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Abstract

A subset D C V(@) is called an equitable dominating set of a graph G if every vertex v € V(G)\ D
has a neighbor u € D such that |dg(u) — de(v)| < 1. An equitable dominating set D is a degree
equitable restrained double dominating set (DERD-dominating set) of G if every vertex of G is
dominated by at least two vertices of D, and (V' (G) \ D) has no isolated vertices. The DERD-
domination number of G, denoted by ~5(G), is the minimum cardinality of a DERD-dominating
set of GG. We initiate the study of DERD-domination in graphs and we obtain some sharp bounds.
Finally, we show that the decision problem for determining ~(G) is NP-complete.
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1. Introduction

Let G = (V, E) be a graph. The number of vertices of G we denote by n and the number
of edges we denote by m, thus [V(G)| = n and |E(G)| = m. The complement of (7, denoted
by G, is a graph which has the same vertices as (&, and in which two vertices are adjacent if and
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only if they are not adjacent in G. By the open neighborhood of a vertex v of G we mean the set
Ne(v) ={u € V(G): uwv € E(G)}. By the closed neighborhood of a vertex v of G we mean the
set Ng[v] = Ng(v) U {v}. The degree of a vertex v, denoted by d¢(v), is the cardinality of its
open neighborhood. A vertex is called isolated if it has no neighbors, while it is called universal
if it is adjacent to all other vertices. Let .S be a subset of the set of vertices of (=, and let u € S.
A vertex v is a private neighbor of u with respect to S if Ng[v] NS = {u}. The set of private
neighbors of u with respect to S is the set pnfu, S| = {v: Ng[v|NS = {u}}. If u € pnu, S| and
w is an isolated vertex in (.S), then w is called its own private neighbor. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex
is weak if it is adjacent to exactly one leaf. We say that a vertex is isolated if it has no neighbor.
Let A(G) mean the maximum degree among all vertices of GG. The path (cycle, respectively) on n
vertices we denote by P, (C),, respectively). A wheel W,,, where n > 4, is a graph with n vertices,
formed by connecting a vertex to all vertices of a cycle C;,_;. The distance between two vertices
of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex
is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by
diam(G), is the maximum eccentricity among all vertices of G. By K, , we denote a complete
bipartite graph with partite sets of cardinalities p and ¢g. By a star we mean the graph K ,. By
a double star we mean a graph obtained from a star by joining a positive number of vertices to
one of its leaves. Generally, let K}, ;, ; denote the complete multipartite graph with vertex set
S1U Sy U. ..U Sy, where |S;| = t; for positive integers i < ¢.

A subset D C V(@) is a dominating set of G if every vertex of V(&) \ D has a neighbor in D.
The domination number of G, denoted by v((G), is the minimum cardinality of a dominating set of
G. For a comprehensive survey of domination in graphs, see [4, 5].

A subset D C V/(G) is a restrained dominating set of G if every vertex of V(G) \ D has
a neighbor in D as well as a neighbor in V(G) \ D. The restrained domination number of G,
denoted by ~,.(G), is the minimum cardinality of a restrained dominating set of G. A restrained
dominating set of G of minimum cardinality is called a ,.(G)-set.

A dominating set D of a graph G is said to be a cototal dominating set of G if the induced
subgraph (V' (G) \ D) has no isolated vertices. The cototal domination number of G, denoted by
Ya(G), is the minimum cardinality of a cototal dominating set of G. Restrained domination in
graphs was introduced by Domke et. al [1]. Independently, Kulli et. al [9] initiated the study of
cototal domination in graphs. The concepts of restrained domination and cototal domination are
equivalent.

A subset D C V(@) is a double dominating set of G if every vertex of GG is dominated by at
least two vertices of D. The double domination number of GG, denoted by 74(G), is the minimum
cardinality of a double dominating set of GG. The study of double domination in graphs was initiated
by Harary and Haynes [3].

A subset D C V(@) is a restrained double dominating set of G if every vertex of GG is domi-
nated by at least two vertices of D, and no vertex of (V' (G) \ D) is isolated. The restrained double
domination number of G, denoted by v4.(G), is the minimum cardinality of a restrained double
dominating set of GG. The study of restrained double domination in graphs was initiated by in [8].
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A subset D C V(G) is called an equitable dominating set of G if every vertex v € V(G) \ D
has a neighbor v € D such that |dg(u) — dg(v)| < 1. The equitable domination number of G,
denoted by 7¢(G), is the minimum cardinality of an equitable dominating set of G. The concept
of equitable domination in graphs was introduced by V. Swaminathan and K. Dharmalingam [11]
by considering the following real world situation. In a network, nodes with nearly equal capacity
may interact with each other in a better way. In societies, persons with nearly equal statuses tend
to be friendly. For more details on the domination refer [6, 7, 10, 12].

