

# Electronic Journal of Graph Theory and Applications

# Some structural graph properties of the noncommuting graph of a class of finite Moufang loops

Hamideh Hasanzadeh Bashir<sup>a</sup>, Karim Ahmadidelir<sup>1b</sup>

<sup>a</sup>Department of Mathematics, Science and Research Branch, Islamic Azad University, P.O. Box 14515-1775, Tehran, Iran

<sup>b</sup>Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

 $hhb_{68949@yahoo.com, k_ahmadi@iaut.ac.ir$ 

# Abstract

For any non-abelian group G, the non-commuting graph of G,  $\Gamma = \Gamma_G$ , is graph with vertex set  $G \setminus Z(G)$ , where Z(G) is the set of elements of G that commute with every element of G and distinct non-central elements x and y of G are joined by an edge if and only if  $xy \neq yx$ . The non-commuting graph of a finite Moufang loop has been defined by Ahmadidelir. In this paper, we show that the multiple complete split-like graphs and the non-commuting graph of Chein loops of the form  $M(D_{2n}, 2)$  are perfect (but not chordal). Then, we show that the non-commuting graph of a non-abelian group G is split if and only if the non-commuting graph of the Moufang loop M(G, 2) is 3-split. Precisely, we show that the non-commuting graph of order 2n, n is odd, whose Frobenius kernel is abelian of order n. Finally, we calculate the energy of generalized and multiple splite-like graphs, and discuss about the energy and also the number of spanning trees in the case of the non-commuting graph of Chein loops of the form  $M(D_{2n}, 2)$ .

*Keywords:* Moufang loops, non-commuting graph, perfect graphs, chordal graphs, split graphs. Mathematics Subject Classification : 20N05, 20D60, 05C17 DOI: 10.5614/ejgta.2020.8.2.9

<sup>1</sup>Corresponding author

Received: 21 September 2017, Revised: 2 May 2020, Accepted: 23 May 2020.

#### 1. Introduction

Let Q be a set with one binary operation. Then it is a quasigroup if the equation xy = z has a unique solution in Q whenever two of the three elements  $x, y, z \in Q$  are specified. A quasigroup Q is a loop if Q possesses a neutral element e, i.e., if ex = xe = x holds for every  $x \in Q$ . Moufang loops are loops in which any of the (equivalent) Moufang identities,

$$\begin{array}{ll} ((xy)x)z = x(y(xz)), & (M1) \\ x(y(zy)) = ((xy)z)y, & (M2) \\ (xy)(zx) = x((yz)x), & (M3) \\ (xy)(zx) = (x(yz))x. & (M4) \end{array}$$

holds for every  $x, y, z \in Q$ . Commutator of x, y and the associator of x, y and z are defined by  $[x, y] = x^{-1}y^{-1}xy$  and  $[x, y, z] = ((xy)z)^{-1}(x(yz))$ , respectively. We define the commutant (or Moufang center) C(Q) of Q as  $\{x \in Q \mid xy = yx, \forall y \in Q\}$ . The center Z(Q) of a Moufang loop Q is the set of all elements of Q which commute and associate with all other elements of Q. A non-empty subset P of Q is called a subloop of Q if P is itself a loop under the binary operation of Q, in particular, if this operation is associative on P, then it is a subgroup of Q. A subloop N of a loop Q is said to be normal in Q if xN = Nx; x(yN) = (xy)N; N(xy) = (Nx)y; for every  $x, y \in Q$ . In Moufang loop Q, the subloops Z(Q) and C(Q) are normal subloops. For more details about the Moufang loops one may see [8, 16, 13]. In 1974, Chein introduced a class of non-associative Moufang loops M(G, 2), so called Chein loops. For a group G and a new element  $u, (u \notin G), M(G, 2) = G \cup Gu$  such that the multiplication with the new binary operation  $\circ$  is defined as follows:

$$\begin{cases} g \circ h = gh, & g, h \in G, \\ g \circ (hu) = (hg)u, & g \in G, hu \in Gu, \\ (gu) \circ h = (gh^{-1})u, & gu \in Gu, h \in G, \\ (gu) \circ (hu) = h^{-1}g, & gu, hu \in Gu. \end{cases}$$

Clearly, the Moufang loop M(G, 2) is non-associative if and only if G is non-abelian, see [8]. In [2], Ahmadidelir has investigated some probabilistic properties of M(G, 2), such as its *commuta-tivity degree*.

There are many papers on assigning a graph to a ring or a group in order to investigation of their algebraic properties. For any non-abelian group G the non-commuting graph of G,  $\Gamma = \Gamma_G$ is a graph with vertex set  $G \setminus Z(G)$ , where distinct non-central elements x and y of G are joined by an edge if and only if  $xy \neq yx$ . This graph is connected with diameter 2 and girth 3 for a non-abelian finite group and has received some attention in existing literature. For instance, one may see [1, 10, 15, 17]. Similarly, the non-commuting graph of a finite Moufang loop has been defined by Ahmadidelir in [3]. He has defined this graph as follows: Let M be a Moufang loop, then the vertex set is  $M \setminus C(M)$  and two vertices x and y joined by an edge whenever  $[x, y] \neq 1$ . He has shown that this graph is connected (as for groups) and obtained some results related to the non-commuting graph of a finite non-commutative Moufang loop.

We will denote a complete graph with n vertices by  $K_n$ . All graphs considered in this paper are finite and simple. For a graph  $\Gamma$ , we denote its vertex and edge sets by  $V(\Gamma)$  and  $E(\Gamma)$ , respectively.

The complement of  $\Gamma$  is denoted by  $\overline{\Gamma}$ . A graph  $\Gamma = (V, E)$ , is called k-partite where k > 1, if it is possible to partition V into k subsets  $V_1, V_2, \ldots, V_k$ , such that every edge of E joins a vertex of  $V_i$  to a vertex of  $V_j$ ,  $i \neq j$ . A clique in a graph  $\Gamma$  is an induced subgraph whose all vertices are pairwise adjacent. The maximum size of a clique in a graph  $\Gamma$  is called the clique number of  $\Gamma$  and denoted by  $\omega(\Gamma)$ . A subset X of the vertices of  $\Gamma$  is called an independent set (or stable) if the induced subgraph on X has no edges. The maximum size of an independent set in a graph  $\Gamma$ is called the independence number of  $\Gamma$  and denoted by  $\alpha(\Gamma)$ . The vertex chromatic number of a graph  $\Gamma$  is denoted by  $\chi(\Gamma)$ , and it is the minimum k for which k-vertex coloring of a graph  $\Gamma$ such that no two adjacent vertices have the same color. For a subset S of  $V(\Gamma)$ ,  $N_{\Gamma}[S]$  is the set of vertices in  $\Gamma$  which are in S or adjacent to a vertex in S. If  $N_{\Gamma}[S] = V(\Gamma)$  then S is said to be a dominating set of the vertices in  $\Gamma$ . The minimum size of a dominating set of the vertices in  $\Gamma$ is denoted by  $\gamma(\Gamma)$ . A vertex cover of a graph  $\Gamma$  is a set  $Q \subseteq V(\Gamma)$ such that contains at least one endpoint of every edge. The minimum size of a vertex cover is denoted by  $\beta(\Gamma)$ . Our other used notations about graphs are standard and for more details one may see [6, 7, 11].

There is a relation between  $\alpha(\Gamma)$  and  $\beta(\Gamma)$  as follows:

**Lemma 1.1.** ([7], p. 296) Let  $\Gamma$  be a graph. Then  $\alpha(\Gamma) + \beta(\Gamma) = n(\Gamma)$ , where  $n(\Gamma)$  is the number of vertices of  $\Gamma$ .

A perfect graph  $\Gamma$ , is a graph in which for every induced subgraph its clique number is equal to its chromatic number. A graph  $\Gamma$  is called weakly perfect graph if  $\omega(\Gamma) = \chi(\Gamma)$ . So, all perfect graphs are weakly perfect. A chordal graph is one in which all cycles of order four or more have a chord, which is an edge that is not part of cycle but connects two vertices of the cycle. The class of Chordal graphs is a subset of the class of perfect graphs. For more information about these types of graphs, one may see [12, 14]. We have the following Theorem about perfect graphs, called strongly perfect graph theorem, or Berg Theorem.

A graph is called k-regular, if the vertices of the graph are of the same degree k and a strongly regular graph S with parameters  $(n, k, \lambda, \mu)$  is a k-regular graph of order n such that each pair of adjacent vertices has  $\lambda$  common neighbors and each pair of non-adjacent vertices has in which  $\mu$ common neighbors. Let  $\Gamma_1 = (V_1, E_1)$  and  $\Gamma_2 = (V_2, E_2)$  be undirected simple graphs. The union  $\Gamma_1 \cup \Gamma_2$  of graphs  $\Gamma_1$  and  $\Gamma_2$  is a graph  $\Gamma = (V, E)$  for which  $V = V_1 \cup V_2$  and  $E = E_1 \cup E_2$ . The notation  $n\Gamma$  is short for  $\underline{\Gamma \cup \cdots \cup \Gamma}$ .

The complete product  $\Gamma_1 \nabla \Gamma_2$  of graph  $\Gamma_1$  and  $\Gamma_2$  is a graph obtained from  $\Gamma_1 \cup \Gamma_2$  by joining every vertex of  $\Gamma_1$  to every vertex of  $\Gamma_2$ . For every  $a, b, n \in N$ , a complete split, or simply, a split graph, is the graph  $\bar{K}_a \nabla K_b$  and denoted by  $CS_b^a$ . By a theorem of Földes and Hammer ([12], Theorem 6.3), a graph is (complete) split iff contains no induced subgraph isomorphic to  $2K2, C_4$ or  $C_5$ . Also, an undirected graph is split if and only if its complement is split ([12], Theorem 6.1). Clearly, every split graph is chordal and so perfect, but the converses are not true. More generally, a multiple complete split-like graph is  $\bar{K}_a \nabla (nK_b)$  and denoted by  $MCS_{b,n}^a$ . Specially, in this paper, for n = 3 we call  $MCS_{b,3}^a$  as a 3-split graph.

We generalize the above definitions as follows:

**Definition 1.1.** The generalized complete split-like graph is  $GCS_k^a = \bar{K}_a \nabla S$  such that S is a strongly regular graph with parameters  $(n, k, \lambda, \mu)$ . The multiple generalized complete split-like graph is  $GMCS_{k,m}^a = \bar{K}_a \nabla(mS)$ .

The laplacian matrix of a simple graph  $\Gamma$  with *n* vertices, is defined as  $L(\Gamma) = D(\Gamma) - A(\Gamma)$ , where  $A(\Gamma)$  is its adjacency matrix and  $D(\Gamma) = (d_1, \ldots, d_n)$  is the diagonal matrix of the vertex degrees in  $\Gamma$ . For any graph  $\Gamma$ , the energy of  $\Gamma$  is defined as  $\xi(\Gamma) = \sum_{i=1}^{n} |\lambda_i|$ , where  $\lambda_1, \ldots, \lambda_n$  are the eigenvalues of the adjacency matrix of  $\Gamma$ . A spanning tree of a graph  $\Gamma$  is an induced subgraph of  $\Gamma$ , which is a tree and contains every vertex of  $\Gamma$ .

In this paper, we show that the multiple complete split-like graphs are perfect (but not chordal) and deduce that the non-commuting graph of Chein loops of the form  $M(D_{2n}, 2)$  is perfect but not chordal. Then, we show that the non-commuting graph of a non-abelian group G is split if and only if the non-commuting graph of the Moufang loop M(G, 2) is 3-split and then classify all Chein loops that their non-commuting graphs are 3-split. Precisely, we show that for a non-abelian group G, the non-commuting graph of the Moufang loop M(G, 2), is 3-split if and only if G is isomorphic to a Frobenius group of order 2n, n is odd, whose Frobenius kernel is abelian of order n. Finally, we calculate the energy of generalized and multiple splite-like graphs, and discuss about the energy and also the number of spanning trees in the case of the non-commuting graph of Chein loops of the form  $M(D_{2n}, 2)$ . We recall the following Proposition and Theorems in order to provide some tools to these purposes.

**Theorem 1.1.** ([5], p. 3: Schur complement) Let A be a  $n \times n$  matrix partitioned as  $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ , where  $A_{11}$  and  $A_{22}$  are non-singular square matrices. Then the inverse of A,  $A^{-1}$  can be calculated by the following formula:

$$A^{-1} = \begin{bmatrix} A_{11}^{-1} + A_{11}^{-1}A_{12}(A/A_{11})^{-1}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}(A/A_{11})^{-1} \\ -(A/A_{11})^{-1}A_{21}A_{11} & (A/A_{11})^{-1} \end{bmatrix},$$

where

$$A/A_{11} = A_{22} - A_{21}A_{11}^{-1}A_{12}$$

and

$$det A = det A_1 \times det (A_{22} - A_{21} A_{11}^{-1} A_{12}),$$

such that detA is the determinant of A.

**Theorem 1.2.** ([14], Theorem 1) For i = 1, 2, let  $\Gamma_i$  be  $r_i$ -regular graphs with  $n_i$  vertices. Then the characteristic polynomial of the complete product of these two graphs is as follows:

$$P_{\Gamma_1 \nabla \Gamma_2}(\lambda) = \frac{P_{\Gamma_1}(\lambda) P_{\Gamma_2}(\lambda)}{(\lambda - r_1)(\lambda - r_2)} [(\lambda - r_1)(\lambda - r_2) - n_1 n_2].$$

www.ejgta.org

### 2. Some basic graph properties of the Moufang loop $M(D_{2n}, 2)$

Let  $D_{2n}$  denote the dihedral group of order 2n, which has the following presentation:

$$D_{2n} = \langle a, b | \quad a^n = b^2 = (ab)^2 = 1 \rangle.$$

In this section, we want to study the non-commuting graph of the Moufang loops  $M(D_{2n}, 2)$ , simply denoted by  $\Gamma$ . We will use the following Lemma in next sections.

The following Lemma determines the structure of the non-commuting graph of the Moufang loop  $M = M(D_{2n}, 2)$ .

**Lemma 2.1.** Let  $M = M(D_{2n}, 2)$  and  $\Gamma = \Gamma_M$  be its non-commuting graph.

- (a) If n is odd then  $\Gamma_M \cong \overline{K}_{n-1}\nabla S$ , such that S is a strongly regular graph with parameters (3n, n-1, n-2, 0).
- (b) If n is even then  $\Gamma_M \cong \overline{K}_{n-2}\nabla 3S$ , such that S is a strongly regular graph with parameters (n, n-2, n-3, n-2).

*Proof. a)* By Lemma ([3], Lemma 4.4) and the definition of the non-commuting graph, for every odd integer n, we can partition the vertices of  $\Gamma$  into four sets, as follows:

$$t_1 = \{a, a^2, \dots, a^{n-1}\}, \quad t_2 = \{b, ab, \dots, a^{n-1}b\}, \\ t_3 = \{u, au, \dots, a^{n-1}u\}, \quad t_4 = \{bu, abu, \dots, a^{n-1}bu\}$$

For every  $0 \le i, j \le n-1$ , since  $a^i a^j = a^j a^i$ ,  $t_1$  is an independent set and from the relations  $a^i \circ (a^j b) \ne (a^j b) \circ a^i$ ,  $a^i \circ (a^j u) \ne (a^j u) \circ a^i$  and  $a^i \circ (a^j b u) \ne (a^j b u) \circ a^i$ , we find that all vertices of  $t_1$  are adjacent to all vertices of each of the sets  $t_2$ ,  $t_3$  and  $t_4$ . Also, by the relations  $(a^i b) \circ (a^j b) \ne (a^j b) \circ (a^i b)$ , the induced subgraph  $[t_2]$  of  $\Gamma$ , is a clique. Similarly, we can show that the induced subgraph  $[t_3]$  and  $[t_4]$  of  $\Gamma$ , are cliques. Hence,  $\Gamma \cong \overline{K}_{n-1} \nabla 3K_n$  and the graph  $\Gamma$  is 3-split and  $3K_n \cong S$ , where S is a strongly regular graph with parameters (3n, n-1, n-2, 0).

b) Let n be an even integer. Again, we can partition the vertices of  $\Gamma$  into four sets, as follows:

$$t_1 = \{a, a^2, \dots, a^{\frac{n}{2}-1}, a^{\frac{n}{2}+1}, \dots, a^{n-1}\}, \quad t_2 = \{b, ab, \dots, a^{n-1}b\}, \\ t_3 = \{u, au, \dots, a^{n-1}u\}, \qquad t_4 = \{bu, abu, \dots, a^{n-1}bu\}$$

Since each pair of elements of  $t_1$  commute, so the induced subgraph  $[t_1]$  is an independent set, that means  $[t_1] \cong \overline{K}_{n-2}$ . Also, every element in M commutes with its inverse and since,  $\forall x \in t_i$ , (i = 2, 3, 4), its inverse  $x^{-1}$  belongs to  $t_i$ . Therefore, every element of  $t_i$ , (i = 2, 3, 4) is adjacent to each vertex in  $t_i$ , i = 2, 3, 4, except its inverse. Also any two elements x, y in  $t_i$ , (i = 2, 3, 4) commute if and only if  $|i - j| = \frac{n}{2}$ , where  $x = a^i u$  or  $a^i b$ ,  $a^i b u$  and  $y = a^j u$  or  $a^j b$ ,  $a^j b u$ . Then  $[t_i] \cong S$ , where S is a strongly regular graph with parameters (n, n - 2, n - 3, n - 2). Finally, for every  $2 \le i, j \le 4$  there is no edge of  $\Gamma$  such that joins a vertex of  $t_i$  to a vertex of  $t_j$ ,  $i \ne j$ , but each vertex in  $t_1$  joins to each vertex in  $t_i$ , (i = 2, 3, 4). Therefore,  $\Gamma_M \cong \overline{K}_{n-2} \nabla 3S$ .

In the following Theorem, we derive some important graph properties of  $\Gamma_{M(D_{2n},2)}$ .

**Theorem 2.1.** Let  $M = M(D_{2n}, 2)$  and  $\Gamma = \Gamma_M$  be its non-commuting graph.

(a) If n is odd then:

$$\begin{aligned} & \omega(\Gamma) = n+1, \qquad & \chi(\Gamma) = n+1, \\ & \alpha(\Gamma) = n-1, \qquad & \beta(\Gamma) = 3n, \qquad & \gamma(\Gamma) = 2. \end{aligned}$$

(b) If n is even then:

$$\omega(\Gamma) = \frac{n}{2} + 1, \qquad \chi(\Gamma) = \frac{n}{2} + 1,$$
  
$$\alpha(\Gamma) = \begin{cases} 6, & (n = 6) \\ n - 2, & (n \ge 8) \end{cases}, \quad \beta(\Gamma) = \begin{cases} 16, & (n = 6) \\ 3n, & (n \ge 8) \end{cases}, \quad \gamma(\Gamma) = 2.$$

*Proof.* a) By Lemma 2.1, the non-commuting graph of  $M(D_{2n}, 2)$  is a generalized complete splitlike graph for any odd integer n. Then  $\Gamma = \bar{K}_{n-1}\nabla S$  in which S is a strongly regular graph with parameters (3n, n-1, n-2, 0), where  $V(\bar{K}_{n-1}) = \{a, a^2, \ldots, a^{n-1}\}$  and  $S \cong 3K_n$ . So this graph is 3-split. By the structure of  $\Gamma$ , since every vertex of each copy of  $K_n$  is joined to every vertex of  $\bar{K}_{n-1}$ , so we have the complete product  $K_n \nabla [a^i]$ , where  $a^i \in \bar{K}_{n-1}, 1 \le i \le n-1$ . Also,  $K_n \nabla [a^i]$ is the largest clique in  $\Gamma$ . So,  $\omega(\Gamma) = n + 1$ . We need n distinct colors for coloring any  $K_n$  and only one color for coloring  $\bar{K}_{n-1}$  which is distinct with the previous ones. So,  $\chi(\Gamma) = n + 1$ . The set of vertices of  $\bar{K}_{n-1}$  is the largest independent set, so  $\alpha(\Gamma) = n - 1$ . By Lemma 1.1, we have  $\beta(\Gamma) = 4n - 1 - (n-1) = 3n$ . Clearly, the set of vertices of  $3K_n$  has the minimum size of a vertex cover. Any vertex of  $\bar{K}_{n-1}$  is dominating all vertices of S, and any vertex of S is dominating all vertices in  $\bar{K}_{n-1}$ . Thus  $\gamma(\Gamma) = 2$ .

b) By Lemma 2.1, the non-commuting graph of  $M(D_{2n}, 2)$ , for every even integer n, is a multiple generalized complete split-like graph as  $\Gamma = \overline{K}_{n-2}\nabla 3S$ , where S is a strongly regular graph with parameters (n, n-2, n-3, n-2) and the set of vertices of  $\overline{K}_{n-2}$  is an independent set as follows:

$$V(\bar{K}_{n-2}) = \{a, a^2, \dots, a^{\frac{n}{2}-1}, a^{\frac{n}{2}+1}, \dots, a^n - 1\}.$$

In order to find the clique number, we may choose one vertex of  $\bar{K}_{n-2}$  and the other vertices from only one copy of S's. By definition, every vertex is not joined to its inverse, so, we can choose  $\frac{n}{2}$ vertices of S and hence,  $\omega(\Gamma) = \frac{n}{2} + 1$ . The color of every vertex in S is co-color with its inverse. Therefore, the chromatic number of S is equal to  $\frac{n}{2}$ , and so the maximum color number for all the vertices of 3S is equal to  $\frac{n}{2}$ . By only one color distinct from  $\frac{n}{2}$ -color in 3S, we can color  $\bar{K}_{n-2}$ . So,  $\chi(\Gamma) = \frac{n}{2} + 1$ . For n = 6,  $\bar{K}_{n-2}$  have four independent vertices, but with two non-adjacent vertices chosen from any of the copies of S, we get 6 independent vertices. Therefore, in this case  $\alpha(\Gamma) = 6$ . Now, for  $n \ge 8$ , the set  $\bar{K}_{n-2}$  is the largest independent set and so,  $\alpha(\Gamma) = n - 2$ . By using Lemma 1.1, we have  $\beta(\Gamma) = n(\Gamma) - \alpha(\Gamma)$ . Hence, if n = 6 then  $\beta(\Gamma) = 16$ , else if  $n \ge 8$ then  $\beta(\Gamma) = 4n - 2 - (n - 2) = 3n$ . By choosing any vertex in  $\bar{K}_{n-2}$  and the other in one of the copies of S, the domination set of  $\Gamma$  will be determined. Hence,  $\gamma(\Gamma) = 2$ .

# 3. About perfectness and splitness of the non-commuting graph of a Moufang loop

In this section, first we show that the multiple complete split-like graphs are perfect and then characterize all Chein loops that their non-commuting graphs are 3–split-like.

**Theorem 3.1.** Every multiple complete split-like graph  $MCS^a_{b,n} \cong \overline{K}_a \nabla(nK_b)$ ,  $(n \ge 2)$  is perfect, but not chordal. Moreover, every complete split graph  $CS^a_{b,n} \cong \overline{K}_a \nabla K_b$ , is perfect and also chordal.

