

Electronic Journal of Graph Theory and Applications

On the distance domination number of bipartite graphs

Doost Ali Mojdeh^a, Seyed Reza Musawi^b, Esmaeil Nazari Kiashi^c

^aDepartment of Mathematics, University of Mazandaran, Babolsar, Iran ^bFaculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box 36199-9516, Shahrood, Iran & Department of Mathematics, University of Tafresh, Tafresh, Iran ^cDepartment of Mathematics, University of Tafresh, Tafresh, Iran

damojdeh@umz.ac.ir, r_musawi@shahroodut.ac.ir, nazari.esmaeil@gmail.com

Abstract

Let G be a graph and k be a positive integer. A vertex set D is called a k-distance dominating set of G if each vertex of G is either in D or at a maximum distance k from some vertex of D. k-distance domination number of G is the minimum cardinality among all k-distance dominating sets of G. In this note we give upper bounds on the k-distance domination number of a connected bipartite graph, and improve some results have been given like Theorems 2.1 and 2.7 in [Tian and Xu, A note on distance domination of graphs, Australasian Journal of Combinatorics, 43 (2009), 181-190].

Keywords: domination, *k*-distance domination, connected bipartite graph Mathematics Subject Classification: 05C69, 05C12 DOI: 10.5614/ejgta.2020.8.2.11

1. Introduction

We refer the reader to [9] for terminology and notation on graph theory not given here. In a simple graph G with vertex set V(G) = V and edge set E(G) = E, the order and the size of G is denoted by n = |V(G)| and m = |E(G)|, respectively. The open neighborhood of a vertex v is defined as $N(v) := \{u \in V : uv \in E\}$, and the set $N[v] = N(v) \cup \{v\}$ is called the *closed*

Received: 1 July 2017, Revised: 5 April 2020, Accepted: 14 June 2020.

neighborhood of v. Similarly, the set $N(S) = \bigcup_{v \in S} N(v)$ is called the open neighborhood of a set $S \subseteq V$ and the set $N[S] = N(S) \cup S$ is the closed neighborhood of S. For a vertex $v \in V$, the degree of v is $\deg_G(v) = \deg(v) = |N(v)|$. $\delta = \delta(G)$ and $\Delta = \Delta(G)$ denote the minimum degree and maximum degree, respectively, among all vertices of G. For a vertex $v \in V$, the set $N_k(v) = \{u : d(u, v) \le k \text{ and } u \ne v\}$ is called the open k-neighborhood of v. In the other words, $N_k(v)$ is the set of all vertices in within distance k of v. The set $N_k[v] = N_k(v) \cup \{v\}$ is said to be the closed k-neighborhood of v.

A set $D \subseteq V$ is a *dominating set* if every vertex in V - D has a neighbor in D. The minimum cardinality among all dominating sets of G is called the *domination number* of G and is denoted by $\gamma(G)$. A vertex set $K \subseteq V$ is a *k*-distance dominating set if every vertex in V - K is within distance k of some vertex in K. In the other words, if $K \subseteq V$ is a *k*-distance dominating set of G, then $N_k[K] = V$. The *k*-distance domination number of G, $\gamma_k(G)$, is the minimum cardinality among all *k*-distance dominating sets in G, for further see, [3, 4, 5, 8]. The *k*th power graph of G is a new graph with $V(G^k) = V(G)$ and two vertices $x, y \in V(G^k)$ are adjacent in G^k if $d_G(x, y) \leq k$. Note that $\gamma_k(G)$ equals to $\gamma(G^k)$, where G^k is the *k*th power graph of G, see [2, 4, 6, 7].

2. Previous known results

Tian and Xu [7] studied k-distance domination number in graphs. They have proved the following results.

Theorem 2.1 (Tian and Xu [7], Theorem 2.1). Let $V = \{1, 2, \dots, n\}$ be the vertex set of a connected graph G. Then $\gamma_k(G) \leq \min_{(p_1, p_2, \dots, p_n) \in \{0, 1\}^n} \sum_{i=1}^n \left(p_i + (1-p_i) \prod_{j \in N_k(i)} (1-p_j) \right)$ where $p_i \in \{0, 1\}$ is the probability of existence of the vertex *i* in a random subset of V.

Then they considered connected bipartite graph.

Lemma 2.1 (Tian and Xu [7], Lemma 2.5). Let G be a connected bipartite graph with bipartition V_1 and V_2 , where $|V_j| = n_j$ and $\delta_j = \min\{\deg(v) : v \in V_j\}$, for j = 1, 2. For any vertex $v \in V_1$ with $N_k[v] \neq V$,

$$|N_k(v) \cap V_1| \ge (\lceil k/6 \rceil - 1)(\delta_2 + 1), \tag{1}$$

$$|N_k(v) \cap V_2| \ge \lceil k/6 \rceil (\delta_1 + 1) - 1.$$
 (2)

Similarly, for any vertex $v \in V_2$ with $N_k[v] \neq V$,

$$|N_k(v) \cap V_1| \ge \lceil k/6 \rceil (\delta_2 + 1) - 1,$$
(3)

$$|N_k(v) \cap V_2| \ge (\lceil k/6 \rceil - 1)(\delta_1 + 1).$$
(4)