We introduce a new variant of equitable domination, namely the degree equitable restrained
double domination (DERD-domination), and we initiate the study of this parameter. An equitable
dominating set D of a graph G is said to be a DERD-dominating set of G if every vertex of G is
dominated by at least two vertices of D, and (V(G) \ D) has no isolated vertices. The DERD-
domination number of G, denoted by ~5(G), is the minimum cardinality of a DERD-dominating
set of G.

2. Results

Since the one-vertex graph, as well as all graphs with an isolated vertex, does not have a
DERD-dominating set, in this paper we consider only graphs without isolated vertices.

We begin with the following straightforward observations.

Observation 1. Let G be a graph without isolated vertices. Then every DERD-dominating set of
G contains all leaves and support vertices of G.

Observation 2. There is no graph G such that v5(G) = n — 1.

Observation 3. For every positive integer n we have

3, ifn=3;
2, otherwise.

ratrn) = {
Observation 4. For every integer n > 2 we have v5(P,) = n.
Observation 5. If n > 3 is an integer, then v5(C,,) = n.
Observation 6. For every integer n > 4 we have v5(W,,) = |n/2].

Observation 7. If m and n are positive integers, then

4, iflm—n|<land3 <m<n;
m +n, otherwise.

i) = {

We have the following property of regular and (k, k + 1)-biregular graphs.

Theorem 8. Ifa graph G is regular or (k, k+1)-biregular, for any integer k, then 75,(G) = Yaa(G).
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Proof. Let D be a minimum restrained double dominating set of G. Let u € V(G) \ D. Thus
there exist vertices w,v € D such that uw,uv € E(G). We have |dg(u) — dg(v)] < 1 and
|de(u) — dg(w)| < 1. Therefore D is a DERD-dominating set of G. Consequently, 75(G) <
|D| = Y4a(G). Obviously, 744 (G) < v5(G). This implies that 75 (G) = vaa(G). O

Theorem 9. For every graph G we have 2 < v5(G) < n. Further, the lower bound is attained if
and only if G = Ky or G = K,, — {x} where x is any vertex in K,; n > 5 and the upper bound
is attained if and only if G does not contain an edge wv € E(G) which satisfies the following
conditions:

(i) there are vertices w € Ng(u) and z € Ng(v) such that |Ng(u)| > 3 and |[Ng(v)| > 3;

(ii) there are vertices w € Ng(u) and z € Ng(v) such that |dg(u) — dg(w)| < 1 and |dg(v) —
da(2)] < 1.

Proof. Lower bound follows from the definition of DERD-set. Now consider the equality of lower
bound. Suppose 75(G) = 2 and G # K, or K,, — {z}. Then G contains at least two vertices
u,v € V(G) such that ({u, v}) contains no edge. Let D be DERD-set of GG such that u, v ¢ D. Let
w,x € D. Since u and v are independent vertices in G, therefore w and = must be adjacent to both
u and v also by the definition of DERD-set (V' — D) contains no isolated vertices. Therefore, we
need at least one more vertex to compliance the necessary conditions required to define DERD-set
in G. Hence |D| > 3, a contradiction.

Conversely, suppose G = K, then by Observation 3, 75(G) = 2and if G = K,,—{z};n > 5,
then any two adjacent vertices will form a DERD-set for G. Hence 75(G) = 2.
Now consider the upper bound. Suppose 75(G) = n and G contains an edge which satisfied the
conditions in the hypothesis of the theorem, then V' — {w, z} will form a DERD-set for G. Hence
75(G) = |V —{w, z}| = n — 2. Hence G must not contain an edge as stated in the hypothesis of
the theorem. ]

We now characterize the trees 7" such that v5(7") = n.

Theorem 10. Let T' be a tree. We have v5(T) = n if and only if T does not contain an edge

wv € E(T) which is incident to exactly four weak support vertices x,y, z,w such that N(zx) N
N(y) = {u} and N(z) N N(w) = {v}.

Proof. LetT be a tree and 75 (7") = n. Suppose 1" does not satisfies the hypothesis of the theorem,
then there exist at least an edge uv € F/(T') incident to exactly four support vertices x, y, z, w such
that N(z) " N(y) = {u} and N(2) N N(w) = {v} which implies that V' — {u, v} is isomorphic to
K. Therefore |D| = n — 2. Hence (7)) = |D| = n — 2, a contradiction.

Conversely, suppose G does not contain an edge uv € E(T) as stated in the hypothesis of the
theorem, then (V' — D) = m, which implies that | D| = n. Hence v5(T") = |D| = n. O

By Observation 2, there exists no graph with v(7') = n — 1.
We now consider trees 7" such that v5(7") < n — 2.
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Let S(n, k)-star (where n > 2 and k > 1) be a tree obtained from a path P, making each
vertex v; € V(P,) (2 < i < n) adjacent to least k new leaves. We have |V (S(n, k))| = n + k and
[E(S(n, k)| =n+k—1.

