 for all
x> 0.

Our main result in this states is :

Theorem 3.2. If k is an even integer, 61,62 > 2 and T = max{ "21212 "A21 }, in each of three cases

o nAio _ nAs
(i) =2 = =2

(ii) "A12 < "A21 and L In nA21 <1
(iii) ”A12 > ”A21 and 1 ln ”A12 <1

we have 1nf h* (pl,pg) min  h*(p1, p2) = n(

1+InT
(p1,p2)€(0,1)2 (p1,p2)€[0,1]2 )

Proof. If we assume that k& = 0, then
Ay = kbo/d, A =k6i A+ 1, Ag = kbo/d+ 1, Ag =k /4
and if k é 2, then
A = (k+2)02/4 =1, Ap=(k+2)01/4, An = (k+2)02/4, A= (k+2)0/4—-1.
Thus, in both cases we have A;; + 1 = Ay and Ay + 1 = Ayo, and therefore,

h* (phpQ) = nip1 —+ NaP2 + ne_p1A21_p2A12'
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To minimize h*(p;, p2), using partial differential, we have h* =ny — nAgle*plAm*p?A” and
hr, = ny — nApe P42 r24 From h% = 0, we obtain that e P1Aa—p2A — 4, and so

p1A21 + prAis = In ”A21 . Likewise, from h* = (, we obtain p1A21 + poAis = In ”A12
1) If ‘7‘1211 = ’?1122, then for all (p1, p2) with p1A21 + poAig = =1In ”2‘121, we have.

n
h*(p1, p2) = nap1 + naps + ne PrAzn—r2Aiz — A—l(plAm + poAia) + ne PrAz—p2Aiz

21
nAg —In MA21 n nAg
S + ne " o=—(14+1In .
Ay ny A21( n )
Therefore, h* is constant for all (py, p2) with p;Asy + paAjs = In ”Al? = ”A21 (See Figure 1).

Note that two points (0, 5~ ln ”A12) and ( ln ”A21 ,0) are located on the l1ne p1A21 + poAis =
In ":12 In 2421 and by Observatlon 3.1, we have 0 < min{-— Y ";‘;2, A12 In "Afl} < 1 because
0< mm{ln— lnﬂ} <L

b2 P2 b2
| (1,1) (1,1) (1,1)
VoA _ A A _ Az Az Are
\‘ ni ng ni1 ng ni ng
AY 3 ~
AY A Y ~
\ . Se
\ > S
B =0 I e 0 Wi
‘T P1 ‘_\ p1 T\\
.
* S o * N
hp2‘\ 0 hpz AN 0 hp2 _“Q .
\‘ ‘\\ ~“s
S P1 . > D1 D1
In "A21 <1< 4= ln ”A12 1 ln nda L1y "A12 <1 1 111 ”A12 <l<—5=In ”A21
A21 n1 0 Aia A21
. A A
Figure 1. 2o
ny %)

Thus the minimum of 2*(p1,p2) is 7-(1 + In ”A21) and note that it happens for every pairs
(p1,p2) € (0,1)% satisfying by = h% = 0. Now letting T’ = "2121 = %212, we obtain that
Irjnin h*(p1,p2) = n(*2L), as desired.

),

If % #* %, then p; Ay + paAin = In %121 and p1 Aoy + paAis = In %212 are two distinct
parallel lines in the p;po-coordinate system. Thus, 2* has no extremum in (0, 1)? but it has an
infimum value in (0,1)?. For this purpose we seek the extremum of 2* in [0, 1]%. Observe that
the line p1A21 + pAis = In m intersects the p;-axis in M; = (Al21 In ”A21 ,0) and py—axis in
Ny = (0, 4= a5 o ”A21) S1m11arly, the line py As; + poAis = In ”A12 1ntersects the p;-axis in My =
(A21 In "A12 O) and p2 axis in Ny = (0, A1 In ”A12) Moreover, let (1 = (1,0) and Q2 = (0, 1).
(i1) ”A212 < "7‘321 and ln "A21 < 1 we prove that the minimum of ~A* occurs in M;. For each

point (py, po) in unit square [0, 1)? there is a unique point (p}, ps) on segments M;N; or N;1Qs
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(dotted segments in Figure 2) such that h*(p/, p2) < h*(p1, p2). Hence, the minimum of ~* occurs
on M;N; U N1Q. Also, there is a unique point (p;, p5) on segments My Ny or My@; (dashed
segments in Figure 2) such that A*(py, py) < h*(p1, p2). Therefore, the minimum of ~A* occurs on
MyNs U My@4. This two sets of points intersect in one point, M;. Hence, we have h(M;) <