Let G be a connected bipartite graph. It is said to be *perfect* if $\delta_1 \delta_2 > 1$, $n_2[M(\delta_2 + 1) - 1] > n_1[(M - 1)(\delta_1 + 1) + 1]$ and $n_1[M(\delta_1 + 1) - 1] > n_2[(M - 1)(\delta_2 + 1) + 1]$, where $M = \lceil k/6 \rceil$. A simple calculation shows that a connected bipartite graph is perfect if and only if $n_1 - n_2 \delta_2 < M[n_1(\delta_1 + 1) - n_2(\delta_2 + 1)] < n_1 \delta_1 - n_2$. As a consequence of Lemma 2.1 and Theorem 2.1, Tian and Xu obtained the following. **Theorem 2.2** (Tian and Xu [7], Theorem 2.7). Let G be a perfect bipartite graph and

$$0 < p_1 = \frac{\left[(M-1)(\delta_1+1)+1\right]\ln u - \left[M(\delta_1+1)-1\right]\ln v}{(2M-1)(\delta_1\delta_2-1)} < 1$$

$$0 < p_2 = \frac{\left[(M-1)(\delta_2+1)+1\right]\ln v - \left[M(\delta_2+1)-1\right]\ln u}{(2M-1)(\delta_1\delta_2-1)} < 1,$$
where $u = \frac{n_2[M(\delta_2+1)-1]-n_1[(M-1)(\delta_1+1)+1]}{n_1(2M-1)(\delta_1\delta_2-1)}$ and $v = \frac{n_1[M(\delta_1+1)-1]-n_2[(M-1)(\delta_2+1)+1]}{n_2(2M-1)(\delta_1\delta_2-1)}$. Then
$$\gamma_k(G) \le h(p_1,p_2) \le \min_{0$$

where $M = \lfloor k/6 \rfloor$.

In this manuscript we improve Theorem 2.2 via improving the Lemma 2.1.

3. Main results

In order to improve Theorem 2.2, we first improve Lemma 2.1.

Lemma 3.1. Let G be a connected bipartite graph with bipartition V_1 and V_2 , where $|V_j| = n_j$ and $\delta_j = \min\{\deg(v) : v \in V_j\}$, for j = 1, 2. Then (i) For any vertex $v \in V_1$ with $N_k[v] \neq V$,

$$|N_k(v) \cap V_1| \ge \lceil (k-1)/4 \rceil \max\{2, \delta_2\} + 2\lfloor k/4 \rfloor - \lfloor k/2 \rfloor, \tag{5}$$

$$|N_k(v) \cap V_2| \ge \delta_1 + (\lceil k/4 \rceil - 1) \max\{2, \delta_1\} + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor.$$
(6)

Furthermore, (5) and (6), improve (1) and (2), repectively. (ii) For any vertex $v \in V_2$ with $N_k[v] \neq V$,

$$|N_k(v) \cap V_1| \ge \lceil k/4 \rceil \max\{2, \delta_2\} + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor,$$
(7)

$$|N_k(v) \cap V_2| \ge \lceil (k-1)/4 \rceil \max\{2, \delta_1\} + 2\lfloor k/4 \rfloor - \lfloor k/2 \rfloor.$$
(8)

Furthermore, (7) and (8) improve (3) and (4), respectively.

Proof. Let G be a connected bipartite graph with bipartition V_1 and V_2 , where $|V_j| = n_j$ and $\delta_j = \min\{\deg(v) : v \in V_j\}$, for j = 1, 2. For any vertex v and any integer l with $1 \le l \le k$, let $X_l(v) = \{u \in V | d(v, u) = l\}$. It is obvious that $N_k(v) = X_1(v) \cup X_2(v) \cup \cdots \cup X_k(v)$. Furthermore, $X_1(v), X_2(v), \dots, \text{and} \dots, X_k(v)$ are pairly disjoint.

(i) Let $v \in V_1$ be a vertex with $N_k[v] \neq V$. Observe that $X_1(v) \cup X_3(v) \cup \cdots \cup X_{2\lfloor (k+1)/2 \rfloor - 1}(v)$ $\subseteq V_2, X_2(v) \cup X_4(v) \cup \cdots \cup X_{2\lfloor k/2 \rfloor}(v) \subseteq V_1$, and

$$N_k(v) \cap V_1 = \bigcup_{m=1}^{\lfloor k/2 \rfloor} X_{2m}(v), \ N_k(v) \cap V_2 = \bigcup_{m=1}^{\lfloor (k+1)/2 \rfloor} X_{2m-1}(v)$$

www.ejgta.org

Thus, $|N_k(v) \cap V_1| = \sum_{m=1}^{\lfloor k/2 \rfloor} |X_{2m}(v)|$ and $|N_k(v) \cap V_2| = \sum_{m=1}^{\lfloor (k+1)/2 \rfloor} |X_{2m-1}(v)|$. Since $N_k[v] \neq V$, there exists a vertex u such that d(v, u) > k. Therefore, there exists a path, $P := vx_1x_2 \dots u$ of length of at least k + 1. For $l = 1, 2, \dots, k$, $X_l(v) \neq \emptyset$, because $x_l \in X_l(v)$. Moreover, if l is odd, then $\deg(x_l) \ge \max\{2, \delta_2\}$, because $x_l \in V_2$; while if l is even, then $\deg(x_l) \ge \max\{2, \delta_1\}$, because $x_l \in V_1$. We continue with two following claims. Claim 1. $|X_2(v)| \ge \max\{2, \delta_2\} - 1 \ge \delta_2 - 1$.

To see this, note that since $x_1 \in X_1(v) \subseteq V_2$, we have $|X_2(v)| = \deg(x_1) - 1$. Since $\deg(x_1) \ge \max\{2, \delta_1\}$, we find that $|X_2(v)| \ge \max\{2, \delta_2\} - 1$, as desired.

Claim 2. For $2 \le l \le k - 1$, $|X_{l-1}(v)| + |X_{l+1}(v)| \ge \deg(x_l)$.

To see this, note that for $2 \leq l \leq k-1$, we have $N_1(x_l) = N(x_l) \subseteq X_{l-1}(v) \cup X_{l+1}(v)$, since $x_l \in X_l(v)$.

