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Abstract

For a simple graph G, a vertex labeling f : V (G) → {1, 2, . . . , k} is called a k-labeling. The
weight of a vertex v, denoted by wtf (v) is the sum of all vertex labels of vertices in the closed
neighborhood of the vertex v. A vertex k-labeling is defined to be an inclusive distance vertex
irregular distance k-labeling of G if for every two different vertices u and v there is wtf (u) 6=
wtf (v). The minimum k for which the graph G has a vertex irregular distance k-labeling is called
the inclusive distance vertex irregularity strength of G. In this paper we establish a lower bound
of the inclusive distance vertex irregularity strength for any graph and determine the exact value of
this parameter for several families of graphs.
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1. Introduction

Inspired by Miller, Rodger and Simanjuntak [5] who introduced a distance magic labeling, Sla-
min [6] introduced the concept of a distance vertex irregular labeling of graphs. A distance vertex
irregular labeling of a graph is a mapping g : V (G) → {1, 2, . . . , k} such that the set of vertex
weights consists of distinct numbers, where the weight of a vertex v ∈ V (G) under the labeling g
is defined as

wtg(v) =
∑

u∈NG(v)

g(u),
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where NG(v) is a set of all neighbors of a vertex v, that is a set of vertices whose distance from
v is 1. In other words the weight of a vertex v is the sum of all vertex labels of vertices in the
neighborhood of the vertex v. The minimum k for which a graph G has a distance vertex irregular
labeling is called the distance vertex irregularity strength of G, denoted by dis(G). In his paper,
Slamin also proved that dis(Kn) = n, for n ≥ 3, dis(Pn) = dn/2e, for n ≥ 4, dis(Cn) =
d(n+ 1)/2e, for n ≡ 0, 1, 2, 3 (mod 8) and dis(Wn) = d(n+ 1)/2e, for n ≡ 0, 1, 2, 5 (mod 8).

Bong et al. [2] generalized the concept to inclusive and non-inclusive vertex irregular d-
distance vertex labeling. The difference between inclusive and non-inclusive labeling depend on
the way to calculate the vertex weight whether the vertex label of vertex which we calculate its
weight is included or not. The symbol d represents on how far the neighborhood is consider. Thus
the original concept of Slamin can be called a non-inclusive vertex irregular 1-distance vertex la-
beling. An inclusive vertex irregular d-distance vertex labeling f is an irregular labeling of vertices
in a graph G where the weights of a vertex v ∈ V (G) is the sum of the label of v and all labels of
vertices up to distance d from v,

wtf (v) = f(v) +
∑

u∈V (G): 1≤d(u,v)≤d

f(u),

where d(u, v) is the distance between vertex u to vertex v. They determined the inclusive 1-
distance irregularity strength for path Pn (n ≡ 0 (mod 3)), star, double star S(m,n) with m ≤ n,
lower bound for caterpillar, cycles and wheels.

In this paper we consider an inclusive vertex irregular d-distance vertex labeling with d = 1.
For simplicity in this paper, we call the labeling an inclusive distance vertex irregular labeling.
Thus an inclusive distance vertex labeling f is an irregular labeling of vertices in a graph G where
the weights of a vertex v ∈ V (G) is the sum of the label of v and all vertex labels of vertices in the
neighborhood of the vertex v, and thus

wtf (v) =
∑

u∈NG[v]

f(u),

where NG[v] is a set of all neighbors of a vertex v including v, that is a set of vertices whose
distance from v is maximum 1.

The minimum k for which there exists an inclusive distance vertex irregular labeling of a graph
G is called the inclusive distance vertex irregularity strength of G and is denoted by d̂is(G). If
such k does not exist we say that d̂is(G) =∞.

We establish a lower bound of the inclusive distance vertex irregularity strength and determine
the exact value of this parameter for several families of graphs. We are dealing with the given
graph invariant for complete graphs, complete bipartite graphs, paths, cycles, fans and wheels.

2. Lower and upper bound

The following lemma gives a lower bound on the inclusive distance vertex irregularity strength
of a graph G.
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Lemma 2.1. [2] Let G be a graph with maximum degree ∆(G) and minimum degree δ(G). Then

d̂is(G) ≥
⌈
|V (G)|+δ(G)

∆(G)+1

⌉
.

Now we will deal with an upper bound of d̂is(G). The following theorem gives a sufficient and
necessary condition for d̂is(G) <∞. Note that the graph G is not necessarily connected.

Theorem 2.1. For a graph G holds d̂is(G) = ∞ if and only if there exist two distinct vertices
u, v ∈ V (G) such that NG[u] = NG[v].

Proof. Let us consider that in G there exist two distinct vertices u, v ∈ V (G) such that

NG[u] = NG[v]. (1)

Let f be any vertex labeling of G, f : V (G) → {1, 2, . . . , k}. For the weights of vertices u and v
under a labeling f we get

wtf (u) =
∑

x∈NG[u]

f(x) =
∑

x∈NG[u]

f(x) =
∑

x∈NG[v]

f(x) =
∑

x∈NG[v]

f(x) = wtf (v).

According to the condition (1) we get wtf (u) = wtf (v) which evidently means that f can not be
distance vertex irregular.

Now, let us consider that for all vertices u, v ∈ V (G) it holds that NG[u] 6= NG[v]. Let us
denote the vertices of G arbitrarily by the symbols v1, v2, . . . , v|V (G)|. We define a vertex 2|V (G)|−1-
labeling f of G in the following way:

f(vi) = 2i−1, for i = 1, 2, . . . , |V (G)|.

Let us define the labeling θ such that

θi,j =

{
1, if vi ∈ NG[vj],
0, if vi 6∈ NG[vj],

where i = 1, 2, . . . , |V (G)|, j = 1, 2, . . . , |V (G)|.
The weight of a vertex vj is the sum of all vertex labels of vertices in a closed neighborhood of

vj . Thus, for j = 1, 2, . . . , |V (G)| we have

wtf (vj) =
∑

vi∈NG[vj ]

f(vi) =
∑

i: vi∈NG[vj ]

2i−1 =

|V (G)|∑
i=1

θi,j2
i−1. (2)

To prove that vertex weights are all distinct it is enough to show that the sums
∑|V (G)|

i=1 θi,j2
i−1 are

distinct for j = 1, 2, . . . , |V (G)|. However, this is evident if we consider that the ordered |V (G)|-
tuple (θ|V (G)|,jθ|V (G)|−1,j . . . θ2,jθ1,j) corresponds to the binary code representation of the sum (2).
As different vertices have distinct closed neighborhoods we immediately get that the |V (G)|-tuples
are different for different vertices. Which implies that d̂is(G) < 2|V (G)|−1.
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3. Complete and complete bipartite graph

Immediately from Theorem 2.1 we obtain the result for the inclusive distance vertex irregularity
strength of complete graphs.

Corollary 3.1. Let n be a positive integer. Then

d̂is(Kn) =

{
1, for n = 1,

∞, for n ≥ 2.

From Theorem 2.1 we also obtain the following result.

Lemma 3.1. Let d̂is(G) <∞. If u, v ∈ V (G) are two distinct vertices such that NG(u) = NG(v)
then f(u) 6= f(v) in any inclusive distance vertex irregular labeling f of G.

We will use this lemma for finding the inclusive distance vertex irregularity strength of com-
plete bipartite graphs Km,n, m,n ≥ 1.

Theorem 3.1. Let m,n be positive integers m ≥ n ≥ 1. Then

d̂is(Km,n) =


∞, for m = n = 1,

n+ 2, for m = n ≥ 2,

m, for m > n.