*Proof.* Let  $\Gamma \cong \overline{K}_a \nabla(nK_b)$  and C be an odd cycle. If all vertices of C lie in only one copy of  $K_b$ 's, clearly this cycle has a chord. Also, if some vertices of C lie in more than one copy of  $K_b$ 's, then since in this case C has some vertices of  $\overline{K}_a$  and also these vertices in  $\overline{K}_a$  are adjacent to each vertex of  $K_b$ , therefore, the cycle has a chord. In addition, the complement graph,  $\overline{\Gamma}$ , is a disconnected graph of the form  $\overline{\Gamma} \cong K_a \cup S$  such that S is strongly regular graph with parameters (nb, (n-1)b, (n-2)b, (n-1)b) or  $S \cong T_{nb,b}$ , which is a complete n-partite graph with nb vertices, and hence, each part has b vertices. Clearly, any cycle in  $K_a$  has a chord. If C be an odd cycle in S, then by structure of S, there is an intersection of C with more than three sections of S and these vertices are adjacent to any of the vertices in other sections and so, C has a chord. If C has an instruction with only two sections of S, then the induced subgraph of these sections will be a bipartite graph such that there is no any odd cycle in it. Now, by Berg Theorem ([9], Theorem 1.2)  $\Gamma$  is a perfect graph. Let  $\Gamma \cong \overline{K}_a \nabla(nK_b)$  and  $x_1, x_2 \in \overline{K}_a, x_1 \neq x_2$ . Take  $x_3$  and  $x_4$  is a cycle of length four without a chord. So, by definition,  $\Gamma$  is not chordal.

Similar to the proof of the first part,  $CS_{b,n}^a \cong \overline{K}_a \nabla K_b$  is perfect, but there is no cycle of length four or more without any chord and so this is a chordal graph. This completes the proof.

# **Corollary 3.1.** The non-commuting graph of $M(D_{2n}, 2)$ is perfect but not chordal.

*Proof.* Let  $\Gamma = \Gamma(M(D_{2n}, 2))$ , where *n* be an odd integer. Then by Lemma 2.1 (*a*),  $\Gamma \cong \overline{K}_{n-1}$  $\nabla(3K_n)$  and by Theorem 3.1,  $\Gamma$  is perfect but not chordal.

If n be an even integer then by Lemma 2.1(b),  $\Gamma \cong \overline{K}_{n-2}\nabla 3S$  such that S is a strongly regular graph with parameters (n, n-2, n-3, n-2). Assume that C is an odd cycle in  $\Gamma$  with length 5 or more, the length of the longest cycle without chord in each copy of S is equal to 4. Then there are some vertices of  $\overline{K}_{n-2}$  in C, and these vertices are adjacent to each vertex in 3S. Therefore, C have a chord. On the other hand,  $\overline{\Gamma} \cong K_{n-2} \cup (\frac{n}{2}K_2\nabla \frac{n}{2}K_2\nabla \frac{n}{2}K_2)$ . Let C be a cycle in  $\overline{\Gamma}$ . Clearly, every cycle in  $K_{n-2}$  have a chord and if C be an odd cycle in  $\frac{n}{2}K_2\nabla \frac{n}{2}K_2\nabla \frac{n}{2}K_2$ , then C have an intersection with more than two parts of  $\frac{n}{2}K_2$ , where one of them have more than one vertex in C, and these vertices adjacent to all vertices of C in other parts and so, C have a chord and by Theorem ([9], Theorem 1.2),  $\Gamma$  is perfect. The induced subgraph consist of any two vertices of  $\overline{K}_{n-2}$  and two non-adjacent vertices of S is a cycle with length 4 without chord then  $\Gamma$  is not chordal.

*Remark* 3.1. The generalized multiple complete split-like graph  $GMCS_k^a$  is not perfect. As a counterexample, let we have a generalized complete split-like graph  $\Gamma \cong \overline{K}_a \nabla(nS)$  in which S is a Peterson graph. This graph is not perfect, since it has a cycle of length 5 without any chord. Recall that a Peterson graph is a strongly regular graph with parameters (10, 3, 0, 1).

**Theorem 3.2.** Let G be a non-abelian group. Then its non-commuting graph  $\Gamma_G$ , is split if and only if the non-commuting graph of the Moufang loop M(G, 2),  $\Gamma_M$ , is 3–split.

*Proof.* Let  $\Gamma_M$  be 3-split of the form  $\Gamma_M = I\nabla 3C$ , where I is an independent set and C is a complete graph. First we show that Z(G) = C(M). By Lemma ([3], Lemma 3.10),  $C(M) \subseteq$ Z(G). Let  $Z(G) \notin C(M)$ . Then there exists  $x \in Z(G)$  such that  $x \notin C(M)$ . Also, there exists  $yu \in Gu$ , where  $x \circ (yu) \neq (yu) \circ x$ , which yields  $(yx)u \neq (yx^{-1})u$ . Therefore,  $x \neq x^{-1}$  and  $x \in I$ . So, every vertex y in each copy of C is adjacent to x and so  $xy \neq yx$ . But  $x \in Z(G)$  then for every  $g \in G$ , we have xg = gx. Hence  $G \subseteq I$ . Now, let  $g \in G \setminus Z(G)$ . So, there exist  $t \in G$ such that  $tq \neq qt$  but in this case  $t, q \in I$  and this is a contradiction, since I is an independent set. So, G = Z(G) and this contradicts with non-abelianity of G. Thus Z(G) = C(M). Obviously, every element of 3C is an involution. Let  $x \in 3C$  and  $x \neq x^{-1}$ . So, since each element of Gu has order 2 then  $x \in G$ . Put  $3C = C_1 \cup C_2 \cup C_3$ , where each  $C_i$  is equal to a copy of C,  $(1 \le i \le 3)$ . Without loss of generality, let  $x \in C_1$  and  $x^{-1} \in C_2$  (note that  $xx^{-1} = x^{-1}x$ ). Let  $y \in G \setminus Z(G)$ and  $y \notin \langle x \rangle$ . Then since every element of G which commutes with x, also commutes with  $x^{-1}$ , so if  $y \in C_1$  then  $xy \neq yx$ , and therefore  $x^{-1}y \neq yx^{-1}$ , but  $x^{-1} \in C_2$  and this is a contradiction. Similarly, the case  $y \in C_2$  will reach to a contradiction. So,  $y \in I$  or  $y \in C_3$ . Now, consider the element xy. By the same reason as above, we have  $xy \in I$  or  $xy \in C_3$ . Trivially,  $xy \neq x, x^{-1}$ . We have four cases as below:

**Case 1.** Let  $y, xy \in I$ . Then  $y(xy) = (xy)y \Rightarrow yx = xy$ . which is a contradiction, since y is adjacent to every element of  $C_1$ .

**Case 2.** Let  $y \in I$  and  $xy \in C_3$ . Then  $x \in C_1 \Rightarrow x(xy) = (xy)x$ ,  $(x, y \in G) \Rightarrow xy = yx$  and we have the same contradiction as in case 1.

**Case 3.** Let  $y \in C_3$  and  $xy \in I$ . Then  $(xy)y \neq y(xy) \Rightarrow xy \neq yx$ , which is also a contradiction since  $y \in C_3$  and  $x \in C_1$ .

**Case 4.** Let  $y, xy \in C_3$ . Then we have  $y(xy) \neq (xy)y \Rightarrow xy \neq yx$  and we obtain a similar contradiction as in case 3.

Therefore, every element of 3C has order 2. On the other hand,  $\Gamma_G$  is always connected and it is the induced subgraph of  $\Gamma_M$ . Therefore,  $\Gamma_G \cong K_m$ ,  $(K_m \subseteq C)$  or  $\Gamma_G \cong I' \nabla nC'$  such that  $I' \subseteq I$ ,  $C' \subseteq C$  and  $nC' = \bigcup_{i=1}^n C_i$ , where  $1 \leq n \leq 3$ , and each  $C_i$  is a subset of one copy of C's. If  $\Gamma_G \cong K_m$ , then the order of every element of G will be equal to 2, so G must be abelian, which is absurd. Therefore, we get,  $\Gamma_G \cong I' \nabla nC'$ . If n = 1 then  $\Gamma_G$  is split. Suppose that  $1 \neq x, y \in G$ ,  $x \in C_1$  and  $y \in C_2$ , then xy = yx and there exists  $z \in I'$  where  $yz \neq zy$  and  $xz \neq zx$ . So,  $xy \in G$ . If  $xy \in I'$ , then  $x(xy) \neq (xy)x$  and so,  $x^2y \neq x(yx)$ . Therefore,  $x^2y \neq x(xy)$  and this is a contradiction. If  $xy \in C_1$  then  $x(yx) \neq (xy)x$  and  $x^2y \neq x^2y$ , and it is a contradiction, and if  $xy \in C_2$  then  $y(xy) \neq (xy)y$  and  $y^2x \neq y^2x$ , and it is also a contradiction. Finally, let  $xy \in C_3$ . Now,  $xu \in M(G, 2)$  then:

1) If  $xu \in I$  or  $xu \in C_1$ , then  $(xu) \circ x \neq x \circ (xu)$  and so  $(xx^{-1})u \neq (xx)u$ . Therefore,  $u \neq x^2u$ , this is a contradiction. So, every element of C in  $\Gamma_M$  is of order 2 therefore,  $x^2 = 1$ .

2) If  $xu \in C_2$  then  $(xu) \circ y \neq y \circ (xu)$  and so  $(xy^{-1})u \neq (xy)u$ . Thus  $(xy)u \neq (xy)u$  and this is a contradiction.

3) If  $xu \in C_3$  then  $(xu) \circ (xy) \neq (xy) \circ (xu)$  and so  $(x(xy)^{-1})u \neq (x(xy))u$  or  $(x(y^{-1}x^{-1}))u \neq (x^2y)u$ . So,  $(x(yx))u \neq (x^2y)u$ , or  $(x(xy))u \neq yu$ . Thus  $(x^2y)u \neq yu$  and this is a contradiction.

Therefore,  $\Gamma_G \cong I' \nabla C'$  and  $\Gamma_G$  is split.

Conversely, let  $\Gamma_G$  be split. Then  $\Gamma_G \cong I \nabla C$ . We show that  $\Gamma_M$  is 3-split. By splitness of  $\Gamma_G$  and Lemmas ([4], Lemmas 2.4 and 2.5), we have, Z(G) = 1 and  $C(M) \subseteq Z(G)$ . So, C(M) = 1. Let  $V(I) = \{a_1, a_2, \ldots, a_k\}$  and  $V(C) = \{b_1, b_2, \ldots, b_t\}$ . Then,  $V(\Gamma_M)$  includes V(I), V(C) and the set of vertices of the form,  $V(Iu) = \{a_1u, a_2u, \ldots, a_ku\}$  and  $V(Cu) = \{b_1u, b_2u, \ldots, b_tu\}$ . To prove 3-splitness  $\Gamma_M$ , we consider and stablish the following claims.

**Claim 1**. The induced subgraph containing the vertices in V(Iu) forms a clique.

Suppose that there exist two non-adjacent vertices  $a_i u$  and  $a_j u$ . So,  $(a_i u) \circ (a_j u) = (a_j u) \circ (a_i u)$ and then  $a_i a_j^{-1} = a_j a_i^{-1}$  or  $(a_i a_j^{-1})^2 = 1$ . Therefore, by Lemmas ([4], Lemmas 2.4 and 2.5),  $I^* = I \cup \{1\}$  is a maximal subgroup of odd order and there is not any element of even order. So,  $a_i a_j^{-1} \in C$ , where in this case  $(a_i a_j^{-1})a_j \neq a_j(a_i a_j^{-1})$ . Then  $a_i \neq a_j(a_i a_j^{-1})$  and  $a_j^{-1}a_i \neq a_i a_j^{-1}$ and this is a contradiction.

**Claim 2**. The induced subgraph containing the vertices in V(Cu) is a clique.

Suppose that there exist two vertices  $b_i u$  and  $b_j u$  such that are not adjacent. So,  $(b_i u) \circ (b_j u) = (b_j u) \circ (b_i u)$ . Therefore,  $b_i b_j^{-1} = b_j b_i^{-1}$  and  $b_i b_j = b_j b_i$ , since, each element of C is an involution and which yields to a contradiction.

**Claim 3.** There is no edge between V(Iu) and V(Cu).

Suppose that there exist two vertices  $a_i u$  and  $b_j u$  such that  $(a_i u) \circ (b_j u) \neq (b_j u) \circ (a_i u)$  then  $b_j^{-1}a_i \neq a_i^{-1}b_j$  and  $b_j a_i \neq a_i^{-1}b_j$ , therefore  $(b_j a_i)^2 \neq 1$ . On the other hand  $b_j a_i \in G$ . So,  $b_j a_i \in I$  or  $b_j a_i \in C$ .

1) If  $b_j a_i \in I$  then  $(b_j a_i) a_i = a_i (b_j a_i)$  and  $b_j a_i = a_i b_j$ , which yields to a contradiction.

2) If  $b_j a_i \in C$  then  $(b_j a_i)^2 = 1$  and this is a contradiction. Therefore, any two elements of V(Iu) and V(Cu) are non-adjacent.

**Claim 4**. *There is no edge between* V(C) *and* V(Cu).

Suppose that there exist two vertices  $b_i$  and  $b_j u$  such that  $b_i \circ (b_j u) \neq (b_j u) \circ b_i$ . Then  $(b_j b_i)u \neq (b_j b_i^{-1})u$ , so,  $(b_j b_i)u \neq (b_j b_i)u$ , and this is a contradiction. Therefore any two elements of V(C) and V(Cu) are non-adjacent.

**Claim 5**. *There is no edge between* V(C) *and* V(Iu).

Suppose that there exist two vertices  $b_i$  and  $a_j u$  such that  $b_i \circ (a_j u) \neq (a_j u) \circ b_i$ . Then  $(a_j b_i)u \neq (a_j b_i^{-1})u$  and  $a_j b_i \neq a_j b_i$ . This is a contradiction. Therefore, any two vertices in V(C) and V(Iu) are non-adjacent.

**Claim 6.** Every vertex in V(Iu) is adjacent to every vertex in V(I).

Suppose that there exist two vertices  $a_i$  and  $a_j u$  such that  $a_i \circ (a_j u) = (a_j u) \circ a_i$ . Then  $(a_j a_i)u = (a_j a_i^{-1})u$  and  $a_j a_i = a_j a_i^{-1}$ . So,  $a_i = a_i^{-1}$ . Therefore,  $a_i^2 = 1$  and this is a contradiction.

**Claim 7.** Every vertex in V(Cu) is adjacent to every vertex in V(I).

Suppose that there exist two vertices  $a_i \in I$  and  $b_j u \in Cu$  such that  $a_i \circ (b_j u) = (b_j u) \circ a_i$ . Also,  $(b_j a_i)u = (b_j a_i^{-1})u$  then  $b_j a_i = b_j a_i^{-1}$  and  $a_i = a_i^{-1}$ , therefore  $a_i^2 = 1$  and this is a contradiction.

Thus the non-commuting graph of M(G, 2) is 3-split, where the induced subgraphs containing the vertices of C and Cu and Iu are cliques and I is an independent set.

Now, by using Theorems ([4], Theorem 2.3) and 3.2, we can classify all 3–split Chein loops:

**Corollary 3.2.** Let G be a non-abelian group. Then the non-commuting graph of the Moufang loop M(G, 2), is 3-split if and only if G is isomorphic to a Frobenius group of order 2n, n is odd, whose Frobenius kernel is abelian of order n.

# 4. About the energy and the number of spanning trees of generalized and multiple splite-like graphs

In this section, we are going to calculate the energy of generalized complete and multiple splite-like graphs and derive the energy and also the number of spanning trees in the case of the non-commuting graph of Chein loops of the form  $M(D_{2n}, 2)$ .

**Theorem 4.1.** Let  $\Gamma$  be a generalized complete split-like graph,  $\Gamma \cong \overline{K}_a \nabla(nK_b)$ . Then  $\varepsilon(\Gamma) = 2n(b-1)$ .

*Proof.* Let  $P_{K_b}(\lambda)$  be the characteristic polynomial of  $K_b$ . Then,

$$P_{K_b}(\lambda) = (-1)^b (\lambda + 1)^{b-1} (\lambda - b + 1).$$

So,

$$P_{nK_b}(\lambda) = (-1)^{nb} (\lambda + 1)^{n(b-1)} (\lambda - b + 1)^n$$

and

$$P_{\bar{K}_a}(\lambda) = (-\lambda)^a.$$

By using Theorem 1.2, we have:

$$P_{\Gamma}(\lambda) = (-1)^{nb+a} (\lambda+1)^{n(b-1)} (\lambda-b+1)^{n-1} \lambda^{a-1} (\lambda^2 - (b-1)\lambda - nab)$$

and by definition of the energy of a graph, we get:

$$\varepsilon(\Gamma) = n(b-1) + (n-1)(b-1) + b - 1.$$

Hence,  $\varepsilon(\Gamma) = 2n(b-1)$ .

**Corollary 4.1.** Let n be an odd integer. Let  $G = D_{2n}$  and M = M(G, 2). Then:

328

www.ejgta.org

- (*i*) if n is an odd integer, then  $\varepsilon(\Gamma_M) = 6(n-1)$ ;
- (i) if n is an even integer, then  $\varepsilon(\Gamma_M) = 6(n-2)$ .

Moreover, in both cases,  $\varepsilon(\Gamma_G)$  divides  $\varepsilon(\Gamma_M)$ .

*Proof.* Since,  $\Gamma_M \cong \overline{K}_{n-1} \nabla 3K_n$ , by Theorem 4.1,  $\varepsilon(\Gamma_M) = 6(n-1)$ . We know that  $\Gamma_G \cong \overline{K}_{n-1} \nabla K_n$  and by Theorem 4.1, we have  $\varepsilon(\Gamma_G) = 2(n-1)$ . Thus  $\varepsilon(\Gamma_G)$  divides  $\varepsilon(\Gamma_M)$ .

*ii*) Now, let *n* be an even integer. Then, by Theorem 2.1,  $\Gamma_M \cong K_{n-2}\nabla 3S$ , in which *S* is a strongly regular graph with parameters (n, n-2, n-3, n-2). Thus, by Theorems ([5], Theorems 6.2 and 6.22), the adjacency matrix of *S* has exactly three distinct eigenvalues:  $\lambda_1 = n - 2$ , whose multiplicity is 1,  $\lambda_2 = 0$ , whose multiplicity is 1 and  $\lambda_3 = -1$ , whose multiplicity is n - 2. Therefore,

$$P_S(\lambda) = (\lambda - n + 2)(\lambda + 1)^{n-2}\lambda.$$

So,

$$P_{3S}(\lambda) = (\lambda - n + 2)^3 (\lambda + 1)^{3n-6} \lambda^3$$

and

$$P_{\bar{K}_{n-2}}(\lambda) = \lambda^{n-2}.$$

By Theorem 1.2, we have:

$$P_{\Gamma_M}(\lambda) = (\lambda - n + 2)^2 (\lambda + 1)^{3n-6} \lambda^{n-2} (\lambda^2 + (2 - n)\lambda - 3n(n - 2)).$$

Thus,  $\varepsilon(\Gamma_M) = 6(n-2)$ . We know that  $\Gamma_G \cong \overline{K}_{n-2}\nabla S$ , such that S is a strongly regular graph with parameters (n, n-2, n-3, n-2). Therefore, by Theorems ([5], Theorems 6.2 and 6.22),

$$P_{\Gamma_G}(\lambda) = (\lambda + 1)^{n-2} \lambda^{n-2} (\lambda^2 + (2-n)\lambda - n(n-2)).$$
  
So,  $\varepsilon(\Gamma_G) = 2(n-2)$ . Thus  $\varepsilon(\Gamma_G)$  divides  $\varepsilon(\Gamma_M)$ .

Finally, in the following Theorems, we count the number of spanning trees of the non-commuting graph  $\Gamma_M$ , where  $M = M(D_{2n}, 2)$ , for odd and even n, separately, and they lead us to an important result.

**Theorem 4.2.** The number of spanning trees of the non–commuting graph  $\Gamma_M$ , where  $M = M(D_{2n}, 2)$  and n is odd, is equal to:

$$\kappa(\Gamma_M) = (2n-1)^{3n-3}(n-1)^2(3n)^{n-2}.$$

*Proof.* There are 4n - 1 vertices in this graph, such that they are in  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$ . Each of  $t_i$ ,  $2 \le i \le 4$ , have *n* vertices of degree 2n - 2, and  $t_1$  have n - 1 vertices of degrees 3n. By the structure of graph  $\Gamma_M$  in Lemma 2.1, the matrix of vertex degree, namely *D* of this graph is equal to:

$$D = \begin{bmatrix} (2n-2)I_{3n} & 0_{3n(n-1)} \\ 0_{(n-1)3n} & (3n)I_{n-1} \end{bmatrix}$$

www.ejgta.org

and the adjacent matrix of graph has the form:

$$A = \begin{bmatrix} (J_n - I_n) \bigotimes I_3 & J_{3n(n-1)} \\ J_{(n-1)3n} & 0_{n-1} \end{bmatrix},$$

where,  $\bigotimes$  denotes the tensor product of matrices. Thus,

$$L = D - A = \begin{bmatrix} ((2n-1)I_n - J_n) \bigotimes I_3 & -J_{3n(n-1)} \\ -J_{(n-1)3n} & (3n)I_{n-1} \end{bmatrix}.$$

Now, to calculate det(L + J), we have

$$L+J = \begin{bmatrix} (2n-1)I_n & J_n & J_n & 0\\ J_n & (2n-1)I_n & J_n & 0\\ J_n & J_n & (2n-1)I_n & 0\\ 0 & 0 & 0 & (3n)I_{n-1} + J_{n-1} \end{bmatrix}$$

Also, in this case we have

$$\det(L+J) = \det B \times \det C,\tag{1}$$

where,

$$B = \begin{bmatrix} (2n-1)I_n & J_n & J_n \\ J_n & (2n-1)I_n & J_n \\ J_n & J_n & (2n-1)I_n \end{bmatrix}$$

and  $C = (3n)I_{n-1} + J_{n-1}$ . So,

$$\det C = (3n)^{n-2}(4n-1) \tag{2}$$

and

$$B = \begin{bmatrix} E & J_{(2n)n} \\ J_{n(2n)} & F \end{bmatrix},$$

where,

$$E = \begin{bmatrix} (2n-1)I_n & J_n \\ J_n & (2n-1)I_n \end{bmatrix}$$

and  $F = (2n - 1)I_n$ . By Theorem 1.1, we have

$$\det B = \det F \times \det(E - JF^{-1}J).$$
(3)

So, by using the following relations

det 
$$F = (2n-1)^n$$
,  $F^{-1} = \frac{1}{2n-1}I_n$ ,  $JF^{-1}J = \frac{n}{2n-1}J_{2n}$ , (4)

we have

$$E - JF^{-1}J = \frac{1}{2n-1} \begin{bmatrix} G & (n-1)J \\ (n-1)J & G \end{bmatrix},$$

where,  $G = (2n-1)^2 I - nJ$  and

$$\det G = (2n-1)^{2n-2}(n-1)(3n-1), \quad G^{-1} = \frac{1}{(2n-1)^2}(I + \frac{n}{(n-1)(3n-1)}J).$$
(5)

Now,

$$\det(E - JF^{-1}J) = \left(\frac{1}{2n-1}\right)^{2n} \det(G) \times \det(G - (n-1)^2 JG^{-1}J),\tag{6}$$

where,

$$(n-1)^2 J G^{-1} J = \frac{n(n-1)}{3n-1} J$$

and

$$G - (n-1)^2 J G^{-1} J = \frac{1}{3n-1} ((\alpha - \beta)I + \beta J),$$

such that,  $\alpha = (n-1)(2n-1)(6n-1)$  and  $\beta = -2n(2n-1)$ . So,

$$\det(G - (n-1)^2 J G^{-1} J) = (2n-1)^{2(n-1)} \frac{8n^3 - 14n^2 + 7n - 1}{3n - 1}.$$
(7)

By using the relations 5, 6 and 7, we have

$$\det(E - JF^{-1}J) = (2n-1)^{2(n-2)}(n-1)(8n^3 - 14n^2 + 7n - 1)$$
(8)

and by replacing relations 4 and 8 in 3 we get

$$\det B = (2n-1)^{3n-4}(n-1)(8n^3 - 14n^2 + 7n - 1).$$
(9)

Now, by replacing relations 2 and 9 in 1, we get

$$\det(L+J) = (2n-1)^{3(n-1)}(n-1)^2(4n-1)^2(3n)^{n-2}$$

By Theorem ([5], Theorem 4.11), we have  $\kappa = \frac{\det(L+J)}{(4n-1)^2}$ . Therefore,

$$\kappa(\Gamma_M) = (2n-1)^{3(n-1)}(n-1)^2(3n)^{n-2}.$$

**Theorem 4.3.** The number of spanning trees of the non-commuting graph  $\Gamma_M$ , where,  $M = M(D_{2n}, 2)$  and n is even, is equal to:

$$\kappa(\Gamma_M) = 2^{3n-3} (3n)^{n-3} (n-1)^{\frac{3n}{2}-3} (n-2)^{\frac{3n}{2}+2}.$$

*Proof.* There are 4n - 2 vertices in this graph and they are in  $t_1, t_2, t_3, t_4$ . Each of  $t_i, 2 \le i \le 4$ , have *n* vertices of degree 2n - 4 and  $t_1$  have n - 2 vertices of degree 3n. By the structure of the graph  $\Gamma$  in 2.1, the matrix of the vertex degree namely *D*, of this graph is:

$$D = \begin{bmatrix} 2(n-2)I_{3n} & 0\\ 0 & 3nI_{n-2} \end{bmatrix}$$

and the adjacent matrix of the graph has the form:

$$A = \begin{bmatrix} X_n & 0 & 0 & J \\ 0 & X_n & 0 & J \\ 0 & 0 & X_n & J \\ J & J & J & 0 \end{bmatrix}.$$

By Lemma 2.1, each vertex in every  $t_i \quad (2 \le i \le 4)$ , is connected to the other vertices except its inverse element and itself, and so,

$$X = \begin{bmatrix} J - I & J - I \\ J - I & J - I \end{bmatrix},$$

such that I and J are square matrices of order  $\frac{n}{2}$  in X. So,

$$L = D - A = \begin{bmatrix} Y_n & 0 & 0 & -J \\ 0 & Y_n & 0 & -J \\ 0 & 0 & Y_n & -J \\ -J & -J & -J & 3nI_{n-2} \end{bmatrix},$$

such that,

$$Y = \begin{bmatrix} (2n-3)I - J & I - J \\ I - J & (2n-3)I - J \end{bmatrix}.$$

Hence,

$$L + J = \begin{bmatrix} Z & J & J & 0 \\ J & Z & J & 0 \\ J & J & Z & 0 \\ 0 & 0 & 0 & 3nI + J \end{bmatrix}.$$

We have

$$Z = Y + J = \begin{bmatrix} (2n-3)I & I\\ I & (2n-3)I \end{bmatrix},$$

in which the order of I is equal to  $\frac{n}{2}$ . Now we obtain

$$\det(L+J) = \det B \times \det C,\tag{10}$$

where  $C = 3nI_{n-2} + J_{n-2}$  and

$$B = \begin{bmatrix} Z & J & J \\ J & Z & J \\ J & J & Z \end{bmatrix}.$$

Therefore,

$$\det C = 2(3n)^{n-3}(2n-1) \tag{11}$$

and by using Theorem 1.1, we have

$$\det B = \det Z \times \det(D - JZ^{-1}J), \tag{12}$$

where,

$$D = \begin{bmatrix} Z & J \\ J & Z \end{bmatrix}$$

and

$$\det Z = (4(n-1)(n-2))^{\frac{n}{2}}.$$
(13)

Also,

$$Z^{-1} = \frac{1}{(2n-3)^2 - 1} \begin{bmatrix} (2n-3)I_{\frac{n}{2}} & -I_{\frac{n}{2}} \\ -I_{\frac{n}{2}} & (2n-3)I_{\frac{n}{2}} \end{bmatrix}$$

and so,  $JZ^{-1} = \frac{1}{2(n-1)}J_{2n\times n}$  and  $JZ^{-1}J = \frac{n}{2(n-1)}J_{2n\times 2n}$ . So,

$$D - JZ^{-1}J = \begin{bmatrix} G & H \\ H & G \end{bmatrix},$$
(14)

such that,  $H = \frac{n-2}{2(n-1)}J$  and

$$G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix},$$

where,  $G_{11} = G_{22} = (2n-3)I - \frac{n}{2(n-1)}J$  and  $G_{12} = G_{21} = I - \frac{n}{2(n-1)}J$ .

By using elementary row or column operations in G we have

$$\det G = \det\left(\frac{1}{2(n-1)} \begin{bmatrix} (n-1)(4n-6)I - nJ & 4(n-2)(1-n)I \\ 4(n-2)(1-n)I & 8(n-1)(n-2)I \end{bmatrix}\right)$$
$$= (8(n-1)(n-2))^{\frac{n}{2}} \frac{1}{(2(n-1))^n} \det(2(n-1)^2I - nJ).$$

Since,

$$\det(2(n-1)^2I - nJ) = 2^{\frac{n}{2}-2}(n-1)^{n-2}(n-2)(3n-2),$$

then

$$\det G = 2^{n-2}(n-1)^{\frac{n}{2}-2}(n-2)^{\frac{n}{2}+1}(3n-2).$$
(15)

By Theorem 1.1,  $G^{-1}$  is as follows:

$$G^{-1} = \begin{bmatrix} G_{11}^{-1} + (G_{11}^{-1}G_{12})(G/G_{11})^{-1}(G_{12}G_{11}^{-1}) & -G_{11}^{-1}G_{12}(G/G_{11})^{-1} \\ -(G/G_{11})^{-1}G_{12}G_{11}^{-1} & (G/G_{11})^{-1} \end{bmatrix},$$

such that,  $G/G_{11} = G_{11} - G_{12}G_{11}^{-1}G_{12}$ . Therefore,

$$G_{11}^{-1} = \frac{1}{(n-1)(2n-3)} \left(\frac{1}{2}I + \frac{n}{(n-2)(7n-6)}J\right)$$

and  $G_{12} = I - \frac{n}{2(n-1)}J$ . Then:

$$G_{12}G_{11}^{-1}G_{12} = \frac{1}{(2n-3)}(2(n-1)I + \frac{n(2n^2 - 15n + 14)}{(7n-6)}J)$$

and

$$G_{11} - G_{12}G_{11}^{-1}G_{12} = \frac{8(n-1)(n-2)}{2n-3}((n-1)I - \frac{2n}{7n-6}J).$$

Now, we have

$$G/G_{11} = \frac{8(n-1)(n-2)}{(2n-3)}((n-1)I - \frac{2n}{7n-6}J),$$

and

$$(G/G_{11})^{-1} = \frac{1}{8(n-1)^2(n-2)}((2n-3)I + \frac{2n}{3n-2}J)$$

Therefore,

$$G^{-1} = \frac{1}{4(n-1)(n-2)} \left( \begin{bmatrix} (2n-3)I & -I \\ -I & (2n-3)I \end{bmatrix} + \frac{2n}{3n-2}J \right).$$

Also,  $HG^{-1}H = \frac{n(n-2)}{2(n-1)(3n-2)}J$  and

$$G - HG^{-1}H = \begin{bmatrix} (2n-3)I & I \\ I & (2n-3)I \end{bmatrix} - \frac{2n}{3n-2}J.$$

By using elementary row or column operations, we have

$$\det(G - HG^{-1}H) = \frac{2^n}{(3n-2)}(n-2)^{\frac{n}{2}+1}(n-1)^{\frac{n}{2}-1}(2n-1)$$
(16)

