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Abstract

For any non-abelian group G, the non-commuting graph of G, Γ = ΓG, is graph with vertex set
G\Z(G), where Z(G) is the set of elements of G that commute with every element of G and
distinct non-central elements x and y of G are joined by an edge if and only if xy 6= yx. The
non–commuting graph of a finite Moufang loop has been defined by Ahmadidelir. In this paper,
we show that the multiple complete split-like graphs and the non-commuting graph of Chein loops
of the form M(D2n, 2) are perfect (but not chordal). Then, we show that the non-commuting
graph of a non-abelian group G is split if and only if the non-commuting graph of the Moufang
loop M(G, 2) is 3−split. Precisely, we show that the non-commuting graph of the Moufang loop
M(G, 2), is 3−split if and only if G is isomorphic to a Frobenius group of order 2n, n is odd,
whose Frobenius kernel is abelian of order n. Finally, we calculate the energy of generalized and
multiple splite-like graphs, and discuss about the energy and also the number of spanning trees in
the case of the non-commuting graph of Chein loops of the form M(D2n, 2).
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1. Introduction

Let Q be a set with one binary operation. Then it is a quasigroup if the equation xy = z has a
unique solution inQwhenever two of the three elements x, y, z ∈ Q are specified. A quasigroupQ
is a loop if Q possesses a neutral element e, i.e., if ex = xe = x holds for every x ∈ Q. Moufang
loops are loops in which any of the (equivalent) Moufang identities,

((xy)x)z = x(y(xz)), (M1)
x(y(zy)) = ((xy)z)y, (M2)
(xy)(zx) = x((yz)x), (M3)
(xy)(zx) = (x(yz))x. (M4)

holds for every x, y, z ∈ Q. Commutator of x, y and the associator of x, y and z are defined by
[x, y] = x−1y−1xy and [x, y, z] = ((xy)z)−1(x(yz)), respectively. We define the commutant (or
Moufang center) C(Q) of Q as {x ∈ Q | xy = yx, ∀y ∈ Q}. The center Z(Q) of a Moufang
loop Q is the set of all elements of Q which commute and associate with all other elements of Q.
A non-empty subset P of Q is called a subloop of Q if P is itself a loop under the binary operation
of Q, in particular, if this operation is associative on P , then it is a subgroup of Q. A subloop
N of a loop Q is said to be normal in Q if xN = Nx; x(yN) = (xy)N ; N(xy) = (Nx)y; for
every x, y ∈ Q. In Moufang loop Q, the subloops Z(Q) and C(Q) are normal subloops. For more
details about the Moufang loops one may see [8, 16, 13]. In 1974, Chein introduced a class of
non-associative Moufang loops M(G, 2), so called Chein loops. For a group G and a new element
u, (u /∈ G), M(G, 2) = G ∪ Gu such that the multiplication with the new binary operation ◦ is
defined as follows: 

g ◦ h = gh, g, h ∈ G,
g ◦ (hu) = (hg)u, g ∈ G, hu ∈ Gu,
(gu) ◦ h = (gh−1)u, gu ∈ Gu, h ∈ G,
(gu) ◦ (hu) = h−1g, gu, hu ∈ Gu.

Clearly, the Moufang loop M(G, 2) is non-associative if and only if G is non-abelian, see [8]. In
[2], Ahmadidelir has investigated some probabilistic properties of M(G, 2), such as its commuta-
tivity degree.

There are many papers on assigning a graph to a ring or a group in order to investigation of
their algebraic properties. For any non-abelian group G the non-commuting graph of G, Γ = ΓG

is a graph with vertex set G\Z(G), where distinct non-central elements x and y of G are joined
by an edge if and only if xy 6= yx. This graph is connected with diameter 2 and girth 3 for a
non-abelian finite group and has received some attention in existing literature. For instance, one
may see [1, 10, 15, 17]. Similarly, the non-commuting graph of a finite Moufang loop has been
defined by Ahmadidelir in [3]. He has defined this graph as follows: Let M be a Moufang loop,
then the vertex set is M\C(M) and two vertices x and y joined by an edge whenever [x, y] 6= 1.
He has shown that this graph is connected (as for groups) and obtained some results related to the
non–commuting graph of a finite non-commutative Moufang loop.