1 nA n nA
h*(py, p2) and h*(My) = h(——In —20) = —(1 + In —2%).
A21 ny A21 1
P2 D2
1,1 1,1
Q. &1 0, (1,1
: ni ng : ny ng
Ny N, .
: h;\; 0
N2 . -, Nl: p2 .
\\ h;l : 0 * \\
h;;:‘\o hpl :0 \\
R Y O P
(0,0) M, My Oy (0,0) M, My @y
Minimum occures in M; Minimum occures in [Ny

A A
Figure 2. 2L + —12
ni n2

(i) If %212 > %121 and ALU In %212 < 1, then we prove that the minimum of 12* occurs in N,. For
each point (p;, p2) in unit square [0, 1]2, there is a unique point (p/, p») on segments M; N; or N1 Qs
such that h*(p}, p2) < h*(p1, p2). Hence, the minimum of A* occurs on M7 N; U N;@Q)5. Also, there
is a unique point (py, p5) on segments My Ny or Mo@Qy such that h*(py, py) < h*(p1, p2). Therefore,
the minimum of h* occurs on MyN, U My(Q). This two sets of points intersect in one point, No,

1 A A
that is, h*(Ny) < h*(p1, p) and h*(Np) = h*(0, — In 2212y = 12 (9 4 1 2012y
AA12 A U Aqo U
In each of three cases, if we set T' = max{n 12, el }, then we have :
Mo 1
ok 1+InT
min h*(p1,p2) = n(———).
P1,p2 T

We now pose a problem.

Problem 3.1. Minimize h* if 61 = 1 or 65 = 1.
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3.1.2. kisodd
We assume that & is an odd integer and we wish to minimize h*(p1, p2). For this purpose, we
use calculus methodes.

—p1(A 1)—p2 A —p1A21—p2(A 1
{ hm :nl_nl(A11+1)€ p1(A11+1)—p2Ai2 —n2A21€ p1A21 —p2(A22+1)

hp2 — _n1A126—p1(A11+1)—p2A12 + ny — nQ(AQQ + 1)6—p1A21—p2(A22+1)
hpl =0 ny (All + 1)€—p1(A11+1)—p2A12 4 n2A21€—p1A21—p2(A22+1) =n
hp2 =0 nlAlze—pl(An-l-l)—pzAm + ng(AQQ + 1)€—p1A21—p2(A22+1) = ngy

Therefore, we have:

na(A1p + 1) — npAss

ng[AlgAgl — (Au -+ 1)(A22 + 1)]
ny (A22 + 1) — n2A21

ni[Ai2As — (A1 + 1) (A + 1)]
- no(Apn + 1) — npAig - ni(Agy + 1) — ngAy
Let E1 = s E2 = .
nao[Ai1aAo — (A1 + 1)(Agx + 1)] ni[AiaAo — (A1 + 1) (A + 1)]
If £y > 0 and E5 > 0, then we have a linear equations system
p1Ag +pa(Aw+1)=—InE;
p1(An +1) +prAis = —In Ky

with a unique answer and we set :

e—p1A21—p2(A22+1) —

e—P1(A1+1)—p2Aiz —

(A22 + ].) In E2 — A12 In El

- AjpAg — (A1 +1)(Ap + 1)
(A11 + 1) In E1 — A21 In E2

B ApAgr — (A + 1) (A + 1)

Definition 3.1. A connected bipartite graph G is called 4-perfect if E; > 0, Ey > 0 where
. n2<A11 + 1) — n1A12 . nq (A22 -+ 1) — n2A21

b, = and by = .
nalAi2Az — (A1 4+ 1)(Agg + 1)] ny[A12A2 — (A1 4+ 1)(Agg + 1))

So we get the following.

P

Py

Corollary 3.1. If G is a 4-perfect graph, 0 < P, < 1 and 0 < P, < 1, then
min 1" (p1, pa) = b (P1, Po) = mi[Ey + Pi| + ne By + Pyl

(p1,p2)€(0,1)2

Note that Corollary 3.1 improves Theorem 2.2 if G is both perfect and 4-perfect. It remains
to show that there are perfect graphs that are 4-perfect as well. For this purpose, we consider the
graph introduced in Example 3.1.

Example 3.2. Let ny = ny = 4, 61 = 63 = 0, and k = 4m + 1. Thus,

1 In[(2m 4 1)6 + 1]

Ei=Fy=—— "~ P =D =
T T om0+ T T 2mr )6+ 1

Since E1, Fy > 0, G is 4-perfect. It is also easy to see that G is perfect.
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