By relation 14, we get

 $\det(D - JZ^{-1}J) = \det G \times \det(G - HG^{-1}H).$ 

Then, by relations 15 and 16, we have

$$\det(D - JZ^{-1}J) = 2^{2n-2}(n-1)^{n-3}(n-2)^{n+2}(2n-1).$$
(17)

Also, from relations 12, 13 and 17, we obtain

$$\det B = 2^{3n-2}(n-1)^{\frac{3n}{2}-3}(n-2)^{\frac{3n}{2}+2}(2n-1)$$
(18)

and by relations 10, 11 and 18, we have

$$\det(L+J) = 2^{3n-1} (3n)^{n-3} (n-1)^{\frac{3n}{2}-3} (n-2)^{\frac{3n}{2}+2} (2n-1)^2,$$
(19)

and from replacing 19 in  $\kappa = \frac{\det(L+J)}{(4n-2)^2}$ , we get

$$\kappa(\Gamma_M) = 2^{3n-3} (3n)^{n-3} (n-1)^{\frac{3n}{2}-3} (n-2)^{\frac{3n}{2}+2}.$$

**Corollary 4.2.** Let M = M(G, 2), where  $G = D_{2n}$ . Then  $\kappa(\Gamma_G)$  divides  $\kappa(\Gamma_M)$ .

www.ejgta.org

*Proof.* By Example 1 in [4], the non-commuting graph of  $G = D_{2n}$ , when in is odd, is a split graph and  $\Gamma_G \cong I \nabla C$ , where I is an independent set with n - 1 vertices and  $C \cong K_n$ . So, the degree matrix of  $\Gamma_G$  has the form:

$$D = \begin{bmatrix} (2n-2)I_{n-1} & 0\\ 0 & nI_n \end{bmatrix}$$

and the adjacency matrix of  $\Gamma_G$  is equal to:

$$A = \begin{bmatrix} J - I & J \\ J & 0 \end{bmatrix}.$$

So,

$$L = D - A = \begin{bmatrix} 2n-1)I - J & -J \\ -J & nI \end{bmatrix}$$

and

$$L+J = \begin{bmatrix} (2n-2)I & 0\\ 0 & nI+J \end{bmatrix}.$$

Thus,  $det(L + J) = det((2n - 1)I) \times det(nI + J)$  and this gives us:

$$\det(L+J) = (2n-1)^{n+1}n^{n-2}.$$

Therefore,

$$\kappa(\Gamma_G) = \frac{\det(L+J)}{(2n-1)^2} = (2n-1)^{n-1}n^{n-2}.$$

By Theorem 4.2,  $\kappa(\Gamma_M) = (2n-1)^{3(n-1)}(n-1)^2(3n)^{n-2}$ . Hence, the proof is complete and  $\kappa(\Gamma_G)$  divides  $\kappa(\Gamma_M)$ , where *n* is an odd integer.

Now, let n be an even integer. Then  $\Gamma_G \cong \overline{K}_{n-2}\nabla S$ , where S is a strongly regular graph with parameters (n, n-2, n-4, n-2). Also, the degree matrix, D, of  $\Gamma_G$  is equal to:

$$D = \begin{bmatrix} (2n-4)I & 0\\ 0 & nI \end{bmatrix}$$

and the adjacency matrix of  $\Gamma_G$ , namely A, has the form:

$$A = \begin{bmatrix} X & J \\ J & 0 \end{bmatrix},$$

where,

$$X = \begin{bmatrix} J - I & J - I \\ J - I & J - I \end{bmatrix},$$

in which, I and J are of order  $\frac{n}{2}$ . So,

$$L = D - A = \begin{bmatrix} Y & -J \\ -J & nI \end{bmatrix},$$

where,

$$Y = \begin{bmatrix} (2n-3)I - J & I - J \\ I - J & (2n-3)I - J \end{bmatrix}.$$

Hence,

$$L+J = \begin{bmatrix} Z & 0\\ 0 & nI+J \end{bmatrix},$$

where,

$$Z = \begin{bmatrix} (2n-3)I & I\\ I & (2n-3)I \end{bmatrix}.$$

Since,  $\det(L+J) = \det Z \times \det(nI+J)$ ,  $\det Z = (4(n-1)(n-2))^{\frac{n}{2}}$  and  $\det(nI+J) = n^{n-3}(2n-2)$ , then

$$\det(L+J) = 2^{n+1}n^{n-3}(n-1)^{\frac{n}{2}+1}(n-2)^{\frac{n}{2}}.$$

Therefore,

$$\kappa(\Gamma_G) = \frac{\det(L+J)}{(2n-2)^2} = 2^{n-1}n^{n-3}(n-1)^{\frac{n}{2}-1}(n-2)^{\frac{n}{2}}.$$

Also, by Theorem 4.3, we have

$$\kappa(\Gamma_M) = 2^{3n-3} (3n)^{n-3} (n-1)^{\frac{3n}{2}-3} (n-2)^{\frac{3n}{2}+2}.$$

This proves that  $\kappa(\Gamma_G)$  divides  $\kappa(\Gamma_M)$ .

# 5. Conclusion

In this research work, we studied some properties of the non-commuting graph of a class of finite Moufang loops. Also, we proved that the multiple complete-like graphs and the noncommuting graph of Chein loops of the form  $M(D_{2n}, 2)$  are perfect, and both graphs are non chordal. Finally, we characterized when the non-commuting graph of Moufang loop M(G, 2) is 3-splite and we give the energy of generalized and multiple splite-like graphs. In future, we will try to study the similar graph properties of the non-commuting graph for the simple Moufang loops and characterize relations between any group G with the non-commuting graph M(G, 2).

# Acknowledgement

The authors would like to extend thanks to the referees for a very careful reading of the paper and constructive comments and useful offers, which completed considerably the levels and presentations of this paper.

# References

- [1] A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, *Algebra* **298** (2006), 468–492.
- [2] K. Ahmadidelir, On the Commutatively degree in finite Moufang loops, *International Journal of Group Theory* **5** (2016), 37–47.
- [3] K. Ahmadidelir, On the non-commuting graph in finite Moufang loops, J. Algebra Appl. 17 (4) (2018), 1850070.
- [4] M. Akbari and A.R. Moghaddamfar, Groups for which the noncommuting graph is a split graph, *International Journal of Group Theory* **6** (1) (2017), 29–35.
- [5] R.B. Bapat, Graphs and Matrices, Springer-Verlag, London (2014).
- [6] S. Bera, On the intersection power graph of a finite group, *Electron. J. Graph Theory Appl.* **6** (1) (2018), 178189.
- [7] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, American Elsevier publishing Co., Inc, New York. (1977).
- [8] R.H. Bruck, A Survay of Binary Systems, Springer-Verlag Berlin-Heidelberg (1958).
- [9] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, *Annals of Math.***164** (1) (2006), 51–229.
- [10] M.R. Darafsheh, Groups with the same non-commuting graph, *Discretre Appl. Math.* 157 (4) (2009), 833–837.
- [11] H.A. Ganie, U. Samee, S. Pirzada and A.M. Alghamdi, Bounds for graph energy in terms of vertex covering and clique numbers, *Electron. J. Graph Theory Appl.* **7** (2) (2019), 315328.
- [12] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd Edition, *Series: Annals of Discrete Mathematics, Volume* 57, *Elsevier, North Holland.* (2004).
- [13] A.N. Grishkov and A.V. Zavarnitsine, Lagranges theorem for Moufang loops, *Math. Proc. Camb. Phil. Soc.* 139 (1) (2005), 41–57.
- [14] P. Hansen, H. Mélot and D. Stevanović, Integral complete split graphs, *Publ. Elektrotehn. Fak., Ser. Math.* 13 (2002), 89–95.
- [15] A.R. Moghaddamfar, About noncommuting graphs, *Siberian Math. J.* **47** (5) (2006), 911–914.
- [16] H.O. Pflugfelder, Quasigroups and loops: Introduction, Helderman Verlag, Berlin (1990).
- [17] R. Solomon and A. Woldar, Simple groups are characterized by their non-commuting graph, *J. Group Theory.* 16 (2013), 793–824.