We will denote a complete graph with n vertices byKn. All graphs considered in this paper are
finite and simple. For a graph Γ, we denote its vertex and edge sets by V (Γ) andE(Γ), respectively.
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The complement of Γ is denoted by Γ̄. A graph Γ = (V,E), is called k−partite where k > 1, if
it is possible to partition V into k subsets V1, V2, . . . , Vk, such that every edge of E joins a vertex
of Vi to a vertex of Vj , i 6= j. A clique in a graph Γ is an induced subgraph whose all vertices
are pairwise adjacent. The maximum size of a clique in a graph Γ is called the clique number of
Γ and denoted by ω(Γ). A subset X of the vertices of Γ is called an independent set (or stable) if
the induced subgraph on X has no edges. The maximum size of an independent set in a graph Γ
is called the independence number of Γ and denoted by α(Γ). The vertex chromatic number of a
graph Γ is denoted by χ(Γ), and it is the minimum k for which k−vertex coloring of a graph Γ
such that no two adjacent vertices have the same color. For a subset S of V (Γ), NΓ[S] is the set
of vertices in Γ which are in S or adjacent to a vertex in S. If NΓ[S] = V (Γ) then S is said to be
a dominating set of the vertices in Γ. The minimum size of a dominating set of the vertices in Γ
is dominating number of Γ and denoted by γ(Γ). A vertex cover of a graph Γ is a set Q ⊆ V (Γ)
such that contains at least one endpoint of every edge. The minimum size of a vertex cover is
denoted by β(Γ). Our other used notations about graphs are standard and for more details one may
see [6, 7, 11].

There is a relation between α(Γ) and β(Γ) as follows:

Lemma 1.1. ([7], p. 296) Let Γ be a graph. Then α(Γ) +β(Γ) = n(Γ), where n(Γ) is the number
of vertices of Γ. �

A perfect graph Γ, is a graph in which for every induced subgraph its clique number is equal
to its chromatic number. A graph Γ is called weakly perfect graph if ω(Γ) = χ(Γ). So, all perfect
graphs are weakly perfect. A chordal graph is one in which all cycles of order four or more have a
chord, which is an edge that is not part of cycle but connects two vertices of the cycle. The class of
Chordal graphs is a subset of the class of perfect graphs. For more information about these types
of graphs, one may see [12, 14]. We have the following Theorem about perfect graphs, called
strongly perfect graph theorem, or Berg Theorem.

A graph is called k-regular, if the vertices of the graph are of the same degree k and a strongly
regular graph S with parameters (n, k, λ, µ) is a k−regular graph of order n such that each pair of
adjacent vertices has λ common neighbors and each pair of non-adjacent vertices has in which µ
common neighbors. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be undirected simple graphs. The union
Γ1 ∪ Γ2 of graphs Γ1 and Γ2 is a graph Γ = (V,E) for which V = V1 ∪ V2 and E = E1 ∪E2. The
notation nΓ is short for Γ ∪ · · · ∪ Γ︸ ︷︷ ︸

n−times

.

The complete product Γ1∇Γ2 of graph Γ1 and Γ2 is a graph obtained from Γ1 ∪ Γ2 by joining
every vertex of Γ1 to every vertex of Γ2. For every a, b, n ∈ N , a complete split, or simply, a
split graph, is the graph K̄a∇Kb and denoted by CSa

b . By a theorem of Földes and Hammer ([12],
Theorem 6.3), a graph is (complete) split iff contains no induced subgraph isomorphic to 2K2, C4

or C5. Also, an undirected graph is split if and only if its complement is split ([12], Theorem 6.1).
Clearly, every split graph is chordal and so perfect, but the converses are not true. More generally, a
multiple complete split-like graph is K̄a∇(nKb) and denoted by MCSa

b,n. Specially, in this paper,
for n = 3 we call MCSa

b,3 as a 3−split graph.

We generalize the above definitions as follows:
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Definition 1.1. The generalized complete split-like graph is GCSa
k = K̄a∇S such that S is a

strongly regular graph with parameters (n, k, λ, µ). The multiple generalized complete split-like
graph is GMCSa

k,m = K̄a∇(mS).

