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Abstract

For integer k ≥ 2, let X = {0, 1, 2, . . . , k}. In this paper, we determine the order of a star graph
K1,n of n + 1 vertices, such that K1,n admits a topological integer additive set-labeling (TIASL)
with respect to a set X . We also give a condition for a star graph K1,n such that K1,n is not a
TIASL-graph on set X .
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1. Introduction

Research on graph labeling was started after Rosa introduced the concept of β-valuation of
graphs [2]. The concept of set-assignment [1], which is defined as follows, is analogous to the
number valuations of graphs. Let G(V,E) be a graph, X be a non-empty set, and P(X) be the
power set of X . Then the set-valued function f : V (G) → P(X) is called the set-assignment of
vertices of G. We can also define a set-assignment of edges or both elements (vertices and edges)
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in a similar way. A set-assignment of a graph G is called a set-labeling (or a set-valuation) of G
if it is injective.

In this paper, we combine the concept of the vertex set-labeling and the set topology. A
topology on a non-empty set X is a collection T of subsets of X having the following properties:

1. The set X and ∅ are in T .
2. The union of the elements of any sub-collection of T is in T .
3. The intersection of the elements of any finite sub-collection of T is in T .

LetG be a connected, simple, and finite graph. LetX be a finite non-empty set of non-negative
integers. A vertex set-labeling f : V (G) → P(X) − {∅} is called a topological integer additive
set-labeling (TIASL) of G if f is an injective function, {f(V (G)) ∪ {∅}} is a topology of X ,
and there exists the corresponding function f+ : E(G) → P(X) − {∅} such that for every edge
uv ∈ E(G), f+(uv) = f(u) + f(v). We recall that the sumset (or Minkowski sum [4]) of two
non-empty sets A and B, denoted by A + B, is defined by A + B = {a + b | a ∈ A; b ∈ B}. A
graph G which admits TIASL is called a topological integer additive set-labelled graph (in short,
TIASL-graph).

The topological integer additive set-labeling was introduced by Sudev and Germina [3]. They
give a tight condition for a TIASL-graph. They proved that G is a TIASL-graph if and only if G
has at least one pendant vertex. They also characterized all TIASL-graphs with respect to either
the indiscrete topology or Sierpenski’s topology.

LetG be a graph having a pendant vertex. For integer k ≥ 2, letX = {0, 1, 2, . . . , k}. It seems
that every graph G admits a topological integer additive set-labeling on set X if the cardinality of
X is big enough. In [3], Sudev and Germina proved that an (n,m)-tadpole graph is a TIASL-
graph. An (n,m)-tadpole graph is a graph obtained from one copies of cycle Cn, n ≥ 3, and
path Pm, m ≥ 2, by identifying an end point of the path Pm to a vertex of cycle Cn. They have
shown that an (n,m)-tadpole graph of n + m − 1 vertices admits a topological integer additive
set-labeling on set X = {0, 1, 2, . . . , k} where k = 2(m+ n)− 5.

In this paper, we consider a star graphK1,n of n+1 vertices and a given setX = {0, 1, 2, . . . , k}
where k ≥ 2. We obtain two main results. The first result is related to the order of a star graph
K1,n such that K1,n is a TIASL-graph on the set X .

Theorem 1.1. Let K1,n be a star graph with n + 1 vertices. For k ≥ 2, let X = {0, 1, 2, . . . , k}.
If n is one of the positive integers below, then K1,n is a TIASL-graph on set X .

(a) n ∈ {1, 2, . . . , 4k − 4}, or
(b) n = 2r1 + r2 − 2 for r1 ∈ {2, 3, . . . , k − 1} and r2 ∈ {1, 2}.

In the second result, we give a condition for a star graph K1,n such that K1,n is not a TIASL-
graph on set X .

Theorem 1.2. Let K1,n be a star graph with n + 1 vertices. For k ≥ 2, let X = {0, 1, 2, . . . , k}.
If 3 · 2k−1 − 2 ≤ n ≤ 2k+1 − 2, then K1,n is not a TIASL-graph on set X .

In order to prove both theorems above, we also consider the following useful proposition.

Proposition 1.1. Let S be a finite non-empty set of non-negative integers with s elements. Then
P(S) is a topology of S with 2s elements.
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2. Proof of Theorem 1.1

For an integer k ≥ 2, let X = {0, 1, 2, . . . , k}. First we must consider the following proposi-
tion which has been proved by Sudev and Germina [3].

