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Abstract

A resolving set W is a set of vertices of a graph G(V,E) such that for every pair of distinct
vertices u, v ∈ V (G), there exists a vertex w ∈ W satisfying d(u,w) 6= d(v, w). A resolving set
with minimum number of vertices is called metric basis of G. The metric dimension of G, denoted
by dim(G), is the minimum cardinality of a resolving set of G. In this paper, we consider (3, 6)-
fullerene and (4, 6)-fullerene graphs and compute the metric dimension for these fullerene graphs.
We also give conjecture on the metric dimension of (3, 6)-fullerene and (4, 6)-fullerene graphs.
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1. Introduction

The metric dimension was initially studied by Slater [16] and Harary and Melter [7]. They
characterized the metric dimension of trees. Metric dimension has several applications in robot
navigation [9], chemistry [3], sonar [16] and combinatorical optimization [13]. Let G be a molec-
ular graph, that is, a representation of the structural formula of a chemical compound in terms of
graph theory. The vertices and edges of G correspond to atoms and chemical bonds, respectively.
For u, v ∈ V (G), the length of a shortest path from u to v is called the distance between u and v
and is denoted by d(u, v). A graph G is said to be k-connected if there does not exist a set of less
than k vertices whose removal disconnects the graph G. A planar graph G is a graph that can be
drawn in such a way that no two edges cross each other. A cubic graph G is a graph in which all
vertices have degree 3.
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A vertex w of G resolves a pair u, v of vertices if d(w, u) 6= d(w, v). Let W = {w1, w2, . . . , wk}
⊂ V (G). The metric representation of a vertex v ∈ V (G) with respect to W is the k-tuple

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)).

If every pair of distinct vertices of G have a distinct metric representation then the ordered set
W is called a resolving set of G. A resolving set of minimum cardinality is called the metric basis
for G and this cardinality is the metric dimension of G, denoted by dim(G). If dim(G) = k, then
G is said to be k-dimensional. Several variations of metric dimension have been discussed in the
literature, like resolving dominating sets [2], independent resolving sets [4], local metric sets [11],
resolving partitions [5] and strong metric generators [13].

In 1985, Kroto et al. [8] discovered fullerene molecule and since then, scientists took a great
interest in the fullerene graphs. A (k, 6)−fullerene graph is a 3-connected cubic plane graph whose
faces have sizes k and 6. The only values of k for which a (k, 6)−fullerene graph exists are 3, 4
and 5. A (5, 6)−fullerene is an ordinary fullerene and constructed from pentagons and hexagons.
Fowler et al. [6] discussed the mathematical properties of (5, 6)−fullerene.

A (3, 6)-fullerene graph have attained attention due to the similarity of its structure with ordi-
nary fullerenes. The Eulers formula implies that a (3, 6)-fullerene graph has exactly four faces of
size 3 and (n/2)− 2 hexagons. If the triangles in (3, 6)-fullerene have no common edge then it is
called isolated triangular rules (ITR).

A (4, 6)-fullerene graph is a mathematical model of a boron-nitrogen fullerene. The Eulers
formula implies that a (4, 6)-fullerene graph has exactly six square faces and (n/2)− 4 hexagons.
If the six quadrangles in (4, 6)-fullerene don’t have common edge, then it is called isolated square
rules (ISR).

Ashrafi et al. [1] calculated the topological indices of (3, 6)- and (4, 6)-fullerene graphs.
Koorepazan-Moftakhar et al. [10] find the automorphism group and fixing number of (3, 6)- and
(4, 6)-fullerene graphs.

Siddiqui et al. [14, 15] calculated the metric dimension and partition dimension of Nanotubes.
Rajan, et al. [12] calculated the metric dimension of enhanced hypercube networks. In this paper,
we consider (3, 6)-fullerene and (4, 6)-fullerene graphs and compute their metric dimension. We
also give conjecture on the metric dimension of (3, 6)-fullerene and (4, 6)-fullerene graphs.

2. Metric dimension of (3,6)-fullerene graphs

Let F1[n], F2[n], F3[n] and F4[n] are the graphs of (3, 6)-fullerene depicted in Figures ??-4
with order 8n + 4, 12n + 4, 16n − 32 and 24n, respectively. In this section, we find the metric
dimension of F1[n], F2[n], F3[n] and F4[n] fullerene graphs.