The laplacian matrix of a simple graph Γ with n vertices, is defined as L(Γ) = D(Γ)− A(Γ),
where A(Γ) is its adjacency matrix and D(Γ) = (d1, . . . , dn) is the diagonal matrix of the vertex
degrees in Γ. For any graph Γ, the energy of Γ is defined as ξ(Γ) =

∑n
i=1 |λi|, where λ1, . . . , λn are

the eigenvalues of the adjacency matrix of Γ. A spanning tree of a graph Γ is an induced subgraph
of Γ, which is a tree and contains every vertex of Γ.

In this paper, we show that the multiple complete split-like graphs are perfect (but not chordal)
and deduce that the non-commuting graph of Chein loops of the form M(D2n, 2) is perfect but
not chordal. Then, we show that the non-commuting graph of a non-abelian group G is split if
and only if the non-commuting graph of the Moufang loop M(G, 2) is 3−split and then classify
all Chein loops that their non-commuting graphs are 3−split. Precisely, we show that for a non-
abelian group G, the non-commuting graph of the Moufang loop M(G, 2), is 3−split if and only if
G is isomorphic to a Frobenius group of order 2n, n is odd, whose Frobenius kernel is abelian of
order n. Finally, we calculate the energy of generalized and multiple splite-like graphs, and discuss
about the energy and also the number of spanning trees in the case of the non-commuting graph of
Chein loops of the form M(D2n, 2). We recall the following Proposition and Theorems in order to
provide some tools to these purposes.

Theorem 1.1. ([5], p. 3: Schur complement) Let A be a n × n matrix partitioned as A =[
A11 A12

A21 A22

]
, where A11 and A22 are non-singular square matrices. Then the inverse of A, A−1

can be calculated by the following formula:

A−1 =

[
A−1

11 + A−1
11 A12(A/A11)−1A21A

−1
11 −A−1

11 A12(A/A11)−1

−(A/A11)−1A21A11 (A/A11)−1

]
,

where
A/A11 = A22 − A21A

−1
11 A12

and
detA = detA1 × det(A22 − A21A

−1
11 A12),

such that detA is the determinant of A. �

Theorem 1.2. ([14], Theorem 1) For i = 1, 2, let Γi be ri−regular graphs with ni vertices. Then
the characteristic polynomial of the complete product of these two graphs is as follows:

PΓ1∇Γ2(λ) =
PΓ1(λ)PΓ2(λ)

(λ− r1)(λ− r2)
[(λ− r1)(λ− r2)− n1n2].

�
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2. Some basic graph properties of the Moufang loop M(D2n, 2)

Let D2n denote the dihedral group of order 2n, which has the following presentation:

D2n =
〈
a, b| an = b2 = (ab)2 = 1

〉
.

In this section, we want to study the non-commuting graph of the Moufang loops M(D2n, 2),
simply denoted by Γ. We will use the following Lemma in next sections.

The following Lemma determines the structure of the non-commuting graph of the Moufang
loop M = M(D2n, 2).

Lemma 2.1. Let M = M(D2n, 2) and Γ = ΓM be its non-commuting graph.

(a) If n is odd then ΓM
∼= K̄n−1∇S, such that S is a strongly regular graph with parameters

(3n, n− 1, n− 2, 0).

(b) If n is even then ΓM
∼= K̄n−2∇3S, such that S is a strongly regular graph with parameters

(n, n− 2, n− 3, n− 2).

Proof. a) By Lemma ([3], Lemma 4.4) and the definition of the non-commuting graph, for every
odd integer n, we can partition the vertices of Γ into four sets, as follows:

t1 = {a, a2, . . . , an−1}, t2 = {b, ab, . . . , an−1b},
t3 = {u, au, . . . , an−1u}, t4 = {bu, abu, . . . , an−1bu}.