Proof. Let m,n be positive integers m ≥ n ≥ 1. Let us denote the vertices and edges of Km,n

such that

V (Km,n) ={ui : i = 1, 2, . . . ,m} ∪ {vj : j = 1, 2, . . . , n},
E(Km,n) ={uivj : i = 1, 2, . . . ,m, j = 1, 2, . . . , n}.

We will consider three cases.
Case 1: m = n = 1. In this case the graph Km,n = K1,1 is isomorphic to K2 and according to

Corollary 3.1 we get d̂is(K1,1) =∞.
Case 2: m = n ≥ 2. Let f : V (G) → {1, 2, . . . , k} be an inclusive distance vertex irregular

labeling of Kn,n. According to Lemma 3.1 we get k ≥ n and the set of labels of vertices ui, i =
1, 2, . . . , n must consist of distinct numbers and also the set of labels of vertices vj , j = 1, 2, . . . , n
must consist of distinct numbers. It is easy to see that k > n.

Let us consider that k = n+ 1. Without loss of generality we can assume that

{f(ui) : i = 1, 2, . . . , n} = {1, 2, . . . , n}

and
{f(vj) : j = 1, 2, . . . , n} = {1, 2, . . . , n+ 1} \ {p},

where p is an integer 1 ≤ p ≤ n.
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Then for the vertex weights we get

wtf (vj) =f(vj) +
n∑
i=1

f(ui) = f(vj) +
n∑
i=1

i = f(vj) + n(n+1)
2

,

for j = 1, 2, . . . , n. Thus

{wtf (vj) : j = 1, 2, . . . , n} = {n(n+1)
2

+ 1, n(n+1)
2

+ 2, . . . , n(n+1)
2

+ n+ 1} \ {n(n+1)
2

+ p}.

And

wtf (ui) =f(ui) +
n∑
j=1

f(vj) = f(ui) +
n+1∑
j=1

j − p = f(ui) +
n∑
j=1

j + (n+ 1)− p

=f(ui) + n(n+1)
2

+ (n+ 1)− p,

for i = 1, 2, . . . , n. Thus

{wtf (ui) : i = 1, 2, . . . , n} = {n(n+1)
2

+ n+ 2− p, n(n+1)
2

+ n+ 3− p, . . . , n(n+1)
2

+ 2n+ 2− p}.

Which is a contradiction as the vertex weights are not distinct. Thus k ≥ n+ 2.
Let us define the vertex labeling g of Kn,n such that

g(ui) = i, for i = 1, 2, . . . , n,

g(vj) = j + 2, for j = 1, 2, . . . , n.

Thus g(u) ≤ n+ 2 for all vertices in Kn,n.
Now we compute the vertex weights. For i = 1, 2, . . . , n,

wtg(ui) =g(ui) +
n∑
j=1

g(vj) = i+
n∑
j=1

(j + 2) = i+ n(n+1)
2

+ 2n

and for j = 1, 2, . . . , n

wtg(vj) =g(vj) +
n∑
i=1

g(ui) = (j + 2) +
n∑
i=1

i = j + 2 + n(n+1)
2
≤ n(n+1)

2
+ n+ 2.

As n ≥ 2 we obtain that the vertex weights are distinct.
Case 3: m > n. Let f : V (G) → {1, 2, . . . , k} be an inclusive distance vertex irregular

labeling of Km,n. According to Lemma 3.1 we get k ≥ m. Let us define the vertex labeling f of
Km,n such that

f(ui) = i, for i = 1, 2, . . . ,m,

f(vj) = j, for j = 1, 2, . . . , n.

Evidently the vertex labels are not greater than m.
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For the weights of the vertices we get the following. For i = 1, 2, . . . ,m

wtf (ui) =f(ui) +
n∑
j=1

f(vj) = i+
n∑
j=1

j = i+ n(n+1)
2

,

thus
{wtf (ui) : i = 1, 2, . . . ,m} = {n(n+1)

2
+ 1, n(n+1)

2
+ 2, . . . , n(n+1)

2
+m}.

For j = 1, 2, . . . , n

wtf (vj) =f(vj) +
m∑
i=1

f(ui) = j +
m∑
i=1

i = j +
n∑
i=1

i+
m∑

i=n+1

i = j + n(n+1)
2

+
m∑

i=n+1

i

≥j + n(n+1)
2

+m,

which implies that that the weight sets do not overlap.

Immediately from Theorem 3.1 we obtain the result for the inclusive distance vertex irregularity
strength of stars Sn = K1,n, which is also proved by Bong et al. [2].

Corollary 3.2. Let n be a positive integer. Then

d̂is(Sn) =

{
∞, for n = 1,

n, for n ≥ 2.

The join G⊕H of two disjoint graphs G and H is the graph G∪H together with all the edges
joining vertices of V (G) and vertices of V (H). In the next theorem we will deal with the inclusive
distance vertex irregularity strength of joins G⊕K1, where G is an arbitrary graph, possibly also
disconnected.

Theorem 3.2. Let G be a graph with maximum degree ∆(G). Then

d̂is(G⊕K1) =

{
∞, if ∆(G) = |V (G)| − 1,

d̂is(G), if ∆(G) < |V (G)| − 1.

Proof. Let G be a graph with maximum degree ∆(G). Let us denote the vertices and edges of a
graph G⊕K1 such that

V (G⊕K1) =V (G) ∪ {v},
E(G⊕K1) =E(G) ∪ {vu : u ∈ V (G)}.

Let w ∈ V (G) be a vertex such that degG(w) = ∆(G). If ∆(G) = |V (G)| − 1 then in the
graph G⊕K1 the degree of the vertex w will be |V (G)|, that is

NG⊕K1 [w] = V (G⊕K1).
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But also for the vertex v we get degG⊕K1
(v) = |V (G)| which means

NG⊕K1 [v] = V (G⊕K1).

According to Theorem 2.1 we get d̂is(G⊕K1) =∞.
Now let us consider that ∆(G) < |V (G)| − 1. We distinguish two cases.
Case 1: d̂is(G) = ∞. By Theorem 2.1 we get that there must exist in G two distinct vertices,

say x, y, such that NG[x] = NG[y]. But this implies that

NG⊕K1 [x] = NG[x] ∪ {v} = NG[y] ∪ {v} = NG⊕K1 [y].

But this means that d̂is(G⊕K1) =∞.
Case 2: d̂is(G) < ∞. Let f : V (G) → {1, 2, . . . , k} be an inclusive distance vertex irregular

labeling of a graph G such that k = d̂is(G). Let us define a vertex labeling g : V (G ⊕ K1) →
{1, 2, . . . , k} such that

g(u) =f(u), for u ∈ V (G),

g(v) =1.

Evidently g is a k-labeling. For the vertex weights under the labeling g we get the following. If
u ∈ V (G) then

wtg(u) =
∑

x∈NG⊕K1
[u]

g(x) =
∑

x∈NG[u]

g(x) + g(v) =
∑

x∈NG[u]

f(x) + 1 = wtf (u) + 1.

As f is an inclusive distance vertex irregular labeling of a graph G then the vertices u ∈ V (G ⊕
K1) \ {v} have distinct weights under the labeling g.

The weight of a vertex v is

wtg(v) =
∑

x∈NG⊕K1
[v]

g(x) =
∑

x∈NG[u]

g(x) = 1 +
∑

x∈V (G)

f(x).

As ∆(G) < |V (G)| − 1 we get that for every vertex u ∈ V (G)∑
x∈V (G)

f(x) > wtf (u).

This implies that for every vertex u ∈ V (G)

wtg(v) = 1 +
∑

x∈V (G)

f(x) > 1 + wtf (u) = wtg(u).