Theorem 2.1. The metric dimension of fullerene graph F1[n] is 3.

Proof. Let {z1, z2, z3} and {z4, z5, z6} be the vertex sets of outer triangles of F1[n]. Let W =
{z2, z3, z5} ⊂ V (F1[n]). We show that W is a resolving set of F1[n]. For this we give the repre-
sentation of vertices in V (F1[n]) \W with respect to W . The representation of vertices z1, z4 and
z6 is given by:

r(z1|W ) = (1, 1, 2), r(z4|W ) = (2, 2, 1), r(z6|W ) = (3, 3, 1).
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Figure 1. The Graph F1[n].

The representation of vertices of upper half of the fullerene graph F1[n] is given by:

r(xi|W ) =


(i, i+ 1, i+ 1), if 1 ≤ i ≤ 2n− 1,
(2n, 2n+ 1, 2n), if i = 2n,
(4n− i+ 1, 4n− i+ 2, 4n− i), if 2n+ 1 ≤ i ≤ 4n− 1.

The representation of vertices of lower half of the fullerene graph F1[n] is given by:

r(yi|W ) =


(i+ 1, i, i+ 2), if 1 ≤ i ≤ 2n− 1,
(2n− 1, 2n− 2, 2n− 1), if i = 2n,
(4n− i+ 2, 4n− i+ 1, 4n− i+ 1), if 2n+ 1 ≤ i ≤ 4n− 1.

All the vertices of F1[n] have different representation with respect to W , this implies that W is
a resolving set of F1[n]. Thus the metric dimension of dim(F1[n]) ≤ 3.

On the other hand, we show that dim(F1[n]) ≥ 3 by proving that there is no resolving set W ′

such that |W ′| = 2. Let A = {z1, z2, z3, z4, z5, z6} be the set of vertices of outer triangles of F1[n].
Suppose on contrary that dim(F1[n]) = 2 and W ′ is a resolving set with |W ′| = 2, then there are
following cases:
Case 1. If both vertices of W ′ are in upper half of the fullerene graph F1[n], then the representa-
tions of pair of vertices z4, z6 and z1, z3 are the same. Thus W ′ is not a resolving set of F1[n].
Case 2. If both vertices of W ′ are in lower half of the fullerene graph F1[n], then the representa-
tions of pair of vertices z4, z5 and z1, z2 are the same. Thus W ′ is not a resolving set of F1[n].
Case 3. If one vertex of W ′ is from {x1, x2, · · · , x4n−1} and other vertex is from {y1, y2, · · · , y4n−1},
then the pair of vertices z1, z5 or z2, z6 have the same representation with respect to W ′. Thus W ′

is not a resolving set of F1[n].
Case 4. If one vertex from upper half of fullerene graph F1[n] and one from the set of vertices A
in W ′, then the representation of some vertices in {x1, x2, · · · , x4n−1} and {y1, y2, · · · , y4n−1} is
the same. Therefore W ′ is not a resolving set in this case.
Case 5. If one vertex from lower half of fullerene graph F1[n] and one from the set of vertices A
in W ′, then the representation of some vertices in {x1, x2, · · · , x4n−1} and {y1, y2, · · · , y4n−1} is
the same. Therefore W ′ is not a resolving set in this case.
Case 6. If both vertices of W ′ belongs to the set of vertices A, then we have the following sub-
cases:
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• If W ′ = {z2, z5} or W ′ = {z2, z6}, then the representation of pair of vertices x1, z1 or x1, z3 are
the same. Similarly if W ′ = {z3, z5} or W ′ = {z3, z6}, then the representation of pair of vertices
y1, z1 or y1, z2 are the same.
• All other possible subsets of A, then the representation of remanning pair of vertices of set A is
the same.
Thus, in every subcase we get a contradiction.

From above cases, we conclude that there is no resolving set W ′ containing two vertices of
F1[n]. Thus the metric dimension of F1[n] is 3. This completes the proof.
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Figure 2. The Graph F2[n].

Theorem 2.2. The metric dimension of fullerene graph F2[n] is 3.

Proof. Let {a1, a2, a12} and {a6, a7, a11} be the vertex sets of outer triangles of F2[n]. Let W =
{a1, a2, a11} ⊂ V (F2[n]). We show that W is a resolving set of F2[n]. For this purpose, we give
the representation of vertices in V (F2[n]) \ W with respect to W . The representation of outer
vertices of the fullerene graph F2[n] is given below:

r(a3|W ) = (2, 1, 3), r(a4|W ) = (3, 2, 3), r(a5|W ) = (4, 3, 2),
r(a6|W ) = (5, 4, 1), r(a7|W ) = (4, 3, 1), r(a8|W ) = (3, 2, 2),
r(a9|W ) = (2, 3, 3), r(a10|W ) = (1, 2, 4), r(a12|W ) = (1, 1, 5).

The representation of vertices of upper half of the fullerene graph F2[n] is given below:

r(xi|W ) =


(i+ 2, i+ 3, i+ 1), if 1 ≤ i ≤ 2n− 2,
(2n, 2n+ 1, 2n), if i = 2n− 1,
(4n− i− 1, 4n− i, 4n− i), if 2n ≤ i ≤ 4n− 2,
(2, 3, 5), if i = 4n− 3.

The representation of middle vertices of the fullerene graph F2[n] for n = 1 is given below:

r(yi|W ) =

{
(4n− i, 4n− i, i), if i = 2n− 11,
(4n− i, 4n− i, 4n− i), if i = 4n− 2.
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The representation of middle vertices of the fullerene graph F2[n] for n ≥ 2 is given below:

r(yi|W ) =


(4, 5, 1), if i = 1,
(i+ 3, i+ 3, i), if 2 ≤ i ≤ 2n− 2,
(4n− i, 4n− i, i), if 2n− 1 ≤ i ≤ 2n,
(4n− i, 4n− i, 4n− i+ 1), if 2n+ 1 ≤ i ≤ 4n− 5,
(4n− i, 4n− i, 4n− i+ 3), if 4n− 4 ≤ i ≤ 4n− 2.

The representation of vertices of lower half of the fullerene graph F2[n] is given below:

r(zi|W ) =


(5, 4, 3), if i = 1,
(i+ 3, i+ 3, i+ 2), if 2 ≤ i ≤ 2n− 2,
(2n+ 1, 2n+ 1, 2n+ 1), if i = 2n− 1,
(4n− i, 4n− i, 4n− i+ 1), if 2n ≤ i ≤ 4n− 3.

However all pair of vertices can easily be resolved by the set W . Thus the set W is a resolving
set of F2[n] and dim(F2[n]) ≤ 3. Now, we show that dim(F2[n]) ≥ 3 by showing that there is no
resolving set W ′ such that |W ′| = 2. Let A = {a1, a2, a3, · · · , a12}, B = {x1, x2, · · · , x4n−3},
C = {y1, y2, · · · , y4n−3} and D = {z1, z2, · · · , z4n−3} be the sets of vertices of F2[n]. Suppose
on contrary that dim(F2[n]) = 2 and W ′ is a resolving set with |W ′|. Then there are following
possibilities:
Case 1. The pair of vertices a1, a2 and a7, a8 have the same distance from the vertices of set B, C
and D. Then any subset of B, C and D is not a resolving set of F2[n].
Case 2. If both vertices of W ′ are from set of vertices A, then some vertices of A have same
representation. Therefore W ′ is not a resolving set of F2[n].

Thus in every case we get a contradiction. Thus we conclude that there is no resolving set W ′

containing two vertices of F2[n]. Thus the metric dimension of F2[n] is 3. This completes the
proof.
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Figure 3. The Graph F3[n].

Theorem 2.3. The metric dimension of fullerene graph F3[n] is 3.
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Proof. Let {z1, z2, z3} and {z4, z5, z6} be the vertex sets of outer triangles and {a1, a2, a3, a4, a5, a6}
be the vertices of outer hexagonal of F3[n]. Let W = {a5, z2, z5} ⊂ V (F3[n]). We need to show
that W is a resolving set of F3[n]. For this purpose, first we give the representation of vertices in
V (F3[n]) \W with respect to W . The representation of outer vertices of fullerene graph F3[n] is
given by:

r(a1|W ) = (2, 3, 4), r(a2|W ) = (3, 4, 3), r(a3|W ) = (2, 5, 2),
r(a4|W ) = (1, 4, 3), r(a6|W ) = (1, 2, 5).

The representation of vertices of outer triangles in F3[n] is given by:

r(z1|W ) = (2, 1, 6), r(z3|W ) = (3, 1, 7),
r(z4|W ) = (3, 6, 1), r(z6|W ) = (4, 7, 1).

The representation of vertices of upper half of the fullerene graph F3[n] is given by:

r(xi|W ) =


(3, 2, 5), if i = 1,
(i+ 2, i+ 1, i+ 2), if 2 ≤ i ≤ 2n,
(2n+ 3, 2n+ 2, 2n+ 2), if i = 2n+ 1,
(4n− i+ 5, 4n− i+ 4, 4n− i+ 3), if 2n+ 2 ≤ i ≤ 4n,
(4, 5, 2), if i = 4n+ 1.

The representation of middle vertices of the fullerene graph F3[n] for n = 1 is given by:

r(b1|W ) = (4, 1, 5), r(b2|W ) = (4, 2, 4), r(b3|W ) = (5, 3, 3),
r(b4|W ) = (5, 4, 2), r(b5|W ) = (5, 5, 1).

The representation of middle vertices of the fullerene graph F3[n] for n ≥ 2 is given by:

r(bi|W ) =



(4, i, i+ 5), if i ∈ {1, 2},
(i+ 2, i, i+ 3), if 3 ≤ i ≤ 2n− 1,
(i+ 2, i, 4n− i+ 2), if i ∈ {2n, 2n+ 1},
(2n+ 3, 2n+ 2, 2n), if i = 2n+ 2,
(4n− i+ 5, 4n− i+ 5, 4n− i+ 2), if 2n+ 3 ≤ i ≤ 4n− 1,
(5, 4n− i+ 7, 4n− i+ 2), if i ∈ {4n, 4n+ 1}.

The representation of middle vertices of the fullerene graph F3[n] is given by:

r(ci|W ) =



(i+ 1, i+ 1, i+ 5), if i ∈ {1, 2},
(i+ 1, i+ 1, i+ 4), if 3 ≤ i ≤ 2n− 1,
(i+ 1, i+ 1, 4n− i+ 3), if i ∈ {2n, 2n+ 1},
(2n+ 2, 2n+ 3, 2n+ 1), if i = 2n+ 2,
(4n− i+ 4, 4n− i+ 6, 4n− i+ 3), if 2n+ 3 ≤ i ≤ 4n− 1,
(4n− i+ 4, 4n− i+ 7, 4n− i+ 3), if i ∈ {4n, 4n+ 1}.
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The representation of vertices of lower half of the fullerene graph F3[n] is given by:

r(yi|W ) =


(1, 3, 5), if i = 1,
(i, i+ 2, i+ 3), if 2 ≤ i ≤ 2n,
(2n+ 1, 2n+ 2, 2n+ 2), if i = 2n+ 1,
(4n− i+ 3, 4n− i+ 5, 4n− i+ 4), if 2n+ 2 ≤ i ≤ 4n,
(2, 5, 3), if i = 4n+ 1.

Therefore the set W resolves all the vertices in V (F3[n]) \W . Thus dim(F3[n]) ≤ 3. Now
we show that dim(F3[n]) ≥ 3. For this we show that there does not exists any resolving set W ′ with
two vertices. Let A = {a1, a2, a3, a4, a5, a6}, B = {z1, z2, z3, z4, z5, z6}, C = {x1, x2, · · · , x4n+1},
D = {b1, b2, · · · , b4n+1}, E = {c1, c2, · · · , c4n+1} and F = {y1, y2, · · · , y4n+1} be the sets of ver-
tices of F3[n]. Then there are following cases:
Case 1. If both vertices of W ′ are in the set of vertices C, then the vertices of A and D have the
same representation. Therefore W ′ is not a resolving set of F3[n].
Case 2. If both vertices of W ′ are in the set of vertices D, then the vertices of B and C have the
same representation. Therefore W ′ is not a resolving set of F3[n].
Case 3. The vertices of set A have same distance from the vertices of B. Therefore the resolving
set is not the subset of A or B.
Case 4. If both vertices of W ′ are in the set of vertices F , then the vertices of A and E have the
same representation. Therefore W ′ is not a resolving set of F3[n].
Case 5. If both vertices of W ′ are in the set of vertices E, then the vertices of B and F have the
same representation. Therefore W ′ is not a resolving set of F3[n].
Thus, in every case we get a contradiction. From above cases, we conclude that there is no re-
solving set W ′ with exactly two vertices of F3[n]. Thus the metric dimension of F3[n] is 3. This
completes the proof.
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Figure 4. The Graph F4[n].
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Theorem 2.4. The metric dimension of fullerene graph F4[n] is 3.