By Claim 2, $|X_{4m}(v)| + |X_{4m+2}(v)| \ge \deg(x_{4m+1})$ for every $m = 1, 2, ..., \lfloor \frac{\lfloor k/2 \rfloor - 1}{2} \rfloor$. To compute $|N_k(v) \cap V_1|$, we discuss on $\frac{\lfloor k/2 \rfloor - 1}{2}$ which may be an integer or not.

First we assume that $\frac{\lfloor k/2 \rfloor - 1}{2}$ is an integer. Hence,

$$\begin{split} |N_k(v) \cap V_1| &= \sum_{m=1}^{\lfloor k/2 \rfloor} |X_{2m}(v)| = |X_2(v)| + \sum_{m=2}^{\lfloor k/2 \rfloor} |X_{2m}(v)| \\ &= |X_2(v)| + \sum_{m'=1}^{(\lfloor k/2 \rfloor - 1)/2} (|X_{4m'}(v)| + |X_{4m'+2}(v)|) \\ &\geq \max\{2, \delta_2\} - 1 + \sum_{m'=1}^{(\lfloor k/2 \rfloor - 1)/2} \max\{2, \delta_2\} \quad (by \ Claims \ 1 \ and \ 2). \end{split}$$

Thus, $|N_k(v) \cap V_1| \ge (\lfloor k/2 \rfloor + 1) \max\{2, \delta_2\}/2 - 1$ and a simple calculation shows that $(\lfloor k/2 \rfloor + 1) \max\{2, \delta_2\}/2 - 1 = \lceil (k-1)/4 \rceil \max\{2, \delta_2\} + 2\lfloor k/4 \rfloor - \lfloor k/2 \rfloor$, as desired.

Next we assume that $\frac{\lfloor k/2 \rfloor - 1}{2}$ is not an integer. Hence,

$$\begin{split} |N_{k}(v) \cap V_{1}| &= \sum_{m=1}^{\lfloor k/2 \rfloor} |X_{2m}(v)| = |X_{2}(v)| + \sum_{m=2}^{\lfloor k/2 \rfloor - 1} |X_{2m}(v)| + |X_{2\lfloor k/2 \rfloor}| \\ &= |X_{2}(v)| + \sum_{m'=1}^{(\lfloor k/2 \rfloor - 2)/2} (|X_{4m'}(v)| + |X_{4m'+2}(v)|) + |X_{2\lfloor k/2 \rfloor}| \\ &\geq \max\{2, \delta_{2}\} - 1 + \sum_{m'=1}^{(\lfloor k/2 \rfloor - 2)/2} \max\{2, \delta_{2}\} + 1 \quad (by \ Claims \ 1 \ and \ 2). \end{split}$$

Therefore, we have $|N_k(v) \cap V_1| \ge \lfloor k/2 \rfloor \max\{2, \delta_2\}/2$ and a simple calculation shows that $\lfloor k/2 \rfloor \max\{2, \delta_2\}/2 = \lceil (k-1)/4 \rceil \delta_2 + 2\lfloor k/4 \rfloor - \lfloor k/2 \rfloor$, as desired.

Consequently, inequality (5) holds. We next prove inequality (6). Since $deg(v) \ge \delta_1$ and $N(v) = X_1(v) \subseteq V_2$, we find that $|X_1(v)| \ge \delta_1$.

From Claim 2, we can easily see that $|X_{4m-1}(v)| + |X_{4m+1}(v)| \ge \deg(x_{4m}) \ge \max\{2, \delta_1\}$ for every $m = 1, 2, ..., \lfloor \frac{k-1}{4} \rfloor$. We discuss on $\frac{\lfloor (k+1)/2 \rfloor}{2}$ which may be an integer or not. First we assume that $\frac{\lfloor (k+1)/2 \rfloor}{2}$ is an integer. Hence,

$$\begin{split} |N_{k}(v) \cap V_{2}| &= \sum_{m=1}^{\lfloor (k+1)/2 \rfloor} |X_{2m-1}(v)| = |X_{1}(v)| + \sum_{m=2}^{\lfloor (k+1)/2 \rfloor} |X_{2m-1}(v)| \\ &= |X_{1}(v)| + \sum_{m'=1}^{\lfloor (k+1)/2 \rfloor/2 - 1} (|X_{4m'-1}(v)| + |X_{4m'+1}(v)|) + |X_{2\lfloor (k+1)/2 \rfloor - 1}(v)| \\ &\geq \delta_{1} + \sum_{m'=1}^{\lfloor (k+1)/4 \rfloor - 1} \max\{2, \delta_{1}\} + 1 \quad (by \ Claim \ 2). \end{split}$$

Thus, $|N_k(v) \cap V_2| \ge \delta_1 + (\lfloor (k+1)/4 \rfloor - 1) \max\{2, \delta_1\} + 1$. Now a simple calculation shows that $\delta_1 + (\lfloor (k+1)/4 \rfloor - 1) \max\{2, \delta_1\} + 1 = \delta_1 + (\lceil k/4 \rceil - 1) \max\{2, \delta_1\} + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor$ as desired.