Operation O: Let v be a support vertex of a tree T'. Attach |dg(v) — 1| or |dg(v) — 2| leaves to
at least one leaf adjacent to v, and attach exactly one leaf to other leaves adjacent to v.

Let 7 be the family of trees such that
T = {T: T is obtained from a star by a finite sequence of operations O}.

We now characterize the trees with v5(7") = n — 2.

Theorem 11. If T is a tree with at least six vertices, then v5(T) = n — 2 ifand only if T € T and
T is obtained from a S(2, k)-star (k > 2) by a finite sequence of operations O.

Similarly, we can characterize the trees with v5(7") = k (k > 3) by S(n,n — k)-star by finite
sequence of operations O.

We need the following theorem to prove our further results.

Theorem 12 ([4]). Let G be a graph without isolated vertices. Then ~(G) = n/2 if and only if
each component of G is a cycle Cy or G = H o Ky, for any connected graph H.

Next we characterize the class of graphs with 75(G) = 2v(G).

Theorem 13. Ler G be a graph without isolated vertices, and which is not a tree. Then 5(G) =
2v(G) if and only if each component of G is a cycle Cy or G = H o K3, for any connected graph
H.

Proof. Let G be a graph without isolated vertices. Let D be a DERD-dominating set of GG. If each
component of (7 is a cycle Cy, then by Theorem 12, (G) = § and by Observation 4, we have
75(G) = n. If G = H o K, then 75(G) = n as every vertex of H o K is a leaf or a support
vertex. By Theorem 12 we have 7(G) = n/2. Hence v5(G) =n =n/2+n/2 = y(G) +v(G) =
29(G). O]

3. Complexity issues for v& (G)

To show that the DERD-domination decision problem for arbitrary graphs is NP-complete, we
shall use a well known NP-completeness result called Exact Three Cover (X 3C'), which is defined
as follows.

EXACT COVER BY 3-SETS (X3C).

Instance: A finite set X with |X| = 3m and a collection C' of 3-element subsets of X.

Question: Does C' contain an exact cover for X, that is, a subcollection C’ C C such that
every element of X occurs in exactly one member of C’? Note that if C” exists, then its cardinality
is precisely m.

Theorem 14 ([2]). X3C' is NP-complete.

109



DERD-domination in graphs | S.M. Hosamani et al.

DEGREE EQUITABLE RESTRAINED DOUBLE DOMINATING SET (DERD-
dominating set).

Instance: A graph G = (V, F) and a positive integer £ < |V/|.
Question: Is there a DERD-dominating set of cardinality at most £?

Theorem 15. DERD-dominating set problem is NP-complete, even for bipartite graphs.

Proof. 1t is clear that the DERD-dominating set problem is NP. To show that it is NP-complete,
we establish a polynomial transformation from X3C. Let X = {xy,z5,...,23,} and C' =
{c1,¢2,...,¢n} be an arbitrary instance of X3C'. We construct a bipartite graph G and a posi-
tive integer k£ such that this instance of X3C' will have an exact 3-cover if and only if G has a
DERD-dominating set of cardinality at most k. With each edge x; € X, associate a path P, with
vertices x;, y;, 2, t;, with each c; associate a path P3 with vertices c;, d;, s;. Then add new vertices
Uy, Uy, . . ., Uzm, and make them adjacent to all 2s. The construction of a bipartite graph G is
completed by joining x; and ¢; if and only if x; € c¢;. Finally, set k = 2m + 9m.
Assume that C' has an exact 3-cover, say ¢’. Then

U {zttu U {dysitulegigediu | w

1<i<3m 1<5<m 1<5<2m

is a DERD-dominating set of GG of cardinality 2m + 9m. This construction can clearly be deter-
mined in polynomial time.

Now assume that D is a DERD-dominating set of cardinality at most 2m + 9m. Then the
vertices in the set L, defined by

U ttu U {45}
1<i<3m 1<5<m

are all leaves, and their neighbors have to be in D. Hence |D| — |L| < (2m+9m) — (2m+6m) =
3m.Let] ={ie (1,2,....,3m): z; € D or y; € D}andlet J = {j € (1,2,...,2m): ¢; € D
oru; € D}. Then since D is a double dominating set of G, we have

@i wiy Ul Neles) U |{ws} 2 {1, 22, - 3m }-

iel jeJ jeJ
We conclude that |1|+3|J| > 9m. Also |I|+|J| < |D|—|L| < 3m. Hence [31|+3|J| < |I]+3|J],
thus I = (). We conclude that z;,y; ¢ D fori = 1,2,...,3m. Since z; (i = 1,2,...,3m) is
dominated by D, we conclude that |J| = 3m and ¢ = {¢;: j € J} is an exact cover for X. O
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