Proposition 2.1. Let f : V (G) → X − {∅} is a TIASL of a graph G. Then, the vertices whose
set-labels containing the maximal element of the ground set X are pendant vertices which are
adjacent to the vertex having the set-label {0}.

From Proposition 2.1, if f is a TIASL of a graph G, then there exists a vertex v of G such that
f(v) = {0}. Therefore, we must construct a topology of X containing {0}.

Proposition 2.2. There exists a topology T containing {0} on set X such that |T | = t, where t is
one of the positive integers as follows.

(a) 3 ≤ t ≤ 4k − 2, or
(b) t = 2r1 + r2 for r1 ∈ {2, 3, . . . , k − 1} and r2 ∈ {1, 2}.

Proof. We distinguish two cases.

Part 2.2.1. 3 ≤ t ≤ 4k − 2
Let I0 = X . For i ∈ {1, 2, . . . , k}, we define recursively

Ii = Ii−1 −max(Ii−1)

and
Ii = {Ik} ∪ {Is | 0 ≤ s ≤ i− 1}.

Note that |Ii| = i + 1. We also define I∗i = Ik−i − {0} and I∗i = {I∗s | 1 ≤ s ≤ i}. In this case,
|I∗i | = i. For j ∈ {1, 2, . . . , k − 2}, we define

Îj = Ij+2 ∪ {k − 1}

and
Î∗j = Îj − {0}.

We also define
I∗∗j = Îj ∪ Î∗j ,

where Îj = {Îs | 1 ≤ s ≤ j} and Î∗j = {Î∗s | 1 ≤ s ≤ j}. Note that |I∗∗j | = 2j.
By some definitions above, we define a collection-set T1 with t elements as follows.

T1 = {∅} ∪


It−2, if 3 ≤ t ≤ k + 2,
Ik ∪ I∗t−k−2, if k + 3 ≤ t ≤ 2k + 2,
Ik ∪ I∗k−1 ∪ I∗∗t−1

2
−k, if 2k + 3 ≤ t ≤ 4k − 3 and t is odd,

Ik ∪ I∗k ∪ I∗∗t−2
2
−k, if 2k + 4 ≤ t ≤ 4k − 2 and t is even.

Note that Ik = {0} ∈ T1. Now, we will show that T1 is a topology of X .
Let A and B be two distinct elements of T1 where |A| ≤ |B|. If A ⊂ B, then A∩B = A ∈ T1

and A ∪B = B ∈ T1. Otherwise, we distinguish six cases.
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1. A ∈ Ik and B ∈ I∗i for i ∈ {1, 2, . . . , k} (or B ∈ Ik and A ∈ I∗i )
Then A ∩B ∈ I∗i and A ∪B ∈ Ik.

2. A ∈ Ik and B ∈ Îj for j ∈ {1, 2, . . . , k − 2} (or B ∈ Ik and A ∈ Îj)
Then A ∩B ∈ Ik and either A ∪B ∈ Ik or A ∪B ∈ Îj .

3. A ∈ Ik and B ∈ Î∗j for j ∈ {1, 2, . . . , k − 2} (or B ∈ Ik and A ∈ Î∗j )
Then A ∩B ∈ I∗k and either A ∪B ∈ Îj or A ∪B ∈ Ik.

4. A ∈ I∗i and B ∈ Îj for i ∈ {k − 1, k} and j ∈ {1, 2, . . . , k − 2} (or B ∈ I∗i and A ∈ Îj)
Then either A ∩B = ∅ or A ∩B ∈ I∗i or A ∩B ∈ Î∗j . Also, we have either A ∪B ∈ Îj or
A ∪B ∈ Ik.

5. A ∈ I∗i and B ∈ Î∗j for i ∈ {k − 1, k} and j ∈ {1, 2, . . . , k − 2} (or B ∈ I∗i and A ∈ Î∗j )
Then either A ∩B ∈ Ik or A ∩B = ∅. Also, we have either A ∪B ∈ I∗i or A ∪B ∈ Î∗j .

6. A ∈ Îj and B ∈ Î∗j for j ∈ {1, 2, . . . , k − 2} (or B ∈ Îj and A ∈ Î∗j )
Then A ∩B ∈ Î∗j and A ∪B ∈ Îj .

From the six cases above, we obtain that every two distinct elements A and B in T1 satisfy
A ∩ B ∈ T1 and A ∪ B ∈ T1. Since T1 also contains ∅ and X , it implies that T1 is a topol-
ogy of X .

Part 2.2.2. t = 2r1 + r2 for r1 ∈ {2, 3, . . . , k − 1} and r2 ∈ {1, 2}
We define the sets Jr1 = {0, 1, . . . , r1}. Now, we consider an element a of X such that

a 6= max(X). Let X− = X − {a}. By these definitions, we define a collection-set T2 with t
elements as follows.