Next we assume that $\frac{\lfloor (k+1)/2 \rfloor}{2}$ is not an integer. Hence,

$$\begin{split} |N_{k}(v) \cap V_{2}| &= \sum_{m=1}^{\lfloor (k+1)/2 \rfloor} |X_{2m-1}(v)| = |X_{1}(v)| + \sum_{m=2}^{\lfloor (k+1)/2 \rfloor} |X_{2m-1}(v)| \\ &= |X_{1}(v)| + \sum_{m'=1}^{(\lfloor (k+1)/2 \rfloor - 1)/2} (|X_{4m'-1}(v)| + |X_{4m'+1}(v)|) \\ &\geq \delta_{1} + \sum_{m'=1}^{\lfloor (k-1)/4 \rfloor} \max\{2, \delta_{1}\} \quad (by \ Claim \ 2). \end{split}$$

Thus, $|N_k(v) \cap V_2| \ge \delta_1 + \lfloor (k-1)/4 \rfloor \max\{2, \delta_1\}$. Now a simple calculation shows that

 $\delta_1 + \lfloor (k-1)/4 \rfloor \max\{2, \delta_1\} = \delta_1 + (\lceil k/4 \rceil - 1) \max\{2, \delta_1\} + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor$ as desired.

We next show that inequality 5 is an improvement of inequality 1. We will show that:

$$\lceil \frac{k-1}{4} \rceil \max\{2, \delta_2\} + 2\lfloor \frac{k}{4} \rfloor - \lfloor \frac{k}{2} \rfloor \ge (\lceil \frac{k}{6} \rceil - 1)(\delta_2 + 1)$$

It is obvious that if $\delta_2 = 1$, then the left side of the above inequality is $2\lceil \frac{k-1}{4} \rceil + 2\lfloor \frac{k}{4} \rfloor - \lfloor \frac{k}{2} \rfloor = \lfloor \frac{k}{2} \rfloor$ and the right side is $2(\lceil \frac{k}{6} \rceil - 1)$, and clearly $2\lceil \frac{k-1}{4} \rceil + 2\lfloor \frac{k}{4} \rfloor - \lfloor \frac{k}{2} \rfloor = \lfloor \frac{k}{2} \rfloor \ge 2(\lceil \frac{k}{6} \rceil - 1)$ for $k \ge 1$. Thus assume that $\delta_2 \ge 2$. We show that

$$\left(\lceil \frac{k-1}{4} \rceil - \lceil \frac{k}{6} \rceil + 1\right)\delta_2 \ge \lceil \frac{k}{6} \rceil - 1 - 2\lfloor \frac{k}{4} \rfloor + \lfloor \frac{k}{2} \rfloor$$

www.ejgta.org

for $k \ge 1$. Let $L = (\lceil \frac{k-1}{4} \rceil - \lceil \frac{k}{6} \rceil + 1)\delta_2$ and $R = \lceil \frac{k}{6} \rceil - 1 - 2\lfloor \frac{k}{4} \rfloor + \lfloor \frac{k}{2} \rfloor$. Now, we show that $L \ge R$. Let k = 12p + q, where $1 \le q \le 12$. Then

$$L = \left(\lceil \frac{k-1}{4} \rceil - \lceil \frac{k}{6} \rceil + 1 \right) \delta_2 = p \delta_2 + \left(\lceil \frac{q-1}{4} \rceil - \lceil \frac{q}{6} \rceil + 1 \right) \delta_2.$$
$$R = \left\lceil \frac{k}{6} \rceil - 1 - 2 \lfloor \frac{k}{4} \rfloor + \lfloor \frac{k}{2} \rfloor = 2p + \lceil \frac{q}{6} \rceil - 1 - 2 \lfloor \frac{q}{4} \rfloor + \lfloor \frac{q}{2} \rfloor.$$

Since $\delta_2 \ge 2$, we have $p\delta_2 \ge 2p$. So we need to show that $\left(\left\lceil \frac{q-1}{4}\right\rceil - \left\lceil \frac{q}{6}\right\rceil + 1\right)\delta_2 \ge \left\lceil \frac{q}{6}\right\rceil - 1 - 2\lfloor \frac{q}{4} \rfloor + \lfloor \frac{q}{2} \rfloor$. Since $1 \le q \le 12$, we show this by Table 1.

q	1	2	3	4	5	6	7	8	9	10	11	12
$\left(\left\lceil \frac{q-1}{4}\right\rceil - \left\lceil \frac{q}{6}\right\rceil + 1\right)\delta_2.$	0	δ_2	δ_2	δ_2	δ_2	$2\delta_2$	δ_2	δ_2	δ_2	$2\delta_2$	$2\delta_2$	$2\delta_2$
$\left\lceil \frac{q}{6} \right\rceil - 1 - 2 \lfloor \frac{q}{4} \rfloor + \lfloor \frac{q}{2} \rfloor$	0	1	1	0	0	1	2	1	1	2	2	1

Table 1.

Thus, inequality (5) is an improvement of inequality (1). Next, we show that inequality (6) is an improvement of inequality (2). We will show that :

$$\delta_1 + (\lceil k/4 \rceil - 1) \max\{2, \delta_1\} + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor \ge \lceil k/6 \rceil (\delta_1 + 1) - 1$$

If $\delta_1 = 1$, then the above inequality becomes $1 + 2(\lceil k/4 \rceil - 1) + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor = \lceil k/2 \rceil \ge 2\lceil \frac{k}{6} \rceil - 1$ which is valid for any $k \ge 1$. Thus we assume that $\delta_1 \ge 2$. It is sufficient to show that

$$\left(\left\lceil\frac{k}{4}\right\rceil - \left\lceil\frac{k}{6}\right\rceil\right)\delta_1 \ge \left\lceil\frac{k}{6}\right\rceil - 1 - \lfloor\frac{k-1}{2}\rfloor + 2\lfloor\frac{k-1}{4}\rfloor$$

for $k \ge 1$. Let $L = (\lceil \frac{k}{4} \rceil - \lceil \frac{k}{6} \rceil)\delta_1$ and $R = \lceil \frac{k}{6} \rceil - 1 - \lfloor \frac{k-1}{2} \rfloor + 2\lfloor \frac{k-1}{4} \rfloor$. Thus, we need to show that $L \ge R$. Let k = 12p + q, where $1 \le q \le 12$. Hence,

$$L = \left(\lceil \frac{k}{4} \rceil - \lceil \frac{k}{6} \rceil \right) \delta_1 = p \delta_1 + \left(\lceil \frac{q}{4} \rceil - \lceil \frac{q}{6} \rceil \right) \delta_1.$$
$$R = \left\lceil \frac{k}{6} \rceil - 1 - \lfloor \frac{k-1}{2} \rfloor + 2 \lfloor \frac{k-1}{4} \rfloor = 2p + \lceil \frac{q}{6} \rceil - 1 - \lfloor \frac{q-1}{2} \rfloor + 2 \lfloor \frac{q-1}{4} \rfloor.$$

q	1	2	3	4	5	6	7	8	9	10	11	12
$\left(\left\lceil \frac{q}{4}\right\rceil - \left\lceil \frac{q}{6}\right\rceil\right)\delta_1$	0	0	0	0	δ_1	δ_1	0	0	δ_1	δ_1	δ_1	δ_1
$\left\lceil \frac{q}{6} \rceil - 1 - \lfloor \frac{q-1}{2} \rfloor + 2 \lfloor \frac{q-1}{4} \rfloor \right $	0	0	-1	-1	0	0	0	0	1	1	0	0

Table	2
raute	∠.

Since $\delta_1 \geq 2$, we have $p\delta_1 \geq 2p$. Therefore, it is sufficient to show that $\left(\left\lceil \frac{q}{4}\right\rceil - \left\lceil \frac{q}{6}\right\rceil\right)\delta_1 \geq \left\lceil \frac{q}{6}\right\rceil - 1 - \lfloor \frac{q-1}{2} \rfloor + 2\lfloor \frac{q-1}{4} \rfloor$. We do this in Table 2, since $1 \leq q \leq 12$. Thus (6) is an improvement of (2).

The proof of part (*ii*), (i.e. (7) and (8)) is similar and straightforward, and therefore is omitted. \Box

Theorem 3.1. If G is a bipartite graph and k is a positive integer, then

$$\gamma_k(G) \le \min_{(p_1, p_2) \in (0, 1)^2} h^*(p_1, p_2),$$

where $h^*(p_1, p_2) = n_1 p_1 + n_1 e^{-p_1(A_{11}+1)-p_2 A_{12}} + n_2 p_2 + n_2 e^{-p_1 A_{21}-p_2(A_{22}+1)}$ $A_{11} = \lceil (k-1)/4 \rceil \max\{2, \delta_2\} + 2\lfloor k/4 \rfloor - \lfloor k/2 \rfloor$ $A_{12} = \delta_1 + (\lceil k/4 \rceil - 1) \max\{2, \delta_1\} + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor$ $A_{21} = \delta_2 + (\lceil k/4 \rceil - 1) \max\{2, \delta_2\} + \lfloor (k-1)/2 \rfloor - 2\lfloor (k-1)/4 \rfloor$ $A_{22} = \lceil (k-1)/4 \rceil \max\{2, \delta_1\} + 2\lfloor k/4 \rfloor - \lfloor k/2 \rfloor$

This bound improve the given bound in Theorem 2.2.

Proof. By Theorem 2.1, we have

$$\gamma_k(G) \le \min_{(p_1, p_2) \in (0, 1)^2} \left(\sum_{v \in V_1} \left[p_1 + (1 - p_1)^{|N_k(v) \cap V_1| + 1} (1 - p_2)^{|N_k(v) \cap V_2|} \right] + \sum_{v \in V_2} \left[p_2 + (1 - p_1)^{|N_k(v) \cap V_1|} (1 - p_2)^{|N_k(v) \cap V_2| + 1} \right] \right).$$

By Lemma 3.1, we have

$$\begin{aligned} \gamma_k(G) &\leq \min_{(p_1,p_2)\in(0,1)^2} \left(\sum_{v\in V_1} \left[p_1 + (1-p_1)^{A_{11}+1}(1-p_2)^{A_{12}} \right] \\ &+ \sum_{v\in V_2} \left[p_2 + (1-p_1)^{A_{21}}(1-p_2)^{A_{22}+1} \right] \right) \\ &\leq \min_{(p_1,p_2)\in(0,1)^2} \left(\left[n_1 p_1 + n_1 (1-p_1)^{A_{11}+1}(1-p_2)^{A_{12}} \right] \\ &+ \left[n_2 p_2 + n_2 (1-p_1)^{A_{21}}(1-p_2)^{A_{22}+1} \right] \right) \\ &\leq \min_{(p_1,p_2)\in(0,1)^2} \left(n_1 p_1 + n_1 e^{-p_1 (A_{11}+1)-p_2 A_{12}} + n_2 p_2 + n_2 e^{-p_1 A_{21}-p_2 (A_{22}+1)} \right). \end{aligned}$$

That is $\gamma_k(G) \leq \min_{(p_1,p_2)\in(0,1)^2} h^*(p_1,p_2)$. To show that our bound is an improvement of the bound given in Theorem 2.2, note that by Lemma 3.1 one can easily see that $h^*(p_1,p_2) \leq h(p_1,p_2)$, since $\exp(-x)$ is a decreasing function.

Example 3.1. It remains to show that there are perfect graphs that our bound is better than the older one. For this purpose, let G be a connected bipartite graph with $n_1 = n_2 = \frac{n}{2}$, $\delta_1 = \delta_2 = \delta \ge 2$, and k = 4m + 1 with $m = 1, 2, 3, \cdots$. We can easily see that the graph is perfect. Now we have $A_{11} = A_{22} = m\delta$, $A_{12} = A_{21} = (m + 1)\delta$ and

$$h^*(p_1, p_2) = \frac{n}{2} [p_1 + p_2 + e^{-p_1(m\delta + 1) - p_2(m+1)\delta} + e^{-p_1(m+1)\delta - p_2(m\delta + 1)}]$$

By using of calculus method, we see that the unique minimum of h^* occurs at

$$p_1 = p_2 = \frac{\ln[(2m+1)\delta + 1]}{(2m+1)\delta + 1},$$

since $0 < p_1 = p_2 < 1$, we have $\min_{\substack{(p_1, p_2) \in (0, 1)^2}} h^*(p_1, p_2) = n(\frac{1 + \ln[(2m+1)\delta + 1]}{(2m+1)\delta + 1})$. By calculus, we note that the function $f(x) = \frac{1 + \ln x}{x}$ is decreasing on interval $(1, \infty)$ and also we have $(2m + 1)\delta + 1 \ge (2\lceil k/6\rceil - 1)(\delta + 1)$, thus the new bound refinements the bound in Theorem 2.2.

3.1. Minimizing $h^*(p_1, p_2)$

In this part of paper we wish to minimize $h^*(p_1, p_2)$. For this purpose, we consider two different cases and we use calculation methods.

3.1.1. k is even

In this case we will show that either h^* hasn't local extremum or it has infinitely local minimum on $(0, 1)^2$. However h^* has local minimum on closed unit square $[0, 1]^2$, thus we extend the domain of h^* into $[0, 1]^2$.

Before introducing our main results, we explain an observation in calculus :

Observation 3.1. Consider the function $f(x) = \frac{a+\ln x}{x}$ where x > 0 and a > 0. f has a unique maximum in $x = e^{1-a} \le e$ thus $f(x) \le f(e^{1-a}) = e^{a-1}$. Now, if a < 1, then f(x) < 1 for all x > 0.

Our main result in this states is :

Theorem 3.2. If k is an even integer, $\delta_1, \delta_2 \ge 2$ and $T = \max\{\frac{nA_{12}}{n_2}, \frac{nA_{21}}{n_1}\}$, in each of three cases (i) $\frac{nA_{12}}{n_2} = \frac{nA_{21}}{n_1}$ (ii) $\frac{nA_{12}}{n_2} < \frac{nA_{21}}{n_1}$ and $\frac{1}{A_{21}} \ln \frac{nA_{21}}{n_1} < 1$ (iii) $\frac{nA_{12}}{n_2} > \frac{nA_{21}}{n_1}$ and $\frac{1}{A_{12}} \ln \frac{nA_{12}}{n_2} < 1$ we have $\inf_{(p_1, p_2) \in (0, 1)^2} h^*(p_1, p_2) = \min_{(p_1, p_2) \in [0, 1]^2} h^*(p_1, p_2) = n(\frac{1+\ln T}{T}).$

Proof. If we assume that $k \stackrel{4}{\equiv} 0$, then

$$A_{11} = k\delta_2/4, \quad A_{12} = k\delta_1/4 + 1, \quad A_{21} = k\delta_2/4 + 1, \quad A_{22} = k\delta_1/4$$

and if $k \stackrel{4}{\equiv} 2$, then

$$A_{11} = (k+2)\delta_2/4 - 1, \quad A_{12} = (k+2)\delta_1/4, \quad A_{21} = (k+2)\delta_2/4, \quad A_{22} = (k+2)\delta_1/4 - 1.$$

Thus, in both cases we have $A_{11} + 1 = A_{21}$ and $A_{22} + 1 = A_{12}$, and therefore,

$$h^*(p_1, p_2) = n_1 p_1 + n_2 p_2 + n e^{-p_1 A_{21} - p_2 A_{12}}$$

www.ejgta.org

To minimize $h^*(p_1, p_2)$, using partial differential, we have $h_{p_1}^* = n_1 - nA_{21}e^{-p_1A_{21}-p_2A_{12}}$ and $h_{p_2}^* = n_2 - nA_{12}e^{-p_1A_{21}-p_2A_{12}}$. From $h_{p_1}^* = 0$, we obtain that $e^{-p_1A_{21}-p_2A_{12}} = \frac{n_1}{nA_{21}}$, and so $p_1A_{21} + p_2A_{12} = \ln \frac{nA_{21}}{n_1}$. Likewise, from $h_{p_2}^* = 0$, we obtain $p_1A_{21} + p_2A_{12} = \ln \frac{nA_{12}}{n_2}$. (i) If $\frac{A_{21}}{n_1} = \frac{A_{12}}{n_2}$, then for all (p_1, p_2) with $p_1A_{21} + p_2A_{12} = \ln \frac{nA_{21}}{n_2} = \ln \frac{nA_{21}}{n_1}$, we have: $h^*(p_1, p_2) = n_1p_1 + n_2p_2 + ne^{-p_1A_{21}-p_2A_{12}} = \frac{n_1}{A}(p_1A_{21} + p_2A_{12}) + ne^{-p_1A_{21}-p_2A_{12}}$

$$= \frac{n_1}{A_{21}} \ln \frac{nA_{21}}{n_1} + ne^{-\ln \frac{nA_{21}}{n_1}} = \frac{n_1}{A_{21}} (1 + \ln \frac{nA_{21}}{n_1}).$$

Therefore, h^* is constant for all (p_1, p_2) with $p_1 A_{21} + p_2 A_{12} = \ln \frac{nA_{12}}{n_2} = \ln \frac{nA_{21}}{n_1}$ (See Figure 1). Note that two points $(0, \frac{1}{A_{12}} \ln \frac{nA_{12}}{n_2})$ and $(\frac{1}{A_{21}} \ln \frac{nA_{21}}{n_1}, 0)$ are located on the line $p_1 A_{21} + p_2 A_{12} = \ln \frac{nA_{12}}{n_2} = \ln \frac{nA_{21}}{n_1}$ and by Observation 3.1, we have $0 < \min\{\frac{1}{A_{12}} \ln \frac{nA_{12}}{n_2}, \frac{1}{A_{21}} \ln \frac{nA_{21}}{n_1}\} < 1$ because $0 < \min\{\ln \frac{n}{n_2}, \ln \frac{n}{n_1}\} < 1$.

Thus the minimum of $h^*(p_1, p_2)$ is $\frac{n_1}{A_{21}}(1 + \ln \frac{nA_{21}}{n_1})$, and note that it happens for every pairs $(p_1, p_2) \in (0, 1)^2$, satisfying $h_{p_1}^* = h_{p_2}^* = 0$. Now letting $T = \frac{nA_{21}}{n_1} = \frac{nA_{12}}{n_2}$, we obtain that $\min_{p_1, p_2} h^*(p_1, p_2) = n(\frac{1+\ln T}{T})$, as desired.

If $\frac{A_{21}}{n_1} \neq \frac{A_{12}}{n_2}$, then $p_1A_{21} + p_2A_{12} = \ln \frac{nA_{21}}{n_1}$ and $p_1A_{21} + p_2A_{12} = \ln \frac{nA_{12}}{n_2}$ are two distinct parallel lines in the p_1p_2 -coordinate system. Thus, h^* has no extremum in $(0,1)^2$ but it has an infimum value in $(0,1)^2$. For this purpose we seek the extremum of h^* in $[0,1]^2$. Observe that the line $p_1A_{21} + p_2A_{12} = \ln \frac{nA_{21}}{n_1}$ intersects the p_1 -axis in $M_1 = (\frac{1}{A_{21}} \ln \frac{nA_{21}}{n_1}, 0)$ and p_2 -axis in $N_1 = (0, \frac{1}{A_{12}} \ln \frac{nA_{21}}{n_1})$. Similarly, the line $p_1A_{21} + p_2A_{12} = \ln \frac{nA_{12}}{n_2}$ intersects the p_1 -axis in $M_2 = (\frac{1}{A_{21}} \ln \frac{nA_{12}}{n_2}, 0)$ and p_2 -axis in $N_2 = (0, \frac{1}{A_{12}} \ln \frac{nA_{12}}{n_2})$. Moreover, let $Q_1 = (1, 0)$ and $Q_2 = (0, 1)$. (ii) $\frac{nA_{12}}{n_2} < \frac{nA_{21}}{n_1}$ and $\frac{1}{A_{21}} \ln \frac{nA_{21}}{n_1} < 1$ we prove that the minimum of h^* occurs in M_1 . For each point (p_1, p_2) in unit square $[0, 1]^2$ there is a unique point (p'_1, p_2) on segments M_1N_1 or N_1Q_2 (dotted segments in Figure 2) such that $h^*(p'_1, p_2) \leq h^*(p_1, p_2)$. Hence, the minimum of h^* occurs on $M_1N_1 \cup N_1Q_2$. Also, there is a unique point (p_1, p'_2) on segments M_2N_2 or M_2Q_1 (dashed segments in Figure 2) such that $h^*(p_1, p'_2) \leq h^*(p_1, p_2)$. Therefore, the minimum of h^* occurs on $M_2N_2 \cup M_2Q_1$. This two sets of points intersect in one point, M_1 . Hence, we have $h(M_1) \leq$ $h^*(p_1, p_2)$ and $h^*(M_1) = h(\frac{1}{A_{21}} \ln \frac{nA_{21}}{n_1}, 0) = \frac{n_1}{A_{21}}(1 + \ln \frac{nA_{21}}{n_1})$.

Figure 2. $\frac{A_{21}}{n_1} \neq \frac{A_{12}}{n_2}$

(iii) If $\frac{nA_{12}}{n_2} > \frac{nA_{21}}{n_1}$ and $\frac{1}{A_{12}} \ln \frac{nA_{12}}{n_2} < 1$, then we prove that the minimum of h^* occurs in N_2 . For each point (p_1, p_2) in unit square $[0, 1]^2$, there is a unique point (p'_1, p_2) on segments M_1N_1 or N_1Q_2 such that $h^*(p'_1, p_2) \leq h^*(p_1, p_2)$. Hence, the minimum of h^* occurs on $M_1N_1 \cup N_1Q_2$. Also, there is a unique point (p_1, p'_2) on segments M_2N_2 or M_2Q_1 such that $h^*(p_1, p'_2) \leq h^*(p_1, p_2)$. Therefore, the minimum of h^* occurs on $M_2N_2 \cup M_2Q_1$. This two sets of points intersect in one point, N_2 , that is, $h^*(N_2) \leq h^*(p_1, p_2)$ and $h^*(N_2) = h^*(0, \frac{1}{A_{12}} \ln \frac{nA_{12}}{n_2}) = \frac{n_2}{A_{12}}(1 + \ln \frac{nA_{12}}{n_2})$. In each of three cases, if we set $T = \max\{\frac{nA_{12}}{n_2}, \frac{nA_{21}}{n_1}\}$, then we have :

$$\min_{p_1, p_2} h^*(p_1, p_2) = n(\frac{1 + \ln T}{T}).$$

We now pose a problem.

Problem 3.1. *Minimize* h^* *if* $\delta_1 = 1$ *or* $\delta_2 = 1$.