For every 0 ≤ i, j ≤ n − 1, since aiaj = ajai, t1 is an independent set and from the relations
ai ◦ (ajb) 6= (ajb) ◦ ai, ai ◦ (aju) 6= (aju) ◦ ai and ai ◦ (ajbu) 6= (ajbu) ◦ ai, we find that all
vertices of t1 are adjacent to all vertices of each of the sets t2, t3 and t4. Also, by the relations
(aib) ◦ (ajb) 6= (ajb) ◦ (aib), the induced subgraph [t2] of Γ, is a clique. Similarly, we can show
that the induced subgraph [t3] and [t4] of Γ, are cliques. Hence, Γ ∼= K̄n−1∇3Kn and the graph Γ
is 3−split and 3Kn

∼= S, where S is a strongly regular graph with parameters (3n, n− 1, n− 2, 0).
b) Let n be an even integer. Again, we can partition the vertices of Γ into four sets, as follows:

t1 = {a, a2, . . . , a
n
2
−1, a

n
2

+1, . . . , an−1}, t2 = {b, ab, . . . , an−1b},
t3 = {u, au, . . . , an−1u}, t4 = {bu, abu, . . . , an−1bu}.

Since each pair of elements of t1 commute, so the induced subgraph [t1] is an independent set, that
means [t1] ∼= K̄n−2. Also, every element in M commutes with its inverse and since, ∀x ∈ ti, (i =
2, 3, 4), its inverse x−1 belongs to ti. Therefore, every element of ti, (i = 2, 3, 4) is adjacent to each
vertex in ti, i = 2, 3, 4, except its inverse. Also any two elements x ,y in ti, (i = 2, 3, 4) commute
if and only if |i − j| = n

2
, where x = aiu or aib, aibu and y = aju or ajb, ajbu. Then [ti] ∼= S

, where S is a strongly regular graph with parameters (n, n − 2, n − 3, n − 2). Finally, for every
2 ≤ i, j ≤ 4 there is no edge of Γ such that joins a vertex of ti to a vertex of tj , i 6= j, but each
vertex in t1 joins to each vertex in ti, (i = 2, 3, 4). Therefore, ΓM

∼= K̄n−2∇3S.

In the following Theorem, we derive some important graph properties of ΓM(D2n,2).
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Theorem 2.1. Let M = M(D2n, 2) and Γ = ΓM be its non-commuting graph.

(a) If n is odd then:

ω(Γ) = n+ 1, χ(Γ) = n+ 1,
α(Γ) = n− 1, β(Γ) = 3n, γ(Γ) = 2.

(b) If n is even then:
ω(Γ) =

n

2
+ 1, χ(Γ) =

n

2
+ 1,

α(Γ) =

{
6, (n = 6)
n− 2, (n ≥ 8)

, β(Γ) =

{
16, (n = 6)
3n, (n ≥ 8)

, γ(Γ) = 2.

Proof. a) By Lemma 2.1, the non-commuting graph of M(D2n, 2) is a generalized complete split-
like graph for any odd integer n. Then Γ = K̄n−1∇S in which S is a strongly regular graph with
parameters (3n, n−1, n−2, 0), where V (K̄n−1) = {a, a2, . . . , an−1} and S ∼= 3Kn. So this graph
is 3−split. By the structure of Γ, since every vertex of each copy of Kn is joined to every vertex of
K̄n−1, so we have the complete productKn∇[ai], where ai ∈ K̄n−1, 1 ≤ i ≤ n−1. Also, Kn∇[ai]
is the largest clique in Γ. So, ω(Γ) = n + 1. We need n distinct colors for coloring any Kn and
only one color for coloring K̄n−1 which is distinct with the previous ones. So, χ(Γ) = n+ 1. The
set of vertices of K̄n−1 is the largest independent set, so α(Γ) = n − 1. By Lemma 1.1, we have
β(Γ) = 4n−1−(n−1) = 3n. Clearly, the set of vertices of 3Kn has the minimum size of a vertex
cover. Any vertex of K̄n−1 is dominating all vertices of S, and any vertex of S is dominating all
vertices in K̄n−1. Thus γ(Γ) = 2.

b) By Lemma 2.1, the non-commuting graph of M(D2n, 2), for every even integer n, is a multiple
generalized complete split-like graph as Γ = K̄n−2∇3S, where S is a strongly regular graph with
parameters (n, n− 2, n− 3, n− 2) and the set of vertices of K̄n−2 is an independent set as follows:

V (K̄n−2) = {a, a2, . . . , a
n
2
−1, a

n
2

+1, . . . , an − 1}.

In order to find the clique number, we may choose one vertex of K̄n−2 and the other vertices from
only one copy of S’s. By definition, every vertex is not joined to its inverