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Abstract

Given a subset C in a metric space E, its successor is the subset s(C) of points at maximum dis-
tance from C in E. We study some properties of the sequence obtained by iterating this operation.
Graphs with their usual distance provide already typical examples.
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1. Introduction

We consider a metric space E endowed with a distance d. The distance d(x,C) from a point
x of E to a subset C of E is as usual the infimum of the distances of x to the points of C, that is
d(x,C) = infy∈C d(x, y). We consider then the supremum r(C) = supx∈E d(x,C) of the distances
to C, and the subset s(C) of elements of E such that d(x,C) = r(C).

We already can give two common-sense properties:

If B ⊂ C, then r(B) ≥ r(C). (1)
If B ⊂ C and r(B) = r(C), then s(C) ⊂ s(B). (2)

We may start from any subset C0 of E and examine the sequence of subsets of E such that
Ci+1 = s(Ci) for i ≥ 0.
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Note that s(C) is always closed in E, maybe empty. Since the distance d(x,C) is equal to the
distance d(x, C̄) of x to the closure of C, we may suppose without loss of generality that we deal
only with closed subsets of E.

Let us get rid off of two special cases.

• If C = E (or if C is dense in E), then r(C) = 0 and s(C) = E.

• If C = ∅, then r(C) =∞ and s(C) = E.

Note that if E is compact and nonempty, then s(C) also is nonempty.
We may observe the following behaviour.

Proposition 1. For a succession C, s(C), s2(C), s3(C) of subsets obtained by the process, and if
C, s(C) are nonempty we have

r(s(C)) ≥ r(C). (3)
If r(C) = r(s(C)), then C ⊂ s2(C) and s3(C) = s(C). (4)

Proof. Consider a point x of s(C), the distances of the points y ∈ C to x are at least r(C). Thus
the distance d(y, s(C)) is at least r(C). The supremum on E of distances to s(C) is thus also at
least r(C). Hence the inequality.

If r(C) = r(s(C)), since the points y of C already satisfy d(y, s(C)) = r(s(C)), we have
C ⊂ s2(C). Then r(s2(C)) ≥ r(s(C)).

Moreover we have already s(C) ⊂ s3(C) (owing to Eq. (3)), but since C ⊂ s2(C), the
common-sense remark (Eq. (2)) gives s3(C) ⊂ s(C). Hence the equality.

If the metric space is finite, we clearly get a sequence of subsets ofE that is ultimately periodic.
If the full set occurs in the sequence, the period is 1. Otherwise, the period is 2.

We will show examples where the metric space E is a graph, with its usual metric. Its subsets
will be called codes, and r(C) is known under the name of covering radius of C. The minimum
distance is the smallest distance between two different vertices of the code.

Let us recall that a path of length n (respectively a one-directional ray, respectively a two-
directional ray) is isomorphic to the graph with vertex set {0, 1, 2, . . . , n} (respectively N, respec-
tively Z) with edges connecting two numbers x, y if |x − y| = 1. These kinds of graphs will be
used in sections 3 and 4.

2. Examples

2.1. A tree with 5 vertices
The graph is the tree with five vertices labeled from 1 to 5. The four edges are the pairs

{1, 2}, {2, 3}, {3, 4}, {3, 5}.
The successors of a code C0 are shown in Table 1.
Then the codes are alternately the codes 3 and 4.
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Table 1. A sequence of codes in a graph of order 5

codes covering radius
0 {2,3,5} 1
1 {1,4} 2
2 {5} 3
3 {1} 3
4 {4,5} 3

Table 2. A sequence of codes in a graph of order 7

codes covering radius
0 {2,4,5,6,7} 1
1 {1,3} 2
2 {5,7} 3
3 {4} 4
4 {7} 4
5 {4,5} 4

2.2. A graph with 7 vertices and 7 edges
The vertices are labeled from 1 to 7 and the seven edges are {1, 2}, {2, 3}, {1, 3}, {1, 4}, {2, 5}, {3, 6}, {6, 7}.
The code C0 and its successors are given in Table 2.

3. Codes on paths

In this section, we will show that one can build sequences with an arbitrarily long nonperiodic
part.

Table 3. Production rule for modified Fibonacci words

replace by
a1 b2
a2 b1
b1 b2a1
b2 a2b1

Consider the sequence of modified Fibonacci words wn and their symmetrics w′n (Table 4). The
word wi+1 (respectively w′i+1) is obtained by replacing each letter of wi (respectively w′i) with the
rule given in Table 3.

The length of word wi, i ≥ 1 is then the Fibonacci number Fi. The word wi contains Fi−1
letters b and Fi−2 letters a and the indices are alternately 1 and 2. A letter with index 1 is followed
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Table 4. Modified Fibonacci words
n wn w′n
1 a2 a1
2 b1 b2
3 b2a1 a2b1
4 a2b1b2 b1b2a1
5 b1b2a1a2b1 b2a1a2b1b2
6 b2a1a2b1b2b1b2a1 a2b1b2b1b2a1a2b1
7 a2b1b2b1b2a1a2b1b2a1a2b1b2 b1b2a1a2b1b2a1a2b1b2b1b2a1

with the same letter with index 2 unless it is the last letter of the word, and similarly a letter with
index 2 follows the same letter with index 1 unless it is the first letter of the word.

The sequence of words has some weak resemblance to sequence A008351 of [1].
We may note wn+3 = wnwn+1w

′
n+1 and w′n+3 = wn+1w

′
n+1w

′
n.

We now choose two integers α and β with 0 ≤ α < β, and we build the path P of length
αFn−2 + βFn−1, by concatenating subpaths of length α for each letter a and β for each letter b.
We then put a code C1 in P by choosing each vertex just after the paths labeled 2 or just before
the paths labeled 1, and C0 is the complement of C1. The distances between a vertex of the path
and the closest vertex of the code C1 is at most β, and this distance β occurs precisely for vertices
preceding a subpath labeled b2 or following a subpath labeled b1. The code C2 formed with these
vertices is also the one created with the word wn−1 and the lengths α′ = β and β′ = α + β. See

C5

C4

C3

C2

C1

C0

Figure 1. Successive codes on a path for n = 6, α = 1 and β = 2.

Figure 1 of codes C0 to C5 with n = 6, α = 1 and β = 2, where double lines show the subpaths
labeled a2 or b2. Of course Cn and Cn−1 are the ends of the path P .

We may note features for the sequence of codes build by this method.
• If α = 1 and β = 2 the length of the path is Fn+1.
• Ck+3 ⊂ Ck for 0 ≤ k ≤ n− 3.

4. Codes on rays

4.1. Nonperiodic sequences
Here we will build codes on infinite graphs such that the sequence of codes is itself infinite.
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Figure 2. How to get a delayed occurrence of empty code on a ray

Noticing that wn is always a prefix of wn+3, we can define three infinite words that are the
limits of the wn’s, namely Wk = limn→∞w3n+k, for k = 0, 1, 2.

We can build from each of these infinite words a one-directional ray and a code on it in the same
way as before, and get an infinite sequence of codes C0, C1, . . . , Cn, . . . with covering radiuses
β, β + α, 2β + α, . . . , Fnα + Fn+1β, . . . and minimal distances 2α, 2β, . . . , 2(Fnβ + Fn−1α), . . ..

Similarly w′n is always a suffix of w′n+3, and we can define the three ‘left-infinite words’ W ′
k,

that are the symmetrics of the Wk’s. Concatenating W ′
n and Wn gives a ‘word’ infinite in both

directions, that provides a two-directional ray with a sequence of codes having the same parameters
as the codes on the one-directional ray.

4.2. Arrival of empty code
Let us take a ray. Let us consider the word consisting on wn+3 followed by an infinite sequence

of concatenatedw′nwn, with n ≥ 1. We make a codeC as formerly. Then the code s(C) is obtained
in the same way with wn+2 followed by concatenated w′n−1wn−1. When arriving at w4w

′
1w1 . . . we

observe that the code following this one has just a vertex and therefore is followed by the empty
code (Figure 2).

4.3. Ultimately 2-periodic sequences
Codes whose sequence of successors is on rays is ultimately 2-periodic can be build as follows.
Concatenating infinitely many copies of wnw

′
n and building the code C0 like above, we get

for Cn−2 the code associated to b1b2b1b2 . . ., with vertices at positions 0, 2m, 4m, . . ., where m =
αFn−2+βFn−1, and thenCn−1 (associated to a2a1a2a1 . . .) has its points at positionsm, 3m, 5m, . . .
and Cn = Cn−2.

5. Remarks and questions

5.1. Graphs and general metric spaces
If the graph is finite, the sequence of codes (starting from any code) is ultimately periodic of

period 1 or 2.

What is the minimum order of a graph whose nonperiodic part has length k (i.e. Ck 6=
Ck−2 and Ck+1 = Ck−1)?
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Table 5. Some upper bounds for orders of graphs
k bound for n
2 3 = F3 + 1
3 4 = F4 + 1
4 [Example 2.1] 5 < 6 = F5 + 1
5 [Example 2.2] 7 < 9 = F6 + 1

k ≥ 6 Fk+1 + 1

If the diameter of the graph is D, then this length is at most D+1. The given examples provide
upper bounds (Table 5).

The examples with paths show that for a real segment it is possible to have a sequence of
arbitrary finite length before the periodic part. The same conclusion holds for a space isometric to
a sphere S1.

However, that leaves open the question:

Is it possible for a compact metric space to have an infinite sequence of codes?

Of course, if any increasing sequence of distances in the set is stationary (for example the usual
distance in rings of p-adic integers, see [2]), the sequence is ultimately periodic of period 1 or 2.

The Hausdorff distance between closed parts of a compact metric space endowed with distance
d is defined by

∂(X, Y ) = max(max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)).

The set of closed parts of a compact metric space endowed with that distance constitutes a compact
metric space (see [4, ch.7 §3 ex. 7, p. 279]), but the function successor is in general not continuous,
as shown by an example: E is the real segment [0, 2] and C(ε) = {1 + ε} . Then for ε > 0 the
successor is {0}, but for ε = 0 the successor becomes {0, 2}. This contributes to the difficulty of
the question.

We may note however that if the sequences Γn and s(Γn) of codes in a compact metric space E
are convergent, then lim(s(Γn)) ⊂ s(lim(Γn)). In a sequence of sn(C), we can extract convergent
subsequences Γn and s(Γn) and then the distances ∂(E, sn(C)) converge to ∂(E, lim(Γn)) =
∂(E, s(lim(Γn)) and s3(lim(Γn)) = s(lim(Γn)).

5.2. Other functions
Clearly, the same behaviour occurs is the distance is replaced by a function satisfying d(x, y) =

d(y, x) and d(x, x) < d(x, y) if x 6= y, like the unilateral distance in oriented graphs [3].
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[3] F. Comellas, C. Dalfó and M. A. Fiol, The Manhattan product of digraphs, Electronic Journal
of Graph Theory and Applications 1 (1) (2013),11-27.

[4] J. R. Munkres, Topology, a first course, Prentice-Hall (1975).

124