Thus d̂is(G⊕K1) ≤ d̂is(G).
To prove the equality it is sufficient to show that there does not exist an inclusive distance

vertex irregular K-labeling of a graph G⊕K1 such that K < d̂is(G). On contrary let us consider
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that such labeling h exists. Thus h : V (G ⊕K1) → {1, 2, . . . , K} is an inclusive distance vertex
irregular labeling of a graph G⊕K1. Under the labeling h the vertex weights of all vertices must
be distinct, thus also for every two vertices x, y ∈ V (G) we have

wth(x) 6= wth(y).

Now we subtract from both sides the label of the vertex v and we obtain

wth(x)− h(v) 6= wth(y)− h(v).

But this means that a restriction of the labeling h on the graph G is an inclusive distance vertex
irregular K-labeling of G. And this is a contradiction as K < d̂is(G). This concludes the proof.

Immediately from Theorem 3.2 we get another proof of Corollary 3.1.
Let Kn1,n2,...,np denote the complete p-partite graph with partite sets of cardinalities ni, i =

1, 2, . . . , p. Using Theorems 3.2 and 3.1 we obtain a result for complete multipartite graphs of a
special type.

Theorem 3.3. Let m,n be positive integers m ≥ n ≥ 1. Then

d̂is(Km,n,1) =


∞, for m = n = 1,

n+ 2, for m = n ≥ 2,

m, for m > n.

4. Path

Let Pn, n ≥ 2 be a path on n vertices. We denote the vertices and edges of Pn such that

V (Pn) ={vi : i = 1, 2, . . . , n},
E(Pn) ={vivi+1 : i = 1, 2, . . . , n− 1}.

Bong et al. [2] proved that d̂is(Pn) = n/3 + 1 for n ≡ 0 (mod 3). As P2 is isomorphic to
a complete graph K2 using Corollary 3.1 we get d̂is(P2) = ∞. For the inclusive distance vertex
irregularity strength of a path we prove the following.

Theorem 4.1. Let n be a positive integer n ≥ 2. Then

d̂is(Pn) =


∞, for n = 2,

3, for n = 5,⌈
n+1

3

⌉
, for n 6≡ 2 (mod 9), n 6= 5

and

n+1
3
≤ d̂is(Pn) ≤ n+1

3
+ 1,

when n ≡ 2 (mod 9), n ≥ 11.
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Let n ≥ 3 be a positive integer. As ∆(Pn) = 2 and δ(Pn) = 1 from Lemma 2.1 we obtain a
lower bound of the inclusive distance vertex irregularity strength of a path

d̂is(Pn) ≥
⌈
n+1

3

⌉
. (3)

To prove the equality let us consider Lemmas 4.1 throughout 4.5.

Lemma 4.1. Let n be a positive integer, n ≡ 1, 7 (mod 9), n ≥ 7. Then

d̂is(Pn) = n+2
3
.

Proof. Let n ≡ 1, 7 (mod 9), n ≥ 7. According to (3) it suffices to show that there exists an
inclusive distance vertex irregular d(n+ 1)/3e-labeling of Pn.

Let f : V (Pn)→ {1, 2, . . . , d(n+ 1)/3e} be a vertex labeling of Pn defined such that

f(vi) =
⌈
i
3

⌉
, for i = 1, 2, . . . , 2n+1

3
,

f(vi) =
⌈
i+2

3

⌉
, for i = 2n+4

3
, 2n+7

3
, . . . , n.

It is easy to see that every vertex label is not greater than (n+ 2)/3 = d(n+ 1)/3e.
For the vertex weights we get the following.

wtf (v1) =f(v1) + f(v2) =
⌈

1
3

⌉
+
⌈

2
3

⌉
= 2,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈
i−1

3

⌉
+
⌈
i
3

⌉
+
⌈
i+1

3

⌉
= i+ 1,

for i = 2, 3, . . . , 2n−2
3
,

thus the corresponding weights are 3, 4, . . . , 2n+1
3
,

wtf (v2n+1
3

) =f(v2n−2
3

) + f(v2n+1
3

) + f(v2n+4
3

) =

⌈
2n−2

3
3

⌉
+

⌈
2n+1

3
3

⌉
+

⌈
2n+4

3
+2

3

⌉
= 2n+7

3
,

wtf (v2n+4
3

) =f(v2n+1
3

) + f(v2n+4
3

) + f(v2n+7
3

) =

⌈
2n+1

3
3

⌉
+

⌈
2n+4

3
+2

3

⌉
+

⌈
2n+7

3
+2

3

⌉
=

{
2n+13

3
, if n ≡ 1 (mod 9),

2n+10
3

, if n ≡ 7 (mod 9),

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+2
3

⌉
+
⌈
i+2

3

⌉
+
⌈

(i+1)+2
3

⌉
= i+ 3,

for i = 2n+7
3
, 2n+10

3
, . . . , n− 1,

thus the corresponding weights are 2n+16
3

, 2n+19
3

, . . . , n+ 2,

wtf (vn) =f(vn−1) + f(vn) =
⌈

(n−1)+2
3

⌉
+
⌈
n+2

3

⌉
= 2n+4

3
.

Thus the vertex weights are distinct. This concludes the proof.

Lemma 4.2. Let n be a positive integer, n ≡ 4 (mod 9), n ≥ 4. Then

d̂is(Pn) = n+2
3
.
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Proof. Let n ≡ 4 (mod 9), n ≥ 4. A vertex labeling f : V (Pn) → {1, 2, . . . , (n+ 2)/3} is
defined in the following way

f(vi) =
⌈
i
3

⌉
, for i = 1, 2, . . . , 2n−5

3
,

f(vi) =
⌈
i+2

3

⌉
, for i = 2n−2

3
, 2n+1

3
, . . . , n.

It is easy to see that every vertex label is not greater than (n+2)/3 = d(n+ 1)/3e. Thus, according
to (3) we only need to show that the corresponding vertex weights are distinct. In particular:

wtf (v1) =f(v1) + f(v2) =
⌈

1
3

⌉
+
⌈

2
3

⌉
= 2,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈
i−1

3

⌉
+
⌈
i
3

⌉
+
⌈
i+1

3

⌉
= i+ 1,

for i = 2, 3, . . . , 2n−8
3
,

thus the corresponding weights are 3, 4, . . . , 2n−5
3
,

wtf (v2n−5
3

) =f(v2n−8
3

) + f(v2n−5
3

) + f(v2n−2
3

) =

⌈
2n−8

3
3

⌉
+

⌈
2n−5

3
3

⌉
+

⌈
2n−2

3
+2

3

⌉
= 2n+1

3
,

wtf (v2n−2
3

) =f(v2n−5
3

) + f(v2n−2
3

) + f(v2n+1
3

) =

⌈
2n−5

3
3

⌉
+

⌈
2n−2

3
+2

3

⌉
+

⌈
2n+1

3
+2

3

⌉
= 2n+7

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+2
3

⌉
+
⌈
i+2

3

⌉
+
⌈

(i+1)+2
3

⌉
= i+ 3,

for i = 2n+1
3
, 2n+4

3
, . . . , n− 1,

thus the corresponding weights are 2n+10
3

, 2n+13
3

, . . . , n+ 2,

wtf (vn) =f(vn−1) + f(vn) =
⌈

(n−1)+2
3

⌉
+
⌈
n+2

3

⌉
= 2n+4

3
.

Lemma 4.3. Let n be a positive integer, n ≡ 5 (mod 9), n ≥ 5. Then

d̂is(Pn) =

{
3, for n = 5,
n+1

3
, for n ≡ 5 (mod 9).

Proof. Let n ≡ 5 (mod 9), n ≥ 5. The lower bound for d̂is(Pn) is given by (3), thus

d̂is(Pn) ≥
⌈
n+1

3

⌉
= n+1

3
.

First, let n = 5. Thus d̂is(P5) ≥ 2. We prove that d̂is(Pn) > 2. Consider on contrary that there
exists an inclusive distance vertex irregular 2-labeling of P5. This means that all numbers 2, 3, 4, 5
and 6 must be realizable as vertex weights. Note, that the weight 2 we can get only as 1 + 1 and
the weight 6 we can only get as 2 + 2 + 2, this implies that two incident vertices, say v1 and v2,
must be labeled by 1 and three incident vertices, say v3, v4 and v5, must be labeled by label 2. But,
in this case the weights of vertices v2 and v5 are the same (equal to 4). A contradiction.

An inclusive distance vertex irregular 3-labeling f of P5 is

f(v1) = f(v2) = 1, f(v3) = f(v4) = f(v5) = 3.
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For n ≥ 14 let us consider a labeling f : V (Pn) → {1, 2, . . . , (n + 1)/3} defined in the
following way

f(vi) = i+2
3
, for i = 1, 4, . . . , n− 1,

f(vi) = i+1
3
, for i = 2, 5, . . . , 2n+2

3
− 5,

f(vi) = i+4
3
, for i = 2n+2

3
− 2, 2n+2

3
+ 1, . . . , n− 3,

f(vn) = n−5
3
,

f(vi) = i
3
, for i = 3, 6, . . . , n− 5,

f(vn−2) = n+1
3
.

Maximal number used as a vertex label is (n+ 1)/3. The vertex weights are

wtf (v1) =f(v1) + f(v2) = 1+2
3

+ 2+1
3

= 2,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) = i−1
3

+ i+2
3

+ (i+1)+1
3

= i+ 1,

for i = 4, 7, . . . , 2n+2
3
− 6,

thus the corresponding weights are 5, 8, . . . , 2n+2
3
− 5,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) = i−1
3

+ i+2
3

+ (i+1)+4
3

= i+ 2,

for i = 2n+2
3
− 3, 2n+2

3
, . . . , n− 7,

thus the corresponding weights are 2n+2
3
− 1, 2n+2

3
+ 2, . . . , n− 5,

wtf (vn−4) =f(vn−5) + f(vn−4) + f(vn−3) = n−5
3

+ (n−4)+2
3

+ (n−3)+4
3

= n− 2,

wtf (vn−1) =f(vn−2) + f(vn−1) + f(vn) = n+1
3

+ (n−1)+2
3

+ n−5
3

= n− 1,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) = (i−1)+2
3

+ i+1
3

+ i+1
3

= i+ 1,

for i = 2, 5, . . . , 2n+2
3
− 5,

thus the corresponding weights are 3, 6, . . . , 2n+2
3
− 4,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) = (i−1)+2
3

+ i+4
3

+ i+1
3

= i+ 2,

for i = 2n+2
3
− 2, 2n+2

3
+ 1, . . . , n− 6,

thus the corresponding weights are 2n+2
3
, 2n+2

3
+ 3, . . . , n− 4,

wtf (vn−3) =f(vn−4) + f(vn−3) + f(vn−2) = (n−4)+2
3

+ (n−3)+4
3

+ n+1
3

= n,

wtf (vn) =f(vn−1) + f(vn) = (n−1)+2
3

+ n−5
3

= 2n−4
3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) = (i−1)+1
3

+ i
3

+ (i+1)+2
3

= i+ 1,

for i = 3, 6, . . . , 2n+2
3
− 4,

thus the corresponding weights are 4, 7, . . . , 2n+2
3
− 3,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) = (i−1)+4
3

+ i
3

+ (i+1)+2
3

= i+ 2,

for i = 2n+2
3
− 1, 2n+2

3
+ 2, . . . , n− 5,

thus the corresponding weights are 2n+2
3

+ 1, 2n+2
3

+ 4, . . . , n− 3,

wtf (vn−2) =f(vn−3) + f(vn−2) + f(vn−1) = (n−3)+4
3

+ n+1
3

+ (n−1)+2
3

= n+ 1.
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Thus the set of vertex weights is {2, 3, . . . , n+ 1}.

Lemma 4.4. Let n be a positive integer, n ≡ 8 (mod 9), n ≥ 8. Then

d̂is(Pn) = n+1
3
.

Proof. Let n ≡ 8 (mod 9), n ≥ 8. We define a vertex labeling f : V (Pn)→ {1, 2, . . . , (n+1)/3}
in the following way

f(vi) =
⌈
i
3

⌉
, for i = 1, 2, . . . , 2n−1

3
,

f(vi) =
⌊
i
3

⌋
+ 1, for i = 2n+2

3
, 2n+5

3
, . . . , n.

It is easy to see that every vertex label is at most (n+ 1)/3 = d(n+ 1)/3e. Thus, according to (3)
we only need to show that the corresponding vertex weights are distinct. In particular:

wtf (v1) =f(v1) + f(v2) =
⌈

1
3

⌉
+
⌈

2
3

⌉
= 2,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈
i−1

3

⌉
+
⌈
i
3

⌉
+
⌈
i+1

3

⌉
= i+ 1,

for i = 2, 3, . . . , 2n−4
3
,

thus the corresponding weights are 3, 4, . . . , 2n−1
3
,

wtf (v2n−1
3

) =f(v2n−4
3

) + f(v2n−1
3

) + f(v2n+2
3

) =

⌈
2n−4

3
3

⌉
+

⌈
2n−1

3
3

⌉
+

(⌊
2n+2

3
3

⌋
+ 1

)
=2n+5

3
,

wtf (v2n+2
3

) =f(v2n−1
3

) + f(v2n+2
3

) + f(v2n+5
3

) =

⌈
2n−1

3
3

⌉
+

(⌊
2n+2

3
3

⌋
+ 1

)
+

(⌊
2n+5

3
3

⌋
+ 1

)
= 2n+8

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(⌊

i−1
3

⌋
+ 1
)

+
(⌊

i
3

⌋
+ 1
)

+
(⌊

i+1
3

⌋
+ 1
)

= i+ 2,

for i = 2n+5
3
, 2n+8

3
, . . . , n− 1,

thus the corresponding weights are 2n+11
3

, 2n+14
3

, . . . , n+ 1,

wtf (vn) =f(vn−1) + f(vn) =
(⌊

n−1
3

⌋
+ 1
)

+
(⌊

n
3

⌋
+ 1
)

= 2n+2
3
.

Thus the edge weights are distinct.

Lemma 4.5. Let n be a positive integer, n ≡ 2 (mod 9), n ≥ 11. Then

n+1
3
≤ d̂is(Pn) ≤ n+4

3
.

Proof. Let n ≡ 2 (mod 9), n ≥ 11. We define a vertex labeling f : V (Pn)→ {1, 2, . . . , k} in the
following way

f(vi) =
⌈
i
3

⌉
, for i = 1, 2, . . . , 2n+5

3
,

f(vi) =
⌈
i
3

⌉
+ 1, for i = 2n+8

3
, 2n+11

3
, . . . , n.
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Evidently, the vertex labels are not greater that dn/3e+ 1 = (n+ 4)/3. For the vertex weights we
get

wtf (v1) =f(v1) + f(v2) =
⌈

1
3

⌉
+
⌈

2
3

⌉
= 2,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈
i−1

3

⌉
+
⌈
i
3

⌉
+
⌈
i+1

3

⌉
= i+ 1,

for i = 2, 3, . . . , 2n+2
3
,

thus the corresponding weights are 3, 4, . . . , 2n+5
3
,

wtf (v2n+5
3

) =f(v2n+2
3

) + f(v2n+5
3

) + f(v2n+8
3

) =

⌈
2n+2

3
3

⌉
+

⌈
2n+5

3
3

⌉
+

(⌈
2n+8

3
3

⌉
+ 1

)
=2n+11

3
,

wtf (v2n+8
3

) =f(v2n+5
3

) + f(v2n+8
3

) + f(v2n+11
3

) =

⌈
2n+5

3
3

⌉
+

(⌈
2n+8

3
3

⌉
+ 1

)
+

(⌈
2n+11

3
3

⌉
+ 1

)
= 2n+17

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(⌈

i−1
3

⌉
+ 1
)

+
(⌈

i
3

⌉
+ 1
)

+
(⌈

i+1
3

⌉
+ 1
)

= i+ 4,

for i = 2n+11
3

, 2n+14
3

, . . . , n− 1,

thus the corresponding weights are 2n+23
3

, 2n+26
3

, . . . , n+ 3,

wtf (vn) =f(vn−1) + f(vn) =
(⌈

n−1
3

⌉
+ 1
)

+
(⌈

n
3

⌉
+ 1
)

= 2n+8
3
.

We proved that the vertex weights of distinct vertices are distinct. This means that f is an inclusive
distance vertex irregular ((n+ 4)/3)-labeling. Thus d̂is(Pn) ≤ (n+ 4)/3.

The join of a path Pn, n ≥ 2, and a complete graph K1 is called a fan graph Fn. Combining
Theorems 3.2 and 4.1 we obtain that for fans holds the following.

Theorem 4.2. Let n be a positive integer n ≥ 2. Then

d̂is(Fn) =


∞, for n = 2,

3, for n = 5,⌈
n+1

3

⌉
, for n 6≡ 2 (mod 9), n 6= 5

and

n+1
3
≤ d̂is(Fn) ≤ n+1

3
+ 1,

when n ≡ 2 (mod 9), n ≥ 11.

5. Cycle

We denote the vertices and edges of a cycle Cn on n, n ≥ 3, vertices in the following way

V (Cn) ={vi : i = 1, 2, . . . , n},
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E(Cn) ={vivi+1 : i = 1, 2, . . . , n− 1} ∪ {v1vn}.

As ∆(Cn) = δ(Cn) = 2 using Lemma 2.1 we obtain a lower bound of the distance vertex irregu-
larity strength of a cycle

d̂is(Cn) ≥
⌈
n+2

3

⌉
. (4)

As C3 is isomorphic to a complete graph K3 using Corollary 3.1 we get d̂is(C3) = ∞. From
a lower bound we get d̂is(C4) ≥ 2. But it is easy to prove that d̂is(C4) ≥ 4. The corresponding
inclusive distance vertex irregular 4-labeling f of C4 is

f(vi) = i, for 1 ≤ i ≤ 4.

Some results for the inclusive distance vertex irregularity strength of cycles are obtained in [2].
Combining and extending these results we get the following.

Theorem 5.1. Let n be a positive integer n ≥ 3. Then

d̂is(Cn) =


∞, for n = 3,

4, for n = 4,⌈
n+2

3

⌉
, for n 6≡ 2, 3, 4 (mod 18), n ≥ 5

and ⌈
n+2

3

⌉
≤ d̂is(Cn) ≤

⌈
n+2

3

⌉
+ 1,

when n ≡ 2, 3, 4 (mod 18), n ≥ 20.

According to (4) if we want to prove the equality it is suffices to describe the corresponding
inclusive distance vertex irregular labelings for cycles. These labelings are given in Lemmas 5.1,
5.2, 5.3 and 5.4.

Lemma 5.1. Let n be a positive integer, n ≡ 5, 0, 1 (mod 6), n ≥ 5. Then

d̂is(Cn) =
⌈
n+2

3

⌉
.

Proof. Let n ≡ 1 (mod 6), n ≥ 7. We define a vertex labeling f : V (Cn)→ {1, 2, . . . , (n+2)/3}
of Cn in the following way

f(vi) = 2
⌈
i
3

⌉
− 1, for i = 1, 2, . . . , n+5

2
,

f(vi) = 2(n−i)
3

+ 2, for i = n+7
2
, n+13

2
, . . . , n,

f(vi) = 2(n−i+1)
3

+ 1, for i = n+9
2
, n+15

2
, . . . , n− 2,

f(vi) = 2(n−i+2)
3

+ 1, for i = n+11
2
, n+17

2
, . . . , n− 1.
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Evidently, the vertex labels are not greater that d(n+ 2)/3e = (n + 2)/3. For the vertex weights
we get

wtf (v1) =f(vn) + f(v1) + f(v2) =
(

2(n−n)
3

+ 2
)

+
(
2
⌈

1
3

⌉
− 1
)

+
(
2
⌈

2
3

⌉
− 1
)

= 4,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(
2
⌈
i−1

3

⌉
− 1
)

+
(
2
⌈
i
3

⌉
− 1
)

+
(
2
⌈
i+1

3

⌉
− 1
)

=2i− 1,

for i = 2, 3, . . . , n+3
2
,

thus the corresponding weights are 3, 5, . . . , n+ 2,

wtf (vn+5
2

) =f(vn+3
2

) + f(vn+5
2

) + f(vn+7
2

) =

(
2

⌈
n+3

2
3

⌉
− 1

)
+

(
2

⌈
n+5

2
3

⌉
− 1

)
+

(
2
(
n−n+7

2

)
3

+ 2

)
= n+ 1,

wtf (vn+7
2

) =f(vn+5
2

) + f(vn+7
2

) + f(vn+9
2

) =

(
2

⌈
n+5

2
3

⌉
− 1

)
+

(
2
(
n−n+7

2

)
3

+ 2

)
+

(
2
(
n−n+9

2
+1

)
3

+ 1

)
= n− 1,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(

2(n−(i−1))
3

+ 2
)

+
(

2(n−i+1)
3

+ 1
)

+
(

2(n−(i+1)+2)
3

+ 1
)

= 2n+ 6− 2i,

for i = n+9
2
, n+15

2
, . . . , n− 2,

thus the corresponding weights are 10, 16, . . . , n− 3,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(

2(n−(i−1)+1)
3

+ 1
)

+
(

2(n−i+2)
3

+ 1
)

+
(

2(n−(i+1))
3

+ 2
)

= 2n+ 6− 2i,

for i = n+11
2
, n+17

2
, . . . , n− 1,

thus the corresponding weights are 8, 14, . . . , n− 5,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(

2(n−(i−1)+2)
3

+ 1
)

+
(

2(n−i)
3

+ 2
)

+
(

2(n−(i+1)+1)
3

+ 1
)

= 2n+ 6− 2i,

for i = n+13
2
, n+19

2
, . . . , n− 3,

thus the corresponding weights are 12, 18, . . . , n− 7,

wtf (vn) =f(vn−1) + f(vn) + f(v1) =
(

2(n−(n−1)+2)
3

+ 1
)

+
(

2(n−n)
3

+ 2
)

+
(
2
⌈

1
3

⌉
− 1
)

=6.

Thus the vertex weights are distinct numbers from the set {3, 4, . . . , n + 2}. This means that f
is an inclusive distance vertex irregular ((n + 2)/3)-labeling. Combining this and (4), for n ≡ 1
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(mod 6), n ≥ 7, we get
d̂is(Cn) = n+2

3
.

Let us consider the cycle Cn−1 that we obtain from Cn such that

Cn−1 = Cn − {v2} ∪ {v1v3}.

It is easy to get that the restriction of the labeling f defined above on the graph Cn−1 = Cn −
{v2} ∪ {v1v3} is an inclusive distance vertex irregular ((n+ 2)/3)-labeling of Cn−1. In particular,
the vertex weights are {4, 5, . . . , n+ 2}. For n− 1 ≡ 0 (mod 6), n ≥ 7 according to (4) we get

d̂is(Cn−1) ≥
⌈

(n−1)+2
3

⌉
= n+2

3
.

This means that for n ≡ 0 (mod 6), n ≥ 6

d̂is(Cn) =
⌈
n+2

3

⌉
.

Now we will deal with the case when the order of a cycle is congruent 5 modulo 6. We consider
the cycle Cn−2 obtained from Cn by deleting two vertices and adding corresponding edges

Cn−2 = Cn − {v2, v5} ∪ {v1v3, v4v6}.

Again, the restriction of the labeling f defined above on the graph Cn−2 = Cn − {v2, v5} ∪
{v1v3, v4v6} is an inclusive distance vertex irregular ((n + 2)/3)-labeling of Cn−2. In particular,
the vertex weights are {4, 5, . . . , 8, 10, 11, . . . , n + 2}. As (n − 2) ≡ 5 (mod 6), n ≥ 5 then
according to (4)

d̂is(Cn−2) ≥
⌈

(n−2)+2
3

⌉
= n+2

3
.

This means that for n ≡ 5 (mod 6), n ≥ 5

d̂is(Cn) =
⌈
n+2

3

⌉
.

Lemma 5.2. Let n be a positive integer, n ≡ 8, 9, 10 (mod 18), n ≥ 8. Then

d̂is(Cn) =
⌈
n+2

3

⌉
.

Proof. Let n ≡ 10 (mod 18), n ≥ 10. We define a vertex labeling f : V (Cn) → {1, 2, . . . , (n +
2)/3} in the following way

f(vi) =
⌈
i
3

⌉
, for i = 1, 2, . . . , n+5

3
,

f(vi) =
⌈
i+1

3

⌉
, for i = n+8

3
, n+11

3
, . . . , 2n−5

3
,

f(vi) =
⌈
i+2

3

⌉
, for i = 2n−2

3
, 2n+1

3
, . . . , n.
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Every vertex label is at most d(n+ 2)/3e = (n+ 2)/3. The vertex weights are

wtf (v1) =f(vn) + f(v1) + f(v2) =
⌈
n+2

3

⌉
+
⌈

1
3

⌉
+
⌈

2
3

⌉
= n+8

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈
i−1

3

⌉
+
⌈
i
3

⌉
+
⌈
i+1

3

⌉
= i+ 1,

for i = 2, 3, . . . , n+2
3
,

thus the corresponding weights are 3, 4, . . . , n+5
3
,

wtf (vn+5
3

) =f(vn+2
3

) + f(vn+5
3

) + f(vn+8
3

) =

⌈
n+2

3
3

⌉
+

⌈
n+5

3
3

⌉
+

⌈
n+8

3
+1

3

⌉
= n+11

3
,

wtf (vn+8
3

) =f(vn+5
3

) + f(vn+8
3

) + f(vn+11
3

) =

⌈
n+5

3
3

⌉
+

⌈
n+8

3
+1

3

⌉
+

⌈
n+11

3
+1

3

⌉
= n+14

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+1
3

⌉
+
⌈
i+1

3

⌉
+
⌈

(i+1)+1
3

⌉
= i+ 2,

for i = n+11
3
, n+14

3
, . . . , 2n−8

3
,

thus the corresponding weights are n+17
3
, n+20

3
, . . . , 2n−2

3
,

wtf (v2n−5
3

) =f(v2n−8
3

) + f(v2n−5
3

) + f(v2n−2
3

) =

⌈
2n−8

3
+1

3

⌉
+

⌈
2n−5

3
+1

3

⌉
+

⌈
2n−2

3
+2

3

⌉
= 2n+1

3
,

wtf (v2n−2
3

) =f(v2n−5
3

) + f(v2n−2
3

) + f(v2n+1
3

) =

⌈
2n−5

3
+1

3

⌉
+

⌈
2n−2

3
+2

3

⌉
+

⌈
2n+1

3
+2

3

⌉
= 2n+4

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+2
3

⌉
+
⌈
i+2

3

⌉
+
⌈

(i+1)+2
3

⌉
= i+ 3,

for i = 2n+1
3
, 2n+4

3
, . . . , n− 1,

thus the corresponding weights are 2n+10
3

, 2n+13
3

, . . . , n+ 2,

wtf (vn) =f(vn−1) + f(vn) + f(v1) =
⌈

(n−1)+2
3

⌉
+
⌈
n+2

3

⌉
+
⌈

1
3

⌉
= 2n+7

3
.

The set of vertex weights consists of numbers {3, 4, . . . , n+ 2}. This means that f is an inclusive
distance vertex irregular ((n+ 2)/3)-labeling. Thus, using (4), for n ≡ 10 (mod 18), n ≥ 10, we
have

d̂is(Cn) = n+2
3
.

As in the proof of the previous lemma we use the above described labeling to obtain ((n+2)/3)-
labelings of Cn−1 and Cn−2.

The cycle Cn−1 we obtain from Cn such that

Cn−1 = Cn − {v2} ∪ {v1v3}.

The restriction of the labeling f defined above on the graph Cn−1 = Cn−{v2}∪{v1v3} is an inclu-
sive distance vertex irregular ((n+2)/3)-labeling ofCn−1. The vertex weights are {4, 5, . . . , n+2}.
As (n− 1) ≡ 9 (mod 18), n ≥ 10 then according to (4)

d̂is(Cn−1) ≥
⌈

(n−1)+2
3

⌉
= n+2

3
.
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This means that for n ≡ 9 (mod 18), n ≥ 9

d̂is(Cn) =
⌈
n+2

3

⌉
.

If n ≡ 8 (mod 18), n ≥ 8 let us consider the cycle Cn−2 obtained from Cn by deleting two
vertices and adding corresponding edges

Cn−2 = Cn − {v2, vn−1} ∪ {v1v3, vnvn−2}.

It is easy to see that the restriction of the labeling f defined above on the graph Cn−2 = Cn −
{v2, vn−1} ∪ {v1v3, vnvn−2} is an inclusive distance vertex irregular ((n+ 2)/3)-labeling of Cn−2.
The set of vertex weights is {4, 5, . . . , n + 1}. As (n− 2) ≡ 8 (mod 18), n ≥ 10 then according
to (4)

d̂is(Cn−2) ≥
⌈

(n−2)+2
3

⌉
= n+2

3
.

Thus for n ≡ 8 (mod 18), n ≥ 8

d̂is(Cn) =
⌈
n+2

3

⌉
.

Lemma 5.3. Let n be a positive integer, n ≡ 14, 15, 16 (mod 18), n ≥ 8. Then

d̂is(Cn) =
⌈
n+2

3

⌉
.

Proof. Let n ≡ 16 (mod 18), n ≥ 16. We consider a labeling f : V (Cn)→ {1, 2, . . . , (n+2)/3}
defined such that

f(vi) =
⌈
i
3

⌉
, for i = 1, 2, . . . , n+5

3
,

f(vi) =
⌈
i+2

3

⌉
, for i = n+8

3
, n+17

3
, . . . , 2n−8

3
,

f(vi) =
⌈
i+2

3

⌉
− 1, for i = n+11

3
, n+20

3
, . . . , 2n−5

3
,

f(vi) =
⌈
i+2

3

⌉
, for i = n+14

3
, n+23

3
, . . . , 2n−2

3
,

f(vi) =
⌈
i+2

3

⌉
, for i = 2n+1

3
, 2n+4

3
, . . . , n.

The numbers used as vertex labels are not greater than d(n+ 2)/3e = (n + 2)/3. For the vertex
weights we have the following

wtf (v1) =f(vn) + f(v1) + f(v2) =
⌈
n+2

3

⌉
+
⌈

1
3

⌉
+
⌈

2
3

⌉
= n+8

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈
i−1

3

⌉
+
⌈
i
3

⌉
+
⌈
i+1

3

⌉
= i+ 1,

for i = 2, 3, . . . , n+2
3
,

thus the corresponding weights are 3, 4, . . . , n+5
3
,

wtf (vn+5
3

) =f(vn+2
3

) + f(vn+5
3

) + f(vn+8
3

) =

⌈
n+2

3
3

⌉
+

⌈
n+5

3
3

⌉
+

⌈
n+8

3
+2

3

⌉
= n+11

3
,
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wtf (vn+8
3

) =f(vn+5
3

) + f(vn+8
3

) + f(vn+11
3

) =

⌈
n+5

3
3

⌉
+

⌈
n+8

3
+2

3

⌉
+

(⌈
n+11

3
+2

3

⌉
− 1

)
=n+14

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+2
3

⌉
+
(⌈

i+2
3

⌉
− 1
)

+
⌈

(i+1)+2
3

⌉
= i+ 2,

for i = n+11
3
, n+20

3
, . . . , 2n−5

3
,

thus the corresponding weights are n+17
3
, n+26

3
, . . . , 2n+1

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(⌈

(i−1)+2
3

⌉
− 1
)

+
⌈
i+2

3

⌉
+
⌈

(i+1)+2
3

⌉
= i+ 2,

for i = n+14
3
, n+23

3
, . . . , 2n−11

3
,

thus the corresponding weights are n+20
3
, n+29

3
, . . . , 2n−5

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+2
3

⌉
+
⌈
i+2

3

⌉
+
(⌈

(i+1)+2
3

⌉
− 1
)

= i+ 2,

for i = n+17
3
, n+26

3
, . . . , 2n−8

3
,

thus the corresponding weights are n+23
3
, n+32

3
, . . . , 2n−2

3
,

wtf (v2n−2
3

) =f(v2n−5
3

) + f(v2n−2
3

) + f(v2n+1
3

) =

(⌈
2n−5

3
+2

3

⌉
− 1

)
+

⌈
2n−2

3
+2

3

⌉
+

⌈
2n+1

3
+2

3

⌉
=2n+4

3
,

wtf (v2n+1
3

) =f(v2n−2
3

) + f(v2n+1
3

) + f(v2n+4
3

) =

⌈
2n−2

3
+2

3

⌉
+

⌈
2n+1

3
+2

3

⌉
+

⌈
2n+4

3
+2

3

⌉
=2n+10

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+2
3

⌉
+
⌈
i+2

3

⌉
+
⌈

(i+1)+2
3

⌉
= i+ 3,

for i = 2n+4
3
, 2n+7

3
, . . . , n− 1,

thus the corresponding weights are 2n+13
3

, 2n+16
3

, . . . , n+ 2,

wtf (vn) =f(vn−1) + f(vn) + f(v1) =
⌈

(n−1)+2
3

⌉
+
⌈
n+2

3

⌉
+
⌈

1
3

⌉
= 2n+7

3
.

The set of vertex weights consists of numbers {3, 4, . . . , n+ 2}. This means that f is an inclusive
distance vertex irregular ((n + 2)/3)-labeling. Thus for n ≡ 16 (mod 18), n ≥ 16, using (4), we
obtain

d̂is(Cn) = n+2
3
.

Now we describe ((n + 2)/3)-labelings of cycles Cn−1 and Cn−2. First we consider the cycle
Cn−1 obtained from the cycle Cn such that

Cn−1 = Cn − {v2} ∪ {v1v3}.

The restriction of the labeling f defined above on the graph Cn−1 = Cn−{v2}∪{v1v3} is an inclu-
sive distance vertex irregular ((n+2)/3)-labeling ofCn−1. The vertex weights are {4, 5, . . . , n+2}.
According to (4) and as (n− 1) ≡ 15 (mod 18), n ≥ 16 we get

d̂is(Cn−1) ≥
⌈

(n−1)+2
3

⌉
= n+2

3
.
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Thus for n ≡ 15 (mod 18), n ≥ 15

d̂is(Cn) =
⌈
n+2

3

⌉
.

Now we will deal with the cycle Cn−2 obtained from Cn such that

Cn−2 = Cn − {v2, vn−1} ∪ {v1v3, vnvn−2}.

Evidently, the restriction of the labeling f defined above on the graph Cn−2 = Cn − {v2, vn−1} ∪
{v1v3, vnvn−2} is an inclusive distance vertex irregular ((n + 2)/3)-labeling of Cn−2. The set of
vertex weights is {4, 5, . . . , n+ 1}. As (n− 2) ≡ 14 (mod 18), n ≥ 16 then according to (4)

d̂is(Cn−2) ≥
⌈

(n−2)+2
3

⌉
= n+2

3
.

Thus for n ≡ 14 (mod 18), n ≥ 14

d̂is(Cn) =
⌈
n+2

3

⌉
.

Lemma 5.4. Let n be a positive integer, n ≡ 2, 3, 4 (mod 18), n ≥ 20. Then⌈
n+2

3

⌉
≤ d̂is(Cn) ≤

⌈
n+2

3

⌉
+ 1.

Proof. The lower bound follows from (4). The upper bound we prove by describing the corre-
sponding ((n+ 2)/3 + 1)-labelings of cycles Cn.

Let n ≡ 4 (mod 18), n ≥ 22. We consider a labeling f : V (Cn)→ {1, 2, . . . , (n+ 2)/3 + 1}
of vertices of Cn defined such that

f(vi) =
⌈
i
3

⌉
, for i = 1, 2, . . . , n+8

3
,

f(vi) =
⌈
i+2

3

⌉
, for i = n+11

3
, n+14

3
, . . . , n

2
,

f(vi) =
⌈
i
3

⌉
+ 1, for i = n

2
+ 1, n

2
+ 2, . . . , 2n−8

3
,

f(vi) =
⌈
i+2

3

⌉
+ 1, for i = 2n−5

3
, 2n−2

3
, . . . , n.

Every vertex label is smaller or equal to d(n+ 2)/3e + 1 = (n + 2)/3 + 1. The vertex weights
under the labeling f are

wtf (v1) =f(vn) + f(v1) + f(v2) =
(⌈

n+2
3

⌉
+ 1
)

+
⌈

1
3

⌉
+
⌈

2
3

⌉
= n+11

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈
i−1

3

⌉
+
⌈
i
3

⌉
+
⌈
i+1

3

⌉
= i+ 1,

for i = 2, 3, . . . , n+5
3
,

thus the corresponding weights are 3, 4, . . . , n+8
3
,

wtf (vn+8
3

) =f(vn+5
3

) + f(vn+8
3

) + f(vn+11
3

) =

⌈
n+5

3
3

⌉
+

⌈
n+8

3
3

⌉
+

⌈
n+11

3
+2

3

⌉
= n+14

3
,
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wtf (vn+11
3

) =f(vn+8
3

) + f(vn+11
3

) + f(vn+14
3

) =

⌈
n+8

3
3

⌉
+

⌈
n+11

3
+2

3

⌉
+

⌈
n+14

3
+2

3

⌉
= n+20

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
⌈

(i−1)+2
3

⌉
+
⌈
i+2

3

⌉
+
⌈

(i+1)+2
3

⌉
= i+ 3,

for i = n+14
3
, n+17

3
, . . . , n

2
− 1,

thus the corresponding weights are n+23
3
, n+26

3
, . . . , n

2
+ 2,

wtf (vn
2
) =f(vn−2

2
) + f(vn

2
) + f(vn+2

2
) =

⌈
n−2

2
+2

3

⌉
+

⌈
n
2

+2

3

⌉
+

(⌈
n+2

2
3

⌉
+ 1

)
= n

2
+ 3,

wtf (vn+2
2

) =f(vn
2
) + f(vn+2

2
) + f(vn+4

2
) =

⌈
n
2

+2

3

⌉
+

(⌈
n+2

2
3

⌉
+ 1

)
+

(⌈
n+4

2
3

⌉
+ 1

)
=n

2
+ 5,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(⌈

i−1
3

⌉
+ 1
)

+
(⌈

i
3

⌉
+ 1
)

+
(⌈

i+1
3

⌉
+ 1
)

= i+ 4,

for i = n
2

+ 2, n
2

+ 3, . . . , 2n−11
3

,

thus the corresponding weights are n
2

+ 6, n
2

+ 7, . . . , 2n+1
3
,

wtf (v2n−8
3

) =f(v2n−11
3

) + f(v2n−8
3

) + f(v2n−5
3

) =

(⌈
2n−11

3
3

⌉
+ 1

)
+

(⌈
2n−8

3
3

⌉
+ 1

)
+

(⌈
2n−5

3
+2

3

⌉
+ 1

)
= 2n+4

3
,

wtf (v2n−5
3

) =f(v2n−8
3

) + f(v2n−5
3

) + f(v2n−2
3

) =

(⌈
2n−8

3
3

⌉
+ 1

)
+

(⌈
2n−5

3
+2

3

⌉
+ 1

)
+

(⌈
2n−2

3
+2

3

⌉
+ 1

)
= 2n+10

3
,

wtf (vi) =f(vi−1) + f(vi) + f(vi+1) =
(⌈

(i−1)+2
3

⌉
+ 1
)

+
(⌈

i+2
3

⌉
+ 1
)

+
(⌈

(i+1)+2
3

⌉
+ 1
)

=i+ 6,

for i = 2n−2
3
, 2n+1

3
, . . . , n− 1,

thus the corresponding weights are 2n+16
3

, 2n+19
3

, . . . , n+ 5,

wtf (vn) =f(vn−1) + f(vn) + f(v1) =
(⌈

(n−1)+2
3

⌉
+ 1
)

+
(⌈

n+2
3

⌉
+ 1
)

+
⌈

1
3

⌉
= 2n+13

3
.

The set of vertex weights consist of numbers {3, 4, . . . , n+14
3
, n+20

3
, n+23

3
, . . . , n

2
+ 3, n

2
+ 5, n

2
+ 6,

. . . , 2n+4
3
, 2n+10

3
, 2n+13

3
, . . . , n + 5}. This means that f is an inclusive distance vertex irregular

((n+ 2)/3 + 1)-labeling. Thus for n ≡ 4 (mod 18), n ≥ 22

d̂is(Cn) ≤ n+2
3

+ 1.

First we consider the cycle Cn−1 obtained from Cn in the following way

Cn−1 = Cn − {v2} ∪ {v1v3}.

The restriction of the labeling f defined above on the graph Cn−1 = Cn − {v2} ∪ {v1v3} is
an inclusive distance vertex irregular ((n + 2)/3 + 1)-labeling of Cn−1. The vertex weights are
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{4, 5, . . . , n+14
3
, n+20

3
, n+23

3
, . . . , n

2
+ 3, n

2
+ 5, n

2
+ 6, . . . , 2n+4

3
, 2n+10

3
, 2n+13

3
, . . . , n+ 5}. Thus for

n ≡ 3 (mod 18), n ≥ 21

d̂is(Cn) ≤
⌈
n+2

3

⌉
+ 1.

Now let us consider the cycle Cn−2 obtained from Cn such that

Cn−2 = Cn − {v2, vn−1} ∪ {v1v3, vnvn−2}.

It is easy to see that the restriction of the labeling f defined above on the graph Cn−2 = Cn −
{v2, vn−1} ∪ {v1v3, vnvn−2} is an inclusive distance vertex irregular ((n + 2)/3 + 1)-labeling of
Cn−2. The vertex weights are distinct numbers from the set {4, 5, . . . , n+14

3
, n+20

3
, n+23

3
, . . . , n

2
+

3, n
2

+5, n
2

+6, . . . , 2n+4
3
, 2n+10

3
, 2n+13

3
, . . . , n+4}. However, this proves that for n ≡ 2 (mod 18),

n ≥ 20
d̂is(Cn) ≤

⌈
n+2

3

⌉
+ 1.

The join of a cycle Cn, n ≥ 3, and a complete graph K1 is a graph known as a wheel Wn. Thus
from Theorems 5.1 and 3.2, we have the following.

Theorem 5.2. Let n be a positive integer n ≥ 3. Then

d̂is(Wn) =


∞, for n = 3,

4, for n = 4,⌈
n+2

3

⌉
, for n 6≡ 2, 3, 4 (mod 18), n ≥ 5

and ⌈
n+2

3

⌉
≤ d̂is(Wn) ≤

⌈
n+2

3

⌉
+ 1,

when n ≡ 2, 3, 4 (mod 18), n ≥ 20.

While Bong et al. [2] also proved that d̂is(Wn) = d̂is(Cn).

6. Conclusion

In the foregoing sections we studied the existence of inclusive vertex irregular distance la-
belings of graphs. We established a lower bound of the distance vertex irregularity strength and
determined the exact value of this parameter for complete and complete bipartite graphs and for
join graphs G⊕K1.

For a path Pn we determined the exact value of the inclusive distance vertex irregularity
strength for every n ≥ 2 except for n ≡ 2 (mod 9), when n ≥ 11. For n ≡ 2 (mod 9), n ≥ 11,
we found only an upper bound. Consequently, we propose the following open problem.

Problem 6.1. For a path Pn, n ≡ 2 (mod 9), n ≥ 11, determine the exact value of the inclusive
distance vertex irregularity strength.
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For cycleCn we determined the exact value of the inclusive distance vertex irregularity strength
for every n ≥ 3 except for n ≡ 2, 3, 4 (mod 18) when n ≥ 20. For these values of n we described
the inclusive diatance vertex irregular (d(n+ 2)/3e+ 1)-labeling which gives an upper bound of
the inclusive distance vertex irregularity strength. So, we suggest the following open problem.

Problem 6.2. For the cycle Cn, n ≡ 2, 3, 4 (mod 18), n ≥ 20, determine the exact value of the
inclusive distance vertex irregularity strength.

For both cases mentioned in Problems 6.1 and 6.2 we suppose that the corresponding parame-
ters reach the lower bounds.

According to obtained results for inclusive distance vertex irregularity strength of paths, cycles,
fan graphs and wheels it seems that the subgraph relation posses the hereditary properties with
respect to d̂is(G). We state the following open problem.

Problem 6.3. Determine if H ⊂ G implies d̂is(H) ≤ d̂is(G).

Another interesting problem is whether the corresponding hereditary properties are preserved
also for other graph operations, for example Cartesian product or subdivision of edges.
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