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Abstract

Let G = (V,E) be a graph and u, v ∈ V . Then, u strongly dominates v if (i) uv ∈ E and (ii)
deg(u) ≥ deg(v). A setD ⊂ V is a strong-dominating set ofG if every vertex in V −D is strongly
dominated by at least one vertex in D. A set D ⊆ V is an independent set if no two vertices of
D are adjacent. The independent strong domination number is(G) of a graph G is the minimum
cardinality of a strong dominating set which is independent. Let Ḡ be the complement of a graph
G. The complementary prism GḠ of G is the graph formed from the disjoint union of G and Ḡ
by adding the edges of a perfect matching between the corresponding vertices of G and Ḡ. In
this paper, we consider the independent strong domination in complementary prisms, characterize
the complementary prisms with small independent strong domination numbers, and investigate the
relationship between independent strong domination number and the distance-based parameters.
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1. Introduction

Graph theoretic techniques provide a convenient tool for the investigation of networks. It is
well-known that an interconnection network can be modeled by a graph with vertices representing
sites of the network and edges representing links between sites of the network. Therefore vari-
ous network problems can be studied by graph theoretical methods. The study of domination in
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graphs is an important research area, perhaps also the fastest-growing area within graph theory.
The reason for the steady and rapid growth of this area may be the diversity of its applications
to both theoretical and real-world problems. For instance, dominating sets in graphs are natural
models for facility location problems in operations research. Research on domination in graphs has
not only important theoretical signification, but also varied application in such fields as computer
science, communication networks, ad hoc networks, biological and social networks, distributed
computing, coding theory, and web graphs. Domination and its variations have been extensively
studied [1, 6, 7, 9, 12, 14, 16, 17]. In general, the concept of dominating sets in graph theory
finds wide applications in different types of communication networks. A broadcast from a com-
munication vertex is received by all its neighbors. This is captured by the notion of domination
in a graph. The minimum dominating set of sites plays an important role in the network for it
dominates the whole network with the minimum cost. A thorough study of domination appears
in [16, 17]. Independent sets play an important role in graph theory and other areas like discrete
and combinatorial optimization. They appear in matching theory, coloring of graphs, and in trees.
In a communication graph, an independent set consists of vertices that cannot communicate with
one another directly. From an application point of view, independent and dominating set in a com-
munication network are important structures, and many optimization approaches rely on these. In
some sense, one could say that the domination and independence based parameters reveal an un-
derlying efficient and stable communication network. Among the domination-type parameters that
have been studied, the independent strong domination number is one of the fundamental ones. A
set D ⊆ V is a dominating set if every vertex not in D is adjacent to at least one vertex in D.
A set D ⊆ V is a strong dominating set if every vertex u not in D is adjacent to a vertex v in
D where deg(v) ≥ deg(u). The domination number of G (strong domination number), denoted
γ(G)(γs(G)) is the minimum size of a dominating set (strong dominating set) of G. A set D ⊆ V
is an independent set if no two vertices of D are adjacent. The independent domination number
of G (independent strong domination number), denoted i(G)(is(G)) is the minimum size of an in-
dependent dominating set (independent strong dominating set) of G. Then a minimal independent
strong dominating set of cardinality is(G) is called an is(G) − set [2, 5, 11, 13]. It follows from
the definitions that for any graph G, γ(G) ≤ i(G) ≤ is(G) and γ(G) ≤ γs(G) ≤ is(G)[4]. Ev-
ery graph admits an independent strong dominating set [11]. For example, to find an independent
strong dominating set, say D, in a graph G, the following algorithm can be applied:

S := ∅
D := ∅
while S 6= V
begin

Let v ∈ {v ∈ V − S| deg(v) is as big as possible};
S := S ∪N [v];
D := D ∪ {v}

end;

The concept of strong domination was introduced by Sampathkumar and Pushpa Latha in [5] by
the following motivation. Consider a network of roads connecting a number of locations. In such
a network, the degree of a vertex v is the number of roads meeting at v. Suppose deg(u) ≥ deg(v).
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Naturally, the traffic at u is heavier than that at v. If we consider the traffic between u and v,
preference should be given to the vehicles going from u to v. Thus, in some sense, u strongly
dominates v. In [11], it is shown that the problems of computing is is NP-hard, even for bipartite
graphs. Since computing the independent strong domination of a graph is NP-hard in general, it
becomes an interesting question to calculate the independent strong domination for some special
classes of interesting or practically useful graphs. In the following two sections we will deal with
this question.

In this paper, we consider finite undirected graphs without loops and multiple edges. The order
of G is the number of vertices in G. The open neighborhood of v is N(v) = {u ∈ V |uv ∈ E}
and the closed neighborhood of v is N [v] = {v} ∪ N(v). For a set S ⊆ V , N(S) =

⋃
v∈S N(v)

and N [S] = N(S) ∪ S. The degree of a vertex v is degG(v) = |N(v)|. A vertex of degree
zero is an isolated vertex or an isolate. A leaf or an endvertex or a pendant vertex is a vertex of
degree one and its neighbor is called a support vertex. The maximum degree of G is ∆(G) =
max {degG(v)|v ∈ V }. Define V∆ as {v ∈ V |deg(v) = ∆(G)}. For S ⊆ V , the subgraph of G
induced by S is denoted by G[S]. The distance d(u, v) between two vertices u and v in is the
length of a shortest path between them. If u and v are not connected, then d(u, v) = ∞, and for
u = v, d(u, v) = 0. The eccentricity of a vertex v in G is the distance from v to a vertex farthest
away from v in G. The diameter of G, denoted by diam(G), is the largest distance between two
vertices in V [8, 10].

Complementary prisms are a deeply intriguing family of graphs and the study in complemen-
tary prisms is just beginning. Complementary prisms were first introduced by Haynes, Henning,
Slater and Van der Merwe in [15]. For a graph G, its complementary prism, denoted by GḠ, is
formed from a copy of G and a copy of Ḡ by adding a perfect matching between corresponding
vertices. For each v ∈ V (G), let v̄ denote the vertex v in the copy of Ḡ. Formally GḠ is formed
from G∪ Ḡ by adding the edge vv̄ for every v ∈ V (G). For example, if G is a 5-cycle, then GḠ is
the Petersen graph. Complementary prisms form an interesting family of graphs, generalizing the
concept of graph products as well as graphs such as the Petersen graph. Hence parameters for these
graphs are important to study. Independent and domination based parameters of complementary
prims were also studied in [18, 19].

Let GḠ be the complementary prism of a graph G = (V,E). For notational convenience, we
let V̄ = V (Ḡ) . Note that V (GḠ) = V ∪ V̄ , and to simplify our discussion of complementary
prisms, we say simply G and Ḡ to refer to the subgraph copies of G and Ḡ , respectively, in GḠ.
Also, for a vertex v of G , we let v̄ be the corresponding vertex in Ḡ, and for a set X ⊆ V , we let
X̄ be the corresponding set of vertices in V̄ .

The paper proceeds as follows. In the following section, existing literature on independent
strong domination is reviewed. The independent strong domination numbers for specific types of
graphs and complementary prism GḠ when G is a specified family of graphs are computed and
exact formulae are derived. Independent strong domination numbers for the graphs and vertices
with specific distance-based parameters are investigated. The graphs and vertices for which is is
small are characterized.
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2. Independent strong domination

2.1. Basic results
Theorem 2.1 ([11]). For any graph G, is(G) ≤ n−∆(G).

Theorem 2.2 ([11]). Let G be a graph. Then is(G) = n − ∆(G) if and only if V − N(v) is
independent for every vertex v ∈ V∆.

Theorem 2.3. For a graph G of order n, if G has diameter one, then is(G) = 1.

Proof. If G has diameter one, then G is the complete graph on n vertices in which all vertices are
adjacent to each other and all vertices having the same vertex degree n − 1. Therefore, the proof
is immediate.

Theorem 2.4. Let G be a graph of order n. Then, is(G) = 1 if and only if G has a vertex with
eccentricity one.

Proof. The sufficiency is immediate since if G has a vertex v with eccentricity one, then this
implies that vertex v is adjacent to all other vertices of G with degG(v) = n − 1. Thus, the
set including only the vertex v is the is(G)-set and strongly dominates V . Now, suppose that
is(G) = 1. This implies that G has a support vertex v that dominates V . Since NG[v] = V , vertex
v has eccentricity one. This establishes the necessity.

2.2. Specific families
We begin our investigation of independent strong domination for this subsection by computing

its value for several well-known classes of graphs. We use dxe to denote the least integer not less
than x.

Observation 2.1. The independent strong domination of

(a) the complete graph Kn is 1;
(b) the null graph K̄n is n;
(c) the star K1,n is 1;
(d) the path Pn is dn/3e;
(e) the cycle Cn is dn/3e;
(f) the wheel Wn is 1;
(g) any complete multipartite graph of order p and least partite set of order r is r;
(h) the comet Cs,t is 1 + d(t − 2)/3e, where s and t are positive integers, the comet Cs,t denotes

the tree obtained by identifying the center of the star K1,s with an end-vertex of Pt, the path of
order t. So Cs,t

∼= K1,s and C1,p−1
∼= Pp.
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2.3. Complementary prisms
We next determine the independent strong domination number of the complementary prism

GḠ when G is a specified family of graphs. We shall make use of the following lemmata.

Lemma 2.1. (a) γ(Pn) = dn/3e;
(b) γ(Cn) = dn/3e;
(c) γ(C̄n) = 2 for n > 3;

Definition 2.1. Let G and H be two graphs of order n and m, respectively. The corona product
G ◦H is defined as the graph obtained from G and H by taking one copy of G and n copies of H ,
and then joining the ith vertex of G to every vertex in the ith copy of H .

The following lemma gives a formula for the independent strong domination number of corona
of two graphs in terms of the independent strong domination numbers of these two graphs.

Lemma 2.2. Let G and H be two graphs of order n and m, respectively. Then, is(G ◦ H) =
is(G) + (n− is(G))is(H).

Proof. In a graph G ◦ H , for a vertex v ∈ V (G), degG◦H(v) ≥ m; and for a vertex u ∈ V (H),
degG◦H(u) ≤ m. Therefore, it is easy to check that degG◦H(v) ≥ degG◦H(u), where v ∈ V (G),
u ∈ V (H). If we take the vertices of the is(G)-set to the is(G◦H)-set, then there remain n−is(G)
copies of H of which the vertices are non-dominated. Since, all vertices of G is dominated, it is
necessary to include (n− is(G))is(H) vertices in is(G◦H)-set yielding is(G◦H) = is(G)+(n−
is(G))is(H), and taking any subset of V (G◦H) with cardinality less than is(G)+(n−is(G))is(H)
does not yield an is(G ◦H)-set.

Theorem 2.5. (a) If G = Kn, then is(GḠ) = n.
(b) If G = tK2(t > 1), then is(GḠ) = t+ 1.
(c) If G = Kt ◦K1, then is(GḠ) = t+ 1.
(d) If G = K1,n, then is(GḠ) = 2.
(e) If G = Km,n where 2 ≤ m ≤ n, then is(GḠ) = m+ 1.
(f) If G = Cn(n > 3), then is(GḠ) = d(n+ 4)/3e.
(g) If G = Wn(n > 3), then is(GḠ) = 3.
(h) If G = Pn(n > 3), then is(GḠ) = d(n+ 4)/3e.

Proof. To prove (a), for G = Kn, the complementary prism GḠ is the corona Kn ◦K1. Thus, by
Lemma 2.2 and Observation 2.1(a), the proof is straightforward.

To prove (b), label the 2t vertices of V (G) as ai, bi where 1 ≤ i ≤ t such that aibi ∈ E(G).
Let A = {a1, ..., at} and B = {b1, ..., bt}. Since degGḠ(āi) = degGḠ(b̄i) = 2t− 1 > degGḠ(ai) =
degGḠ(bi) for ∀i ∈ [1, .., t] and t > 1, both vertices āk and b̄k are included in is(GḠ)-set to strongly
dominate V (Ḡ) and the vertices ak and bk of G. Then, any combination of the nondominated
vertices with cardinality t − 1 in which including the vertices ar and bs where r 6= s, k,s 6= r, k
(∀r, s ∈ [1, .., t]) can be in is(GḠ)-set. Consequently, we have is(GḠ) = t + 1, and taking any
subset of V (GḠ) with cardinality less than t+ 1 does not yield an is(GḠ)-set.
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To prove (c), let G = Kt ◦ K1. If t = 1, then G = K2 and from (a), is(GḠ) = 2. Assume
that t ≥ 2, and label the vertices of G as follows: let A = {ai|1 ≤ i ≤ t} be the set of t vertices
that induce the subgraph Kt of G, and let B = {bi|1 ≤ i ≤ t} be the end-vertices in G adjacent
to the vertices in A such that aibi ∈ E(G). Let I be an is(GḠ)-set. Since degGḠ(b̄k) = ∆(GḠ)
for a vertex b̄k (k ∈ [1, .., t]) in GḠ, b̄k ∈ I to strongly dominate the vertices of B̄, Ā \ {ai}, and
the vertex bi ∈ B. Among the remaining non-dominated vertices, since I should be independent,
being degGḠ(āi) = t < degGḠ(ai) = t+ 1(∀i), ak ∈ I to strongly dominate āk ∈ Ā and A \ {ak}.
To strongly dominate the nondominated vertex set B \ {bk}, all t− 1 vertices of B \ {bk} should
be included in the independent set I . Then, we have I = b̄k ∪ ak ∪ B \ {bk} with cardinality
|I| = t + 1, and taking any other subset of V (GḠ) with cardinality less than t + 1 does not yield
an is(GḠ)-set.

To prove (d), since G is a star, the support vertex t in G is an isolated vertex t̄ in Ḡ, and a
leaf in GḠ. Denote the n leaves of G by {ui|1 ≤ i ≤ n}. The leaves in G form a complete graph
on n vertices in Ḡ. The support vertex t of G has a vertex degree degGḠ(t) = n + 1 in GḠ
which is greater than or equal to of all its neighboring vertices, degGḠ(t) > degGḠ(t̄) = 1 and
degGḠ(t) = degGḠ(ui) if n = 1; degGḠ(t) > degGḠ(ui) if n > 1. Let I be an is(GḠ)-set. Then,
t ∈ I to strongly dominate the set NGḠ[t]. Include one of the vertices ūi for some i in I to strongly
dominate the remaining non-dominated vertices that all are of the same vertex degree n. Hence,
I = {t, ui} with cardinality |I| = 2, and taking any other subset of V (GḠ) with cardinality less
than 2 does not yield an is(GḠ)-set.

To prove (e), let G = Km,n (2 ≤ m ≤ n), where R and S are the partite sets of G with
cardinality m and n, respectively. Let R = {r1, r2, ..., rm} and S = {s1, s2, ..., sn}. The vertices
of R and S form complete graphs Km and Kn on m and n vertices, respectively, in Ḡ.
If m ≤ n, then this yields degGḠ(r) ≤ degGḠ(v), where v = r̄ or v = s or v = s̄. Therefore, if I is
an is(GḠ)-set, then one of the vertices of the partite set R is in I . This vertex strongly dominates
the partite set S and a vertex r̄ of R̄. For the non-dominated vertices of S̄, I contains one of the
vertices of S̄, say s̄, to strongly dominateKn. To strongly dominate the yet non-dominated vertices
ofR and R̄, since degGḠ(r) > degGḠ(r̄) for all r ∈ R and r̄ ∈ R̄, I includes the setR. Henceforth,
I = R ∪ {s̄} with cardinality |I| = m+ 1, and taking any other subset of V (GḠ) with cardinality
less than m+ 1 does not yield an is(GḠ)-set.

To prove (f), if I is an is(GḠ)-set, then I includes a vertex ū of Ḡ since degGḠ(ū) = ∆(GḠ)
for n ≥ 5. Let S = V (GḠ) \ NGḠ[ū]. Since GḠ[S] = Cn+1, a minimum dominating set
of Cn+1 including a vertex v̄ (v̄ 6= ū ) of Ḡ belongs to the set I yielding the cardinality of I ,
|I| = γ(Cn+1) + 1 = d(n+ 1)/3e+ 1, and taking any other subset of V (GḠ) with cardinality less
than d(n+1)/3e+1 does not yield an is(GḠ)-set. For n = 4, if I is an is(GḠ)-set, then I includes a
vertex u of G since degGḠ(u) = ∆(GḠ). Let S = V (GḠ)\NGḠ[u]. Since GḠ[S] =

⋃2
i=1 P2. By

Observation 2.1(d) is(Pn) = dn/3e and we have is(GḠ[S]) = 2d2/3e = 2 yielding |I| = 3, and
taking any other subset of V (GḠ) with cardinality less than |I| = 3 does not yield an is(GḠ)-set.

To prove (g), let G be a wheel of order n + 1 and consider GḠ. If I is an is(GḠ)-set, then
first, the center vertex c ∈ V (G) which is adjacent to every other vertex of G and which has the
maximum vertex degree in GḠ belongs to I in order to strongly dominate NGḠ[c] = {c̄} ∪ V (G).
Let S = V (GḠ) \ NGḠ[c]. Eventually, GḠ[S] = C̄n which is regular. Therefore, a minimum
dominating set of C̄n belongs to I . By Lemma 2.1, we have that is(GḠ) = |I| = 1 + γ(C̄n) = 3,
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and taking any other subset of V (GḠ) with cardinality less than |I| = 3 does not yield an is(GḠ)-
set.

To prove (h), let I be an is(GḠ)-set. For an endvertex v ∈ V (Pn), since degGḠ(v̄) = ∆(GḠ),
v̄ ∈ I . If S1 = V (GḠ)\NGḠ[v̄], thenGḠ[S1] = Pn with the endvertices of vertex degree n−2 , 2,
and the internal vertices of the same degree 3 inGḠ. Therefore, I includes the endvertex ūwith de-
gree n−2 strongly dominating an internal vertex for n > 4. If S2 = V (GḠ)\{NGḠ[v̄] ∪NGḠ[ū]},
then S = Pn−2. Then, clearly I = {v̄}∪ {ū}∪D, where D is a minimum dominating set of Pn−2.
Thus, we achieve is(GḠ) = |I| = 2 + γ(Pn−2) = 2 + d(n − 2)/3e. For n = 4, a minimum
dominating set of GḠ[S1] = Pn with cardinality γ(Pn) = dn/3e = 2 including an internal vertex
of degree 3 and an endvertex of degree 2. Thus, we have is(GḠ) = 1 + dn/3e = 3, and taking any
other subset of V (GḠ) with cardinality less than d(n+ 4)/3e does not yield an is(GḠ)-set.

2.3.1. Small values
Theorem 2.6. For a graphG of order n and its complementary prismGḠ, is(GḠ) = 1 if and only
if n = 1.

Proof. The sufficiency is immediate since if n = 1, then GḠ = K2. Thus, by Obsevation 2.1(a),
is(GḠ) = 1. Now, suppose that is(GḠ) = 1. Then, any is(GḠ)-set is in either V (G) or V (Ḡ)
implying that G has only one vertex. Hence G = K1. This establishes the necessity.

Theorem 2.7. For a graph G of order n , if either G or Ḡ has diameter one, then is(GḠ) = n.

Proof. If either G or Ḡ has diameter one, then GḠ is the corona Kn ◦K1. Therefore, by Lemma
2.2 and Observation 2.1(a), the proof is immediate.
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