3.1.2. k is odd

We assume that k is an odd integer and we wish to minimize $h^*(p_1, p_2)$. For this purpose, we use calculus methodes.

$$\begin{cases} h_{p_1} = n_1 - n_1(A_{11} + 1)e^{-p_1(A_{11} + 1) - p_2A_{12}} - n_2A_{21}e^{-p_1A_{21} - p_2(A_{22} + 1)}\\ h_{p_2} = -n_1A_{12}e^{-p_1(A_{11} + 1) - p_2A_{12}} + n_2 - n_2(A_{22} + 1)e^{-p_1A_{21} - p_2(A_{22} + 1)}\\ \begin{cases} h_{p_1} = 0\\ h_{p_2} = 0 \end{cases} \Longrightarrow \begin{cases} n_1(A_{11} + 1)e^{-p_1(A_{11} + 1) - p_2A_{12}} + n_2A_{21}e^{-p_1A_{21} - p_2(A_{22} + 1)} = n_1\\ n_1A_{12}e^{-p_1(A_{11} + 1) - p_2A_{12}} + n_2(A_{22} + 1)e^{-p_1A_{21} - p_2(A_{22} + 1)} = n_2 \end{cases}$$

Therefore, we have:

$$\begin{cases} e^{-p_1A_{21}-p_2(A_{22}+1)} = \frac{n_2(A_{11}+1) - n_1A_{12}}{n_2[A_{12}A_{21} - (A_{11}+1)(A_{22}+1)]} \\ e^{-p_1(A_{11}+1)-p_2A_{12}} = \frac{n_1(A_{22}+1) - n_2A_{21}}{n_1[A_{12}A_{21} - (A_{11}+1)(A_{22}+1)]} \end{cases}$$

Let $E_1 = \frac{n_2(A_{11}+1) - n_1A_{12}}{n_2[A_{12}A_{21} - (A_{11}+1)(A_{22}+1)]}, \quad E_2 = \frac{n_1(A_{22}+1) - n_2A_{21}}{n_1[A_{12}A_{21} - (A_{11}+1)(A_{22}+1)]}.$ If $E_1 > 0$ and $E_2 > 0$, then we have a linear equations system

$$\begin{cases} p_1 A_{21} + p_2 (A_{22} + 1) = -\ln E_1 \\ p_1 (A_{11} + 1) + p_2 A_{12} = -\ln E_2 \end{cases}$$

with a unique answer and we set :

$$\begin{cases} P_1 = \frac{(A_{22}+1)\ln E_2 - A_{12}\ln E_1}{A_{12}A_{21} - (A_{11}+1)(A_{22}+1)}\\ P_2 = \frac{(A_{11}+1)\ln E_1 - A_{21}\ln E_2}{A_{12}A_{21} - (A_{11}+1)(A_{22}+1)} \end{cases} \end{cases}$$

Definition 3.1. A connected bipartite graph G is called 4-perfect if $E_1 > 0$, $E_2 > 0$ where $E_1 = \frac{n_2(A_{11}+1) - n_1A_{12}}{n_2[A_{12}A_{21} - (A_{11}+1)(A_{22}+1)]}$ and $E_2 = \frac{n_1(A_{22}+1) - n_2A_{21}}{n_1[A_{12}A_{21} - (A_{11}+1)(A_{22}+1)]}$.

So we get the following.

Corollary 3.1. *If G is a* 4-*perfect graph,* $0 < P_1 < 1$ *and* $0 < P_2 < 1$ *, then*

$$\min_{(p_1,p_2)\in(0,1)^2} h^*(p_1,p_2) = h^*(P_1,P_2) = n_1[E_2 + P_1] + n_2[E_1 + P_2].$$

Note that Corollary 3.1 improves Theorem 2.2 if G is both perfect and 4-perfect. It remains to show that there are perfect graphs that are 4-perfect as well. For this purpose, we consider the graph introduced in Example 3.1.

Example 3.2. Let $n_1 = n_2 = \frac{n}{2}$, $\delta_1 = \delta_2 = \delta$, and k = 4m + 1. Thus,

$$E_1 = E_2 = \frac{1}{(2m+1)\delta + 1}$$
, $P_1 = P_2 = \frac{\ln[(2m+1)\delta + 1]}{(2m+1)\delta + 1}$

Since $E_1, E_2 > 0$, G is 4-perfect. It is also easy to see that G is perfect.

References

- [1] N. Alon and J.H. Spencer, *The Probabilistic Method*, 2nd ed. John Willy and Sons, INC. New York, USA, (2000).
- [2] I.J. Dejter and O. Serra, Efficient dominating sets in Cayley graphs. *Discrete Appl. Math.* 129 (2003), 319-328.
- [3] A. Hansberg, D. Meierling and L. Volkmann, Distance domination and distance irredundance in graphs, *Electron. J. Combin.*, **14** (2007), R35.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Fundamentals of domination in graphs*, Marcel Dekker, INC. New York, USA, (1998).
- [5] D.A. Mojdeh, A. Sayed-Khalkhali, H. Abdollahzadeh Ahangar and Y. Zhao, Total k-distance domination critical graphs, *Transactions on Combinatorics*, **5** (3) (2016), 1-9.
- [6] J. Raczek, Distance paired domination numbers of graphs, *Discrete Math.*, **308** (2008), 2473-2483.
- [7] F. Tian, J-M. Xu, A note on distance domination of graphs, *Australas. J. Combin.*, **43** (2009) 181-190.
- [8] E. Vatandoost, M. Khalili, Domination number of the non-commuting graph of finite groups, *Electron. J. Graph Theory Appl.* **6** (2) (2018), 228-237.
- [9] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, USA, (2001).