T2 =
{
P(Jr1) ∪ {X}, if t = 2r1 + 1,
P(Jr1) ∪ {{X}, {X−}}, if t = 2r1 + 2.

Now, we will show that T2 is a topology of X .
Note that ∅, {0}, X ∈ T2. Let A and B be two distinct elements of T2. We distinguish three

cases.

1. A,B ∈ P(Jr1)
By Proposition 1.1, then A ∩B ∈ P(Jr1) and A ∪B ∈ P(Jr1).

2. A ∈ P(Jr1) or A = X−, and B = X
Then A ∪B = B and A ∩B = A.

3. A ∈ P(Jr1) and B = X−.
Then A ∩B ∈ P(Jr1) and A ∪B ∈ {X,X−}.

From three cases above, we obtain that A ∩B,A ∪B ∈ T2. �

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let V (K1,n) = {v1, v2, . . . , vn+1}, where v1 is the centre of K1,n. Let
Tt be a topology of X with t elements satisfying Proposition 2.2. Let T ′t = Tt − {∅}. Now, we
define a vertex injective labeling f : V (Sn)→ T ′t such that f(v1) = {0}. Since for 2 ≤ i ≤ n, v1
is adjacent to vi and f(v1) + f(vi) = f(vi) ∈ T ′t ⊆ P(X), we obtain that K1,n is a TIASL-graph
on the set X . �
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3. Proof of Theorem 1.2

Let S be a finite non-empty set of non-negative integers. From Proposition 1.1, it is clear that
P(S) is a topology on the set S. Let A ⊂ P(S). On some cases of A, the collection P(S) −A
is not a topology on the set S. In proposition below, we prove that if L ∈ P(S) is not an element
of a topology T on the set S, then there exists an element l ∈ L such that {l} /∈ T .

Proposition 3.1. Let S be a finite non-empty set of non-negative integers with s elements, and T
be a topology of S. Let A ∈ P(S) but A /∈ T . Then there exists an element a of A such that
{a} /∈ T .

Proof. By the definition of a topology, we have A 6= ∅. Let A = {a1, a2, . . . , ar}. If r = 1, then
we are done. Now, we assume that r ≥ 2. Suppose that {ai} ∈ T for 1 ≤ i ≤ r. Note that⋃r

i=1{ai} = A /∈ T , a contradiction. �

Let the collection T be a topology on the set S which is satisfying Proposition 3.1 above and
the set L ∈ P(S) but L /∈ T . Let l ∈ L and {l} /∈ T . So, there are no two distinct sets A1 and
A2 in T such that A1 ∩A2 = {l}. Therefore, we need to determine how many elements of T such
that T may be a topology on the set S.

Proposition 3.2. Let S be a finite non-empty set of non-negative integers with s ≥ 2 elements. Let
A be a non-empty collection-set, where every element of A is an element of P(S). If P(S)−A is
a topology of S, then |P(S)−A| ≤ 3 · 2s−2.

Proof. Let S = {v1, v2, . . . , vs}. By Proposition 1.1, P(S) is a topology of S with 2s elements.
Let A be a non-empty collection-set, where every element of A is element of P(S). Let T =
P(S)−A be a topology of S.

Let E ∈ A. Since T is a topology of S, it is clear that E 6= ∅ and E 6= S. By considering
Proposition 3.1, without lost of generality, let vs ∈ E and {vs} /∈ T . We can say that {vs} ∈ A.

Let B = {{vs, vi} | 1 ≤ i ≤ s−1}. Note that |B| = s−1. Since T is a topology of S, then at
least s−2 elements of B are inA. Without lost of generality, let B̂ = {{vs, vi} | 1 ≤ i ≤ s−2} ⊆
A. Now, we define B = {v | {vs, v} ∈ B̂}. We also define C = {{vs} ∪ C | C ∈ P(B)}. Note
that |C| = 2s−2, {vs} ∈ C, and B ⊆ C. Note that for any distinct elements C1, C2 ∈ C, we have
C1 ∪ C2 and C1 ∩ C2 are also in C. However, every C ∈ C satisfy C ∩ {vs, vs−1} = {vs} ∈ A.
So, it must be C ⊆ A. Therefore, we obtain

|P(S)−A| ≤ 2s − 2s−2 = 3 · 2s−2.

�

Proof of Theorem 2. Theorem 1.2 is a direct consequence of Propositions 1.1 and 3.2. �
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