Proof. Let W = {a3, a7, a8} ⊂ V (F4[n]). We need to show that W is a resolving set of F4[n].
First we give the representation of vertices of F4[n] \W with respect to W .

r(a1|W ) = (2, 4n+ 2, 4n+ 2), r(a2|W ) = (1, 4n+ 1, 4n+ 1), r(a4|W ) = (1, 4n+ 1, 4n),
r(a5|W ) = (4n+ 2, 2, 2), r(a6|W ) = (4n+ 1, 1, 1).

The representation of vertices of upper half of the fullerene graph F4[n] is given below:

r(xi|W ) =


(3, 4n+ i, 4n+ i+ 1), if i = 1,
(i, 4n− i+ 2, 4n− i+ 3), if 2 ≤ i ≤ 4n,
(4n+ 1, 3, 4), if i = 4n+ 1.

The representation of middle vertices of the fullerene graph F4[n] is given below:

r(yi|W ) = (i, 4n− i, 4n− i+ 1), 1 ≤ i ≤ 4n− 1,
r(zi|W ) = (i+ 1, 4n− i+ 1, 4n− i), 1 ≤ i ≤ 4n− 1.

The representation of vertices of lower half of the fullerene graph F4[n] is given below:

r(bi|W ) =


(3, 4n+ 2, 4n+ 1), if i = 1,
(i+ 1, 4n− i+ 3, 4n− i+ 2), if 2 ≤ i ≤ 4n,
(4n+ 2, 3, 3), if i = 4n+ 1.

All vertices of V (F4[n]) \W can be resolved with respect to W . Thus W is a resolving set of
F4[n] and dim(F4[n]) ≤ 3.

On the other hand, we show that dim(F4[n]) ≥ 3 by proving that there is no resolving set
W ′ with cardinality 2. Suppose on contrary that dim(F4[n]) = 2 and W ′ is a resolving set of
F4[n] with |W ′| = 2. Let A = {a1, a2, ·, a8}, B = {x1, x2, · · · , x4n+1}, C = {y1, y2, · · · , y4n+1},
D = {z1, z2, · · · , z4n+1} and E = {b1, b2, · · · , b4n+1} be the sets of vertices of F4[n]. The pairs of
vertices a1, a3 and a5, a7 have the same distance with the vertices of set B. The pairs of vertices
a2, a4 and a6, a8 have the same distance with the vertices of set C. The pairs of vertices a2, a3 and
a6, a7 have the same distance with the vertices of set D. Similarly, The pairs of vertices a1, a4 and
a5, a8 have the same distance with the vertices of set C. Therefore, there is no a resolving set W ′

with cardinality 2 of F4[n]. Thus dim(F4[n]) = 3. This completes the proof.

3. Metric dimension of (4,6)-fullerene graphs

Suppose G1[n], G2[n] and G3[n] are depicted in Figures 5-7 with order 8n, 8n+4 and 12n+12
respectively. In this subsection we find the metric dimension of G1[n], G2[n] and G3[n] fullerene
graphs.

Theorem 3.1. The metric dimension of fullerene graph G1[n] is 3 for n ≥ 2.
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Figure 5. The Graph G1[n].

Proof. For a set W = {x1, y1, x4n} ⊂ V (G1[n]), we need to show that W is a resolving set of
G1[n]. First we show that dim(G1[n]) 6= 2. There are following cases:
Case 1. If both vertices are in the upper half of G1[n] and the resolving set is W ′ = {xs, xt},
1 ≤ s ≤ t ≤ 4n. Then the representations of xi and yi+1, 2n + 1 ≤ i ≤ 4n − 1 are the same.
Similarly the representations of xi+1 and yi, 2 ≤ i ≤ 2n− 1 are the same. Therefore the resolving
set of G1[n] is not a subset of {x1, x2, · · · , x4n}.
Case 2. If both vertices are in the lower half of G1[n] and the resolving set is W ′ = {ys, yt},
1 ≤ s ≤ t ≤ 4n. Then the representations of xi+1 and yi, 2n + 1 ≤ i ≤ 4n − 1 are the same.
Similarly the representations of xi and yi+1, 2 ≤ i ≤ 2n− 1 are the same. Therefore the resolving
set is not a subset of {y1, y2, · · · , y4n}.
Case 3. If one vertex belongs to the set of vertices {x1, x2, · · · , x4n} and other is in the set of
vertices {y1, y2, · · · , y4n}. Without loss of generality, we can suppose that the resolving set is
W ′ = {xs, yt}, 1 ≤ s ≤ 4n and 1 ≤ t ≤ 4n.
If s = t, then the representation of pairs of vertices xs+1, xs−1 and yt−1, yt+1 are the same.
If s < t, then the representation of xi, i > s and yj , j < 4n are the same.
If s > t, then the representation of xi, i < 4n and yj , j > t are the same.

Thus, in every subcase we get a contradiction. From above cases, we conclude that there is no
resolving set W ′ with |W ′| = 2. Thus dim(G1[n]) ≥ 3. Now we show that dim(G1[n] ≤ 3. For
this purpose we give the representation of the vertices in V (G1[n]) \W with respect to W . The
representation of vertices of upper half of the fullerene graph G1[n] is given below:

r(xi|W ) =

{
(i− 1, i, i), if 2 ≤ i ≤ 2n,
(4n− i+ 1, 4n− i+ 2, 4n− i), if 2n+ 1 ≤ i ≤ 4n− 1.

The representation of vertices of lower half of the fullerene graph G1[n] is given below:

r(yi|W ) =

{
(i, i− 1, i+ 1), if 2 ≤ i ≤ 2n,
(4n− i+ 2, 4n− i+ 1, 4n− i+ 1), if 2n+ 1 ≤ i ≤ 4n.

This implies that all vertices of V (G1[n]) \W can be resolved with respect to W . Thus W is a
resolving set of G1[n]. Therefore dim(G1[n]) = 3 for n ≥ 2. This completes the proof.
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Figure 6. The Graph G2[n].

Theorem 3.2. The metric dimension of fullerene graph G2[n] is 3.

Proof. Let W = {x1, y1, x4n+2} ⊂ V (G2[n]). We show that W is a resolving set of G2[n]. First
we give the representation of vertices in V (G2[n]) \W with respect to W . The representation of
vertices of upper half of the fullerene graph G2[n] is given by:

r(xi|W ) =

{
(i− 1, i, i), if 2 ≤ i ≤ 2n+ 1,
(4n− i+ 3, 4n− i+ 4, 4n− i+ 2), if 2n+ 2 ≤ i ≤ 4n+ 1.

The representation of vertices of lower half of the fullerene graph G2[n] is given by:

r(yi|W ) =

{
(i, i− 1, i+ 1), if 2 ≤ i ≤ 2n+ 1,
(4n− i+ 4, 4n− i+ 3, 4n− i+ 3), if 2n+ 2 ≤ i ≤ 4n+ 2.

This implies that W is a resolving set of G2[n] and dim(G2[n]) ≤ 3. Now we show that
dim(G2[n]) ≥ 3 by proving that W ′ is a resolving set of G2[n] with |W ′| = 2. There are following
possibilities:
Case 1. If both vertices are in the upper half of G2[n] and the resolving set is W ′ = {xs, xt},
1 ≤ s ≤ t ≤ 4n. Then the representation of xi and yi+1, 2n + 2 ≤ i ≤ 4n − 1 is the same.
Similarly the representation of xi+1 and yi, 2 ≤ i ≤ 2n is the same. Therefore the resolving set of
G2[n] is not a subset of {x1, x2, · · · , x4n}.
Case 2. If both vertices are in the lower half of G1[n] and the resolving set is W ′ = {ys, yt},
1 ≤ s ≤ t ≤ 4n. Then the representation of xi+1 and yi, 2n + 2 ≤ i ≤ 4n − 1 is the same.
Similarly the representation of xi and yi+1, 2 ≤ i ≤ 2n is the same. Therefore the resolving set of
G2[n] is not a subset of {y1, y2, · · · , y4n}.
Case 3. If one vertex belongs to the set of vertices {x1, x2, · · · , x4n} and other is in the set of
vertices {y1, y2, · · · , y4n}. Without loss of generality, we can suppose that the resolving set of
G2[n] is W ′ = {xs, yt}, 1 ≤ s ≤ 4n and 1 ≤ t ≤ 4n.
If s = t, then the representation of pair of vertices xs+1, xs−1 and yt−1, yt+1 is the same.
If s < t, then the representation of xi, i > s and yj , j < 4n is the same.
If s > t, then the representation of xi, i < 4n and yj , j > t is the same.

From above cases, we conclude that there is no resolving set W ′ for G2[n] with |W ′| = 2. Thus
dim(G2[n]) = 3. This completes the proof.
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Figure 7. The Graph G3[n].

Theorem 3.3. The metric dimension of fullerene graph G3[n] is 3.

Proof. Let {x1, y1, a1, b1, c1, d1} be the set of outer vertices of G3[n]. The vertex x1 and y1 have
the same distance from other vertices and a1 and b1 have the same distance from other vertices of
G3[n]. Similarly c1 and d1 have the same distance from other vertices of G3[n]. Thus any metric
basis will contain either x1 or y1, a1 or b1 and c1 or d1. There are 6 boundary vertices in G3[n].
Hence any metric basis of G3[n] should contain at least 3 nodes of G3[n]. Let W = {x1, a1, c1} ⊂
V (G3[n]), we need to show that W is a resolving set of G3[n]. Then the representation of vertices
in V (G3[n]) \W with respect to W for n ≥ 2 is given by:

r(xi|W ) = (i− 1, i+ 1, i+ 1), if 2 ≤ i ≤ 2n+ 2,
r(yi|W ) = (i, i+ 2, i), if 1 ≤ i ≤ 2n+ 2,
r(ai|W ) = (i+ 1, i− 1, i+ 1), if 2 ≤ i ≤ 2n+ 2,
r(bi|W ) = (i, i, i+ 2), if 1 ≤ i ≤ 2n+ 2,
r(ci|W ) = (i+ 1, i+ 1, i− 1), if 2 ≤ i ≤ 2n+ 2,
r(di|W ) = (i+ 2, i, i), if 1 ≤ i ≤ 2n+ 2.

The representation of vertices of V (G3[n]) \W with respect to W for n = 1 is given by:

r(xi|W ) =

{
(i− 1, i+ 1, i+ 1), if 2 ≤ i ≤ 2n+ 1,
(i− 1, i, i), if i = 2n+ 2.

r(yi|W ) =

{
(i, i+ 2, i), if 1 ≤ i ≤ 2n+ 1,
(i, i+ 1, i), if i = 2n+ 2.

r(ai|W ) = (i+ 1, i− 1, i+ 1), if 2 ≤ i ≤ 2n+ 2,
r(bi|W ) = (i, i, i+ 2), if 1 ≤ i ≤ 2n+ 2,
r(ci|W ) = (i+ 1, i+ 1, i− 1), if 2 ≤ i ≤ 2n+ 2,
r(di|W ) = (i+ 2, i, i), if 1 ≤ i ≤ 2n+ 2.
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Hence there are no two vertices having the same representations. Thus W = {x1, c1, a1} is a
resolving set of G3[n]. Therefore dim(G3[n]) = 3. This completes the proof.

4. Conclusion and open problems

In this paper, we considered some (3, 6)-fullerene and (4, 6)-fullerene graphs and computed
the metric dimension for these fullerene graphs. All (3, 6)-fullerene and (4, 6)-fullerene graphs
considered in this paper have metric dimension 3. It will be interesting to prove or disprove the
following statement:

“All (3, 6)-fullerene and (4, 6)-fullerene graphs have metric dimension 3.”
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