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Abstract

This article gives a survey of all results on the power graphs of groups and semigroups obtained
in the literature. Various conjectures due to other authors, questions and open problems are also
included.
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1. Introduction

Many interesting results on the power graphs have been obtained recently. This article gives a
survey of the current state of knowledge on this research direction by presenting all results and open
questions recorded in the literature dealing with power graphs. Various conjectures formulated by
other authors and several new open problems are also included. This is the first survey devoted to
the power graphs.

2. Definition of power graphs

Let us begin with the definitions of the directed and undirected power graphs, which are the
main concepts considered in this survey. In the literature, the power graphs have been defined and
considered for groups and semigroups. Section 4 contains concise prerequisites on the terminology

Received: 5 October 2013, Revised: 23 October, Accepted: 26 October 2013.

125



www.ejgta.org

Power Graphs: A Survey | J. Abawajy, A. V. Kelarev, M. Chowdhury

of the group and semigroup theories used in the results (cf. [30, 79]). It is well known that the
operation in every group or semigroup is power-associative, i.e., the powers of each element do not
depend on the order in which the operation in the power is performed (see Section 4 for details).
Therefore the following definition applies to all groups and semigroups.

Definition 1. Let S = (S, ·) be a set with a power-associative operation ·. The directed power
graph

−→
G (S) of S is a directed graph with the set S of vertices and with all edges (u, v) such that

u 6= v and v is a power of u. The undirected power graph G (S) of S is the underlying undirected
graph of

−→
G (S). This means that the set of vertices of G (S) is equal to S and two distinct vertices

are adjacent if and only if one of them is a power of the other.
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Figure 1. The directed power graph of the cyclic group Z6.
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Figure 2. The undirected power graph of the cyclic group Z6.
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The directed power graph could also be called the power digraph, although the latter term has
not been used in the literature yet. We include Figures 1 and 2 with the directed power graph−→
G (Z6) and undirected power graph G (Z6).

Definition 2. IfG is a group with identity e and
−→
G (G), G (G) are the directed and undirected power

graphs of G, respectively, then the graphs obtained by deleting the vertex e from
−→
G (G) and G (G)

are denoted by
−→
G ∗(G) =

−→
G (G)− {e} and G ∗(G) = G (G)− {e}, respectively.

For clarity, formulating all results in this article we use only complete terms ‘directed power
graph’ and ‘undirected power graph’. The shorter expression ‘power graph’ is used here only when
we refer to both of these concepts simultaneously and in general discussions that may apply to both
of these notions.

3. Historical comments

The concept of a directed power graph was first introduced and considered in [43] in the case
of groups. For semigroups, it was first investigated in [47], and then in [44, 46]. All of these papers
used only the brief term ‘power graph’ to refer to the directed power graph, with the understanding
that the undirected power graph is the underlying undirected graph of the directed power graph.

The undirected power graphs became the main focus of study in [24] and in the subsequent
papers by P. J. Cameron et al. [22, 23], which introduced the use of the brief term ‘power graph’
in the second meaning of an undirected power graph. For a group G, the digraph G ∗(G) was
considered in [76] as the main object of study.

Thus, the readers may need to be aware that in the literature the brief term ‘power graph’ can
mean either a ‘directed power graph’ or an ‘undirected power graph’ depending on which type of
graphs is the main subject of study in each particular paper. For clarity, the present article states
all results using only the complete terms ‘directed power graph’ and ‘undirected power graph’.

4. Preliminaries and background information

We use standard terminology and refer the readers to [25, 30, 36, 37, 60, 78, 79] for more
details, further bibliography and explanations.

Throughout Z and N denote the set of all integers and all positive integers, respectively, and
N0 = N ∪ {0} stands for the set of all natural numbers. The Euler totient function of a positive
integer n is denoted by φ(n).

All graphs considered in this paper are assumed to be simple. In particular, they do not have
loops. If D = (V,E) is a directed graph, then the underlying undirected graph of D is the undi-
rected graph with the same set V of vertices, where two distinct vertices u and v are adjacent if
and only if (u, v) ∈ E or (v, u) ∈ E.

Subsequent sections of this survey article are organised according to the graph theoretical prop-
erties being considered, and the definitions of these properties are reviewed in the following sec-
tions. The rest of this section contains concise preliminaries concerning groups and semigroups.

An operation or a binary operation on a set S is a mapping from the direct product S × S to
S. If ◦ is a binary operation on a set S and x, y ∈ S, then the image of the pair (x, y) under ◦ is

127



www.ejgta.org

Power Graphs: A Survey | J. Abawajy, A. V. Kelarev, M. Chowdhury

denoted by x ◦ y, which is called the infix notation for the operation ◦. In additive terminology and
notation the operation ◦ is denoted by + and is called addition, so that the result of the operation
is written down as x + y. In multiplicative terminology and notation the operation ◦ is referred to
as multiplication and is denoted by · so that the result of the operation is recorded as xy = x · y.
In this survey we use multiplicative notation to discuss sets with a binary operation. A set with a
binary operation is called a magma [19, 29] or a groupoid [87].

An operation · on the set S is associative if it satisfies the following associative law: x(yz) =
(xy)z for all x, y, z ∈ S. A semigroup is a set S equipped with an associative binary operation ·.
For example, the set of positive integers is a semigroup with respect to addition, and at the same
time it is a semigroup with respect to multiplication. If we want to distinguish between these two
semigroups on the same set, we can indicate the corresponding operation explicitly by using the
symbols (N,+) or (N, ·), respectively.

Let M = (M, ·) be a magma. A subset S of M is called a submagma of M if it is closed for
the operation of M , i.e., if x, y ∈ S implies xy ∈ S. The intersection of all submagmas of M that
contain S is the smallest submagma of M containing S. It is denoted by 〈S〉. An operation · on M
is said to be power-associative if the submagma 〈x〉 is associative, for every x ∈M . In particular,
every semigroup is power-associative.

An element e of a semigroup S is called an identity or an identity element of S if xe = ex = x
for all x ∈ S. It is well known and easy to verify that a semigroup cannot have two distinct identity
elements. This means that if a semigroup has an identity, then the identity is unique.

Let S be a semigroup with identity e, and let x ∈ S. An element y ∈ S is called an inverse of
x if xy = yx = e. It is also well known and easy to prove that if an element x has an inverse, then
the inverse is unique. The inverse of x is denoted by x−1, as no ambiguity can arise. A group is a
semigroup with identity where every element has an inverse.

Let G be a group. The cardinality |G| is also called the order of G. For n ∈ N, the cyclic group
of order n can be defined as the group Zn = Z/nZ of residues modulo n.

A subgroup of G is a subset of G that is a group with the same identity and with respect to
the same operation. In particular, every subgroup H of G is closed for the operation of the group,
which means that xy ∈ H for all x, y ∈ H . Besides, if H is a subgroup of G, then x−1 ∈ H for
all x ∈ H . A subgroup H of G is said to be normal if g−1hg ∈ H for all h ∈ H , g ∈ G. If H is a
subgroup of G, then we write H < G. If H is a normal subgroup of G, then we write H � G. If
H is a maximal subgroup of G, then we write H <max G.

For any subset T of G, the intersection of all subgroups of G that contain T is the smallest
subgroup of G containing T . It is denoted by 〈T 〉 and is called the subgroup generated by T in G.
In particular, the set 〈g〉 = {gn | n ∈ Z} is the cyclic group generated by g in G.

The order of the element x in a group or a semigroup is defined as the cardinality of 〈x〉. The
order of x is denoted by o(x). A group is said to be torsion if all of its elements have finite order.

The set of all elements of G of order k is denoted by Ωk(G). The set of the orders of all
elements of G is denoted by π(G) and is called the spectrum of G. The exponent of a finite group
G is the least common multiple of the orders of all elements of G. It is denoted by Exp(G).

Let p be a prime. Then all elements with orders equal to a power of p form a subgroup of G
called a primary component of G, or a p-primary component of G. The p-primary component of
a group G is denoted by Gp. A group G is called a p-group if G = Gp, i.e., if the order of every
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element of G is a power of p.
A group G is said to be an EPO-group, if the orders of all nontrivial elements of G are prime.

An EPPO-group is a group where the order of every nontrivial element is a power of a prime.
The dihedral group D2n is defined by the following presentation

D2n = 〈x, y | xn = y2 = e, y−1xy = x−1〉.

The semi-dihedral group SD2n is presented by

SD2n = 〈x, y | x2n−1 = y2 = e, yxy = x2
n−2+1〉.

The symmetric group Sn on a finite set of n letters is the group consisting of all permutations of
these n letters with respect to the operation of composition of permutations, regarded as functions.

Let S = (S, ·) be a semigroup. An equivalence relation % on S is called a congruence if it is
compatible with the operation · of S, that is if (x, y) ∈ % implies (xz, yz) ∈ % and (zx, zy) ∈ %
for all x, y, z ∈ S. If % is a congruence, then we can define an operation on the set S/% of all
equivalence classes of % by the rule [x][y] = [xy], where [x] stands for the equivalence class
containing x. This means that the product of two classes is the class containing the product of
representatives of these classes. This definition makes sense, because it is easy to verify that the
resulting class [xy] depends only on the whole classes [x] and [y], but does not depend on the
choice of particular representatives x and y. It follows that the set S/% is a semigroup too. It is
called the quotient semigroup of S modulo %.

Now let S be a semigroup, and let T be a subset of S. Then the intersection of all subsemi-
groups of S containing T is the smallest subsemigroup of S containing T . It is denoted by 〈T 〉 and
is called the subsemigroup of S generated by T . In particular, for any x ∈ S, the subsemigroup
〈x〉 coincides with the set {xn | n ∈ N}. The ideal (left ideal or right ideal) generated by T in S
is the smallest subsemigroup I containing T and such that GI ∪ IG ⊆ I (respectively, GI ⊆ I ,
IG ⊆ I).

Let S be a semigroup with an ideal I . Then the Rees quotient semigroup S/I is the semigroup
with zero θ obtained from S by identifying all elements of the ideal I with θ. If S has zero θ and
I = {θ}, then S/I = S.

An element of a semigroup is said to be periodic if it has a finite order. A semigroup entirely
consisting of periodic elements is called a periodic semigroup.

An operation on a set S is commutative if it satisfies the commutative law, i.e., if xy = yx for
all x, y ∈ S. An abelian group is a group with commutative operation. A semigroup satisfying the
commutative law is said to be commutative.

For a prime p, a group G is called an elementary abelian p-group if G is finite, abelian and
every nontrivial element of G has order p. The quasicyclic p-group is the infinite group denoted
by Cp∞ that has generators g1, g2, . . . such that gp1 = e and gpi = gi−1, for all i > 1, where e is
the identity of the group. Quasicyclic groups are the only infinite abelian groups all subgroups of
which are finite.

Let G be a group with a subgroup H . A right (left) coset of the subgroup H is a set of the
form Hg (respectively, gH), where g ∈ G. The set of left cosets has the same cardinality as the
set of right cosets, and this cardinality is called the index of H in G. If N is a normal subgroup,
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then the quotient group G/N is the set of all right cosets of N in G with the following operations:
(Ng1)(Ng2) = Ng1g2 and (Ng)−1 = Ng−1, for all g, g1, g2 ∈ G.

The center of a semigroup S is the set Z(S) = {z ∈ S | ∀x ∈ S : xz = zx} consisting
of those elements that commute with all elements of S. The center of every group G is a normal
subgroup of G. A group G is said to be center-by-finite if the quotient group G/Z(G) is finite.

Rees matrix semigroups are very well known in semigroup theory and play crucial roles in
describing the structure of semigroups (cf. [30]). For examples of applications of these concepts,
let us also refer to [1, 55, 56, 54, 57]. Suppose that G is a group, and I , Λ are nonempty sets.
Let P = [pλi] be a (Λ× I)-matrix with entries pλi ∈ G0, for all λ ∈ Λ, i ∈ I . The Rees
matrix semigroup M0(G; I,Λ;P ) over G with sandwich-matrix P consists of zero θ and all triples
(g; i, λ), where g ∈ G0, i ∈ I , λ ∈ Λ, where all triples (θ; i, λ) are identified with θ, and where
multiplication is defined by the rule (g1; i1, λ1)(g2; i2, λ2) = (g1pλ1i2g2; i1, λ2), for all g1, g2 ∈ G,
i1, i2 ∈ I , λ1, λ2 ∈ Λ.

A semigroup S is said to be regular if, for each x ∈ S, there exists y ∈ S such that xyx = x.
An element x of S is called an idempotent if x2 = x.

5. Eulerian graphs

A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that, for 1 ≤ i ≤ k, the edge
ei has endpoints vi−1 and vi. A trail is a walk without repeated edges. An Eulerian circuit of an
undirected graph is a closed walk that traverses every edge of the graph exactly once. An Eulerian
graph is a graph with an Eulerian circuit.

Theorem 5.1. ([26]) The undirected power graph of any finite group of even order is not Eulerian.

Proposition 5.1. ([26]) For n ≥ 5, the undirected power graph of the dihedral group D2n is not
Eulerian.

Proposition 5.2. ([77]) LetG be a finite group. Then the undirected power graph G (G) is Eulerian
if and only if |G| is odd.

Theorem 5.2. ([76]) Let G be a finite group. Then G ∗(G) is Eulerian if and only if G is a cyclic
2-group or a generalized quaternion 2-group.

6. Hamiltonian graphs

Proposition 6.1. ([77]) Let G be a finite p-group. Then the undirected power graph G (G) has a
Hamiltonian cycle if and only if |G| 6= 2 and G is cyclic.

Proposition 6.2. ([77]) Let p be an odd prime. Then the undirected power graph of a p-group is
2-connected if and only if it is Hamiltonian.

Denote by Un the group of units of the ring Zn.

Problem 1. ([24]) Describe all positive integers n such that the undirected power graph G (Un) is
Hamiltonian.
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Theorem 6.1. ([24]) Let n ≥ 3. Then the graph G (Un) is not Hamiltonian for n = 2mp1 · · · pk,
where p1, . . . , pk are distinct Fermat primes,m and k are nonnegative integers,m ≥ 2 for k = 0, 1,
and k ≥ 2 for m = 0, 1.

It was conjectured in [24, p. 426] that the undirected power graph G (Un) is Hamiltonian for all
values n ≥ 3 with the exception of n = 2mp1 · · · pk, where p1, . . . , pk are distinct Fermat primes,
m and k are nonnegative integers, m ≥ 2 for k = 0, 1 and k ≥ 2 for m = 0, 1. The following
collection of counterexamples to this conjecture was given in [77, Lemma 3].

Proposition 6.3. ([77]) If n = 2v × 32, where v ≥ 3, or n = 2t × 7, where t ≥ 2, or n = 2232p,
where p is a Fermat prime, then the undirected power graph G (Un) does not have a Hamiltonian
cycle.

Theorem 6.2. ([24]) If n ≥ 3 is an integer, then G (Zn) is Hamiltonian.

7. Complete graphs

An undirected graph D = (V,E) is said to be complete if any two distinct vertices of D are
adjacent.

Theorem 7.1. ([24]) Let S be a semigroup. Then the undirected power graph G (S) is complete
if and only if the cyclic subsemigroups of S are linearly ordered with respect to the containment
relation ⊆.

Theorem 7.2. ([24]) A finite group has a complete undirected power graph if and only if it is cyclic
and has order equal to pm, where p is a prime and m is a nonnegative integer.

Theorem 7.3. ([24]) The undirected power graph G (Un) is complete if and only if n ∈ {1, 2, 4, p, 2p},
where p is a Fermat prime, i.e., p = 22m + 1 for m ∈ Z, m ≥ 0.

Theorem 7.4. ([77]) Let G be a finite p-group. Then the undirected power graph G (G) is a union
of complete subgraphs which share the identity element of G if and only if G is isomorphic to a
cyclic group, a p-group of exponent p, or a dihedral group.

8. Edge number

Theorem 8.1. ([24]) For each finite group G, the number of edges of the undirected power graph
G (G) is given by the formula

E(G (G)) =
1

2

∑
g∈G

{2o(g)− φ(o(g))− 1}.

Corollary 8.1. ([24]) The number of edges of the undirected power graph G (Zn) is given by
1
2

∑
d|n{2d− φ(d)− 1}φ(d).

Theorem 8.2. ([2]) Among all finite groups of a given order, the cyclic group of that order has the
largest number of edges in its directed power graph.
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Theorem 8.3. ([70]) The undirected power graph G (Zpn) has the maximum number of edges
among all undirected power graphs of p-groups of order pn.

A conjecture was recorded in [70, Conjecture 2] that Theorem 8.3 remains valid for finite
groups of any order. This conjecture was proved in [75].

Theorem 8.4. ([75]) The undirected power graph G (Zn) has the maximum number of edges among
all undirected power graphs of groups of order n.

Several criteria for the nonsimplicity of G have been obtained in [76].

Theorem 8.5. ([77]) If G is a finite simple group of order n, then |E(G (G))| ≤ |E(G (Zn))|.
Corollary 8.2. ([76]) LetG be a finite group of order n = pa11 · · · p

ak
k , where k > 1, a1, . . . , ak ≥ 1,

and where p1, . . . , pk are pairwise distinct prime numbers. If d(G ∗(G)) = 3, then G is not simple.

The degree of x in G (G) is denoted by deg(x).

Proposition 8.1. ([76]) Let G be a finite group, and let p be the greatest prime divisor of |G|. If
there exists a vertex x in G ∗(G) with deg(x) ≥ |G|/p, then G is not simple.

Proposition 8.2. ([76]) Let G be a finite group, and let q be the smallest prime divisor of |G|. If
there exists a vertex x 6= e in G (G) such that deg(x) ≥ |G|/q, then Z(G) 6= {e}.

9. Chromatic number

The chromatic number χ(G) of an undirected graph G is the smallest positive integer k such
that the vertices of G can be coloured in k colours so that no two adjacent vertices share the same
colour. A graph G is said to be planar if it can be drawn on a plane without any crossing of its
edges.

Theorem 9.1. ([26]) If n = pm, for some prime p and for some m ∈ N, then χ(G (D2n)) = n and
χ(G (Sn)) > n. Moreover, for all such n with n ≥ 5, the undirected power graph G (Sn) is not
planar.

Theorem 9.2. ([26]) The undirected power graph G (D2n) is not planar in each of the following
two cases:

(i) n = pm, for some prime p, m ∈ N and n ≥ 5;

(ii) n = 2p, for some odd prime p.

A full exponent group is a group G such that Exp(G) = o(x), for an element x ∈ G.

Theorem 9.3. ([70]) Let G be a full exponent group such that Exp(G) = pb11 · · · p
bk
k , where

p1, . . . , pk are prime numbers and b1, . . . , bk ∈ N0. Then

ω(G (G)) = χ(G (G)) = pbkk +
k−2∑
j=0

(
p
bk−j−1

k−j−1 − 1
)( j∏

i=0

φ(p
bk−i

k−i )

)
.

Conjecture 1. ([70]) Theorem 9.3 remains valid for all finite groups.

A complete list of the chromatic numbers of the undirected power graphs of nonabelian groups
of order up to 14 are determined and listed in [26].
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10. Clique number

Suppose D = (V,E) is a graph. A subset X of the vertices of D is called a clique if it induces
a complete graph of D. The maximum size of a clique in D is called the clique number of D and
denoted by ω(D).

A subset Y of D is called an independent set if it induces a null subgraph in D. The maximum
size of an independent set is called the independence number of D and denoted by α(D).

Theorem 10.1. ([70]) Let n = pa11 · · · p
ak
k , where p1 < · · · < pk are prime numbers and a1, . . . , ak ∈

N0. Then the clique number and chromatic number of the undirected power graph G (Zn) are de-
termined by the following formula

ω(G (Zn)) = χ(G (Zn)) = pakk +
k−2∑
j=0

(
p
ak−j−1

k−j−1 − 1
)( j∏

i=0

φ(p
ak−i

k−i )

)
.

In order to describe the power graphs of all finite abelian groups, we take any finite abelian
group G and any elements a, b in G, and introduce the following notation. Denote the primary
components of G by Gp1 , . . . , Gpn , and express each Gpi as a direct product of cyclic groups
Gpi = (C

p
wi,1
i

)qi,1 × (C
p
wi,2
i

)qi,2 × · · · × (C
p
wi,mi
i

)qi,mi and wi,1 < wi,2 < · · · < wi,mi
. For i =

1, . . . , n, denote the projections of a and b on Gpi , by ai and bi, respectively. Choose generators
gi,j,k in the cyclic groups of Gpi above, where 1 ≤ j ≤ mi and 1 ≤ k ≤ qi,j . Write ai and bi
in the form ai = g

ci,1,1
i,1,1 . . . g

ci,mi,qi,mi
i,mi,qi,mi

, and bi = g
di,1,1
i,1,1 . . . g

di,mi,qi,mi
i,mi,qi,mi

, where ci,j,k = ui,j,kpi
wi,j−ri,j,k ,

di,j,k = vi,j,kpi
wi,j−si,j,k and (ui,j,k, pi) = 1, (vi,j,k, pi) = 1. The following theorem describes the

directed power graphs of all finite abelian groups.

Theorem 10.2. ([43]) Let G be a finite abelian group, and let a, b be any elements of G. Suppose
that the prime factorization of the order of a is |a| =

∏n
i=1 pi

ti , where 1 ≤ ti ≤ wi,mi
. Then

(a) a belongs to a clique of order φ(|a|);

(b) (a, b) is an edge of the directed power graph of G if and only if, for every i = 1, . . . , n,

pi
wi,j |vi,j,kuφ(pi

wi,j )−1
i,j,k pi

ri,j,k−si,j,k − vi,j′,k′uφ(pi
wi,j′ )−1

i,j′,k′ pi
ri,j′,k′−si,j′,k′ ,

for all 1 ≤ j ≤ j′ ≤ mi, and 1 ≤ k ≤ k′ ≤ qi,j′ .

(c) If wi,hi is the smallest exponent in Gpi such that ti ≤ wi,hi then
−→
G (G) contains

n∏
i=1

(p
wi,1

i )
qi,1(p

wi,2

i )
qi,2 . . . (p

wi,hi−1

i )
qi,hi−1 ((ptii )

qi,hi+···+qi,mi − (pti−1i )
qi,hi+···+qi,mi )

(ptii − p
ti−1
i )

cliques of order
∏w

i=1 (pi
ti − piti−1), for each ti. Here we replace (pi

ti − pi
ti−1) by 1, if

ti = 0.
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11. Planarity

Theorem 11.1. ([70]) Let G be a finite group. Then the undirected power graph G (G) is planar if
and only if πe(G) ⊆ {1, 2, 3, 4}.

Corollary 11.1. ([70]) The undirected power graph of a cyclic group of order n is planar if and
only if n ∈ {2, 3, 4}.

Corollary 11.2. ([24]) The undirected power graph of Un is planar if and only if n divides 240.

Corollary 11.3. ([70]) χ(G (D2n)) = ω(G (D2n)) = χ(G (Zn)).

Corollary 11.4. ([70]) The undirected power graph G (SD2n) is a union of a complete graph of or-
der 2n and 2n copies of K2 that share the identity vertex. For n > 3, this graph is neither Eulerian,
nor Hamiltonian, nor nonplanar. Moreover, χ(G (SD2n)) = ω(G (SD2n)) = α(G (SD2n)) = 2n.

Theorem 11.2. ([70]) Suppose that n = pb11 · · · p
bk
k is the prime power decomposition of n and

m = b1 + · · ·+ bk. Then α(G (Zn)) is the coefficient of the middle term or the two middle terms of∏m
j=1(1 + x+ · · ·+ xbj).

It is easily seen that the undirected power graph of a p-group G is a union of complete graphs
of order p sharing the identity vertex if and only if G has exponent p. The following theorem
describes all finite groups with this property.

Theorem 11.3. ([70]) The undirected power graph G (G) is a union of complete graphs which
share the identity element ofG if and only ifG is an EPPO-group and for any two distinct maximal
cyclic subgroups A and B their intersection A ∩B is equal to {e}.

Corollary 11.5. ([70]) If G is an EPO-group then the undirected power graph G (G) is a union of
complete graphs sharing the identity element of G.

Proposition 11.1. ([70]) A finite group G is an EPPO-group if and only if the vertices of every
maximal clique of the undirected power graph G (G) form a maximal cyclic subgroup of G.

12. Isomorphism

The following theorem shows that undirected power graphs can characterize all finite simple
groups.

Theorem 12.1. ([70]) Let G1 be a finite group that is a simple group, or a cyclic group, or a
symmetric group, or a dihedral group, or a generalised quaternion group. If G2 is a finite group
such that G (G1) ∼= G (G2), then G1

∼= G2.

Theorem 12.2. ([23]) Let G1 and G2 be finite abelian groups such that G (G1) ∼= G (G2). Then
G1
∼= G2.
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It is explained in [23] that Theorem 12.2 does not generalize to infinite abelian groups. Indeed,
let Cp∞ be the group Qp/Z, where p is a prime and Qp is the group of rational numbers with
p-power denominators. Then G (Cp∞) is a countably infinite complete graph, independent of the
chosen prime.

It is also impossible to drop the condition that G be abelian from Theorem 12.2 either. Indeed,
let G be a finite group of exponent 3, that is, satisfying x3 = e for all x ∈ G. Then the undirected
power graph G (G) consists of (|G| − 1)/2 triangles sharing the identity vertex. The elementary
abelian group (the direct product of cyclic groups of order 3) has exponent 3. However, there
are nonabelian groups of exponent 3 as well. The smallest one is the group of order 27 with
presentation

G = 〈x, y | x3 = y3 = [x, y]3 = 1〉,
where [x, y] stands for the commutator x−1y−1xy.

It is noted in [23] that a short calculation with GAP [85] and its package GRAPE [83] revealed
that there are two pairs of groups of order 16 with isomorphic undirected power graphs, and two
pairs of groups of order 27. As the order of the group increases, isomorphic power graphs become
more common. For example, for order 32 there are one quadruple, two triples, and eight pairs. It
is also possible to use Magma [19] for experimental verification of properties of this sort.

Theorem 12.3. ([70]) Let G be a finite group. The undirected power graph G (G) is bipartite if
and only if G is an elementary abelian group of even order.

Theorem 12.4. ([23]) Let G1 and G2 be finite groups with
−→
G (G1) ∼=

−→
G (G2). Then G1 and G2

have the same numbers of elements of each order.

Conjecture 2. ([23]) Let G1 and G2 be finite groups with G (G1) ∼= G (G2). Then G1 and G2 have
the same numbers of elements of each order.

It is noted in [23] that this conjecture has been verified computationally using GAP [85] for all
groups of order up to 511. The converse to the conjecture fails for groups of order 16.

Theorem 12.5. ([23]) The only finite group G for which Aut(G) = Aut(G (G)) is the Klein group
Z2 × Z2.

Theorem 12.6. ([22]) Two finite groups which have isomorphic undirected power graphs must
have isomorphic directed power graphs.

Corollary 12.1. ([22]) Two finite groups whose undirected power graphs are isomorphic have the
same numbers of elements of each order.

Theorem 12.7. ([22]) Let G be a finite group, and let S be the set of vertices of the undirected
power graph G (G) which are joined to all other vertices. Suppose that |S| > 1. Then one of the
following occurs:

(a) G is cyclic of prime power order and S = G;

(b) G is cyclic of order n that is not a power of a prime, and S consists of the identity and the
generators of G, so that |S| = 1 + φ(n);

135



www.ejgta.org

Power Graphs: A Survey | J. Abawajy, A. V. Kelarev, M. Chowdhury

(c) G is generalised quaternion, and S contains the identity and the unique involution in G, so
that |S| = 2.

13. Connected graphs

Let us define a binary relation % on S by a%b⇔ am = bm, for some m ∈ N.

Theorem 13.1. ([24]) Let S be a finite semigroup, and let a, b ∈ S, a 6= b. Then a and b are
connected by a path in the graph G (S) if and only if a%b.

Corollary 13.1. ([24]) Let S be a finite semigroup. Then the connected components of the undi-
rected power graph G (S) are precisely the sets Ce defined by

Ce = {x ∈ S | x%e} = {x ∈ S | ∃m ∈ N : xm = e},

for all idempotents e in S.

A description of all idempotents of the semigroup (Zm, ·) of all integers modulo m with re-
spect to multiplication is given in [24, §3]. In particular, it is shown that the graph G ((Zm, ·)) is
disconnected for all m > 1 and that it is Eulerian if and only if n = 2.

Corollary 13.2. ([24]) Let S be a finite semigroup, then G (S) is connected if and only if S contains
a single idempotent.

Proposition 13.1. ([24]) Let S be a semigroup such that G (S) is connected. Then S contains at
most one idempotent.

Corollary 13.3. ([24]) Let S be a regular semigroup. If G (S) is connected, then S is a group.

Theorem 13.2. ([24]) Let G be a group. Then the undirected power graph G (G) is connected if
and only if G is a torsion group.

The minimum number κ(D) of vertices of D which need to be removed to make the remaining
graph disconnected is called the connectivity of D. If G is finite group, then we define

M(G) = {x ∈ G | x <max G}.

For any element x of G, put r(x) = ∪y∈M(G)−〈x〉(〈x〉 ∩ 〈y〉).

Theorem 13.3. ([70]) Let G be a finite group that is not a cyclic group. Then

κ(G (G)) ≤ min{|r(x)| | 〈x〉 <max G}.

Theorem 13.4. ([27]) For any finite cyclic group Zn, the connectivity κ(G (Zn)) satisfies the fol-
lowing conditions:

(i) κ(G (Zn)) = n− 1 when n = 1 or n = pm for a prime p and m ∈ N.

(ii) κ(G (Zn)) = φ(n) + 1 when n is not a power of a prime number. The equality holds for
n = pq, where p, q are distinct primes.
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14. 2-connected graphs

A cut vertex in an undirected graph is a vertex whose removal increases the number of con-
nected components of the graph. A graph is said to be 2-connected if it does not have a cut vertex.

Theorem 14.1. ([77]) Suppose that G is a p-group. The undirected power graph G (G) is 2-
connected if and only if G is a cyclic group or generalized quaternion 2-group.

Theorem 14.2. ([77]) Let G be a nilpotent group. If G is not a p-group then the undirected power
graph G (G) is 2-connected.

It is noted in [77] that the converse to Theorem 14.2 is not true. Indeed, the group G =
Z5×S3 is not nilpotent, but its undirected power graph is 2-connected. Besides, the dihedral group
D2p, where p is a prime, is a solvable group such that the undirected power graph G (D2p) is not
2-connected. Furthermore, the following proposition holds.

Proposition 14.1. ([77]) If A and B are groups of coprime orders such that A is cyclic of prime
order, then the undirected power graph G (A×B) is 2-connected.

Question. ([77]) Does there exist a nonabelian simple group with a 2-connected power graph?

15. Diameter

The distance d(x, y) between vertices x and y of a connected graph D = (V,E) is the length
of a shortest path connecting them. The maximum possible distance in D is called the diameter
of D and is denoted by d(D). For example, in [10] a voltage assignment approach was used to
construct large digraphs with small diameter.

The deletion of a single edge or vertex from a graph can change its diameter. Since the identity
element of a group is adjacent to all other vertices of the undirected power graph of the group, one
can delete any vertex, which is not the identity of the group, from the graph without changing its
diameter. It would be interesting to determine when the same property holds for the identity vertex
too. The following theorem gives a complete description of the structure of finite groups satisfying
this property.

Theorem 15.1. ([76]) Let G be a finite group. Then d(G (G)) = d(G ∗(G)) if and only if G is
nilpotent and its Sylow subgroups are cyclic groups or generalized quaternion 2-groups.

Theorem 15.2. ([76]) Let G be a finite group such that d(G ∗(G)) = 3. Then the Sylow subgroups
of G are generalized quaternion 2-groups or cyclic and G is not nilpotent.

16. Girth

The girth of an undirected graph G is denoted by g(G) and is defined as the length of a shortest
cycle in G.

Proposition 16.1. ([77]) The girth of undirected power graphs G (G) is equal to 3 if and only if G
is not an elementary abelian 2-group. Besides, if G (G) is 2-connected then g(G (G)− e) = 3.

Proposition 16.2. ([77]) The undirected power graph of a finite group G is a tree if and only if G
is an elementary abelian 2-group.
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17. Combinatorial properties expressed as unavoidable regularities

Combinatorial properties of groups and semigroups defined in terms of all infinite subsets
enjoying certain unavoidable regularities have been investigated by many authors, and a survey of
this direction of research has been given in [33], (cf. [31, 32, 41, 53]).

The following combinatorial property of this sort has been defined in terms of directed power
graphs in [43]. Let D = (V,E) be a directed graph. A semigroup S is said to be power D-
saturated if and only if, for every infinite subset T of S, the directed power graph of S has a
subgraph isomorphic to D with all vertices in T .

A directed graph is said to be acyclic if it has no directed cycles.
Denote by T∞ the transitive tournament with the vertex set N and the edge set E(T∞) =

{(m,n) | m > n}.
If S is finite or ifD is a null graph, then it is obvious that S is powerD-saturated. Therefore the

following theorems deal only with infinite groups or semigroups and with directed graphs which
have edges.

Theorem 17.1. ([43]) Let D = (V,E) be a directed graph with E 6= ∅, and let G be an infinite
group. Then G is power D-saturated if and only if G is a center-by-finite torsion group, the center
Z(G) has a finite number of primary components, each primary component of Z(G) is finite or
quasicyclic, the order of G/Z(G) is not divisible by p for each quasicyclic p-subgroup of G, and
D is isomorphic to a subgraph of T∞.

For a skew field K, the set of all n × n matrices with entries in K is denoted by Mn(K). A
matrix is said to be monomial if every row and column contains at most one nonzero entry. If G
is a group, then the set of all n × n monomial matrices over G0 = G ∪ {0} forms a semigroup
denoted by Mn(G). Thus a matrix semigroup is a subsemigroup of Mn(K) or Mn(G), for some
n, K and G.

Theorem 17.2. ([47]) Let D = (V,E) be a directed graph with E 6= ∅, K a skew field, G a group,
and let S be an infinite matrix semigroup in Mn(K) or in Mn(G). Then S is power D-saturated if
and only if D is acyclic and all but a finite number of elements of S are contained in the union of a
finite number of center-by-finite torsion groups Hi, where i = 1, . . . , k, such that the center Z(Hi)
of each Hi has a finite number of primary components, each primary component of Z(Hi) is finite
or quasicyclic, and the order of Hi/Z(Hi) is not divisible by p for each quasicyclic p-subgroup of
Hi.

Theorem 17.3. ([44]) Let D = (V,E) be a finite graph with E 6= ∅, and let S be an infinite
commutative semigroup. Then S is power D-saturated if and only if the following conditions hold:

(i) D is acyclic,

(ii) S is periodic,

(iii) S has a finite number of idempotents,

(iv) all but a finite number of elements of S belong to the union of all subgroups of S,
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(v) every subgroup of S has a finite number of primary components,

(vi) for every prime p, each p-subgroup of S is either finite or quasicyclic.

Theorem 17.4. ([46]) Let D be a finite directed graph that is not null, and let S be an infinite
semigroup. Then the following conditions are equivalent:

(i) the directed power graph of S is D-saturated;

(ii) D is acyclic and S0 has a finite ideal series

0 = I0 ⊆ I1 ⊆ · · · ⊆ In = S0 (1)

where every infinite Rees quotient Ij/Ij−1 is a Rees matrix semigroup that has a finite sand-
wich matrix with entries in a center-by-finite torsion group Hj such that each primary com-
ponent of the center of Hj is finite or quasicyclic, the center of Hj has only a finite number
of primary components, and the index of the center is not divisible by p for each quasicyclic
p-subgroup of Hj .

18. Open questions

A Moore graph or digraph is a graph or digraph that meets the Moore bound or directed Moore
bound, respectively. Let us refer to the survey [69] and articles [11, 12, 13, 14, 15, 16, 17, 81,
82, 88] for more information and examples of previous results pertaining to the Moore graphs and
Moore bound.

Problem 2. Does there exist any undirected or directed power graph of a group or a semigroup,
which is a Moore graph or digraph? Determine for which positive integers k there exist directed
power graphs that are at distance k from achieving the optimality in terms of the Moore bound.
Furthermore, for each positive integer k, describe all (a) groups and (b) semigroups whose directed
or undirected power graphs are at distance k from achieving the Moore bound.

Let us refer to the survey [21] for previous results on graceful labellings.

Problem 3. Describe all groups and semigroups whose undirected power graphs have graceful
labellings.

Edge-magic total labellings of graphs were considered, for example, in [86].

Problem 4. For each undirected power graph of a group or a semigroup, determine the number of
edge-magic total labellings of the graph.

We refer to the survey [6] and papers [7, 8] for information on the edge antimagic labellings of
graphs.

Problem 5. For each undirected power graph determine the number of edge antimagic labellings
of the graph.
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Let us refer to [9, 84] for preliminaries on super edge-antimagic labellings of graphs.

Problem 6. For each undirected power graph of a group or a semigroup, determine the number of
super edge-antimagic labellings of the graph.

The readers are referred to [28] for preliminaries on group distance magic labellings and group
distance antimagic labellings.

Problem 7. Investigate group distance magic labellings and group distance antimagic labellings
of power graphs.

The readers are referred to [18] for background information on the Ramsey numbers of graphs.

Problem 8. Determine the Ramsey numbers of the undirected power graphs of all groups and
semigroups.

Let us refer to [3, 4, 5] for more information concerning the face antimagic labellings of planar
graphs.

Problem 9. For each planar undirected power graph of a group or a semigroup, determine the
number of face antimagic labellings of the graph.

It is also essential to investigate the relations of power graphs and other important classes of
graphs associated to groups and semigroups. One of the largest classes of graphs of this sort is
that of Cayley graphs. Let G be a semigroup, and let S be a nonempty subset of G. As in [42],
we say that the Cayley graph Cay(G,S) of G relative to S is defined as the directed graph with
vertex set G and edge set E(S) consisting of those ordered pairs (x, y) such that sx = y for some
s ∈ S. The set S is called the connection set of the Cayley graph Cay(G,S). The Cayley graph
Cay(G,S) is also called the Cayley digraph. A Cayley graph Cay(G,S) is said to be undirected
if, (u, v) ∈ E(S) implies (v, u) ∈ E(S). On the other hand, the underlying undirected graph
←−→
Cay(G,S) of Cay(G,S) can be called the undirected Cayley graph of G relative to S.

Cayley graphs of semigroups have broad applications in versatile areas, as evidenced by the
extensive bibliography given in the survey [48]. Cayley graphs of semigroups are closely related
to automata theory, as explained in the monograph [37] and papers [35, 39, 45]. This is a very
large topic, and so without trying to be complete we indicate only a few pertinent papers [20, 34,
38, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 80, 81] just to illustrate.

Problem 10. Describe all directed and undirected power graphs of groups and semigroups that
can be represented as Cayley graphs and, respectively, undirected Cayley graphs of groups or
semigroups.

It would be also interesting to investigate the power graphs of ring constructions (cf. [36]). The
most important ring constructions are the group rings, crossed products, group-graded rings and
semigroup-graded rings (cf. [36, 40, 73, 74]). Let S be a semigroup. An associative ring R is said
to be S-graded if R =

⊕
s∈S Rs is a direct sum of additive groups Rs, and RsRt ⊆ Rst, for all

s, t ∈ S. The set H(R) = ∪s∈SRs of homogeneous elements of R is a semigroup with respect to

140



www.ejgta.org

Power Graphs: A Survey | J. Abawajy, A. V. Kelarev, M. Chowdhury

multiplication. If G is a group and R =
⊕

g∈GRg is G-graded, then R is called a group-graded
ring. If e is the identity of the group G, then the component Re is a subring of R. Group rings and
crossed products are special cases of group-graded rings, and so the set H(R) is defined for these
constructions too. Let us formulate the following general problems.

Problem 11. Let G be a group, R a ring, and let R[G] =
⊕

g∈GRg be a group ring. Reduce

various parameters of the graphs
−→
G (H(R[G])) and G (H(R[G])) to the corresponding properties

of the coefficient ring R and the group G.

Problem 12. Let G be a group with identity e, and let R =
⊕

g∈GRg be

(a) a crossed product, or

(b) a group-graded ring.

Reduce various parameters of the graphs
−→
G (H(R)) and G (H(R)) to the corresponding properties

of the subring Re and the group G.

Let D = (V,E) be a directed graph. The graph algebra Alg(D) of D is the set V ∪ {0}
equipped with multiplication defined by the rule

xy =

{
x if x, y ∈ V and (x, y) ∈ E,
0 otherwise.

Let us refer to the monograph [37] and papers [39, 50, 51, 52] on graph algebras.

Problem 13. Describe all directed graphs whose graph algebras are power-associative.

The following problem makes sense for directed graphs and undirected graphs with appropriate
adjustments.

Problem 14. For each power-associative graph algebra Alg(D), determine the girth, diameter,
connectivity, and the chromatic number of its directed power graph

−→
G ( Alg(D)) and undirected

power graph G ( Alg(D)).

Problem 15. Find conditions necessary and sufficient for the directed power graph
−→
G ( Alg(D))

and undirected power graph G ( Alg(D)) to be planar.

Problem 16. Describe all directed graphs D such that the graph algebra Alg(D) is power-
associative and its undirected power graph has a graceful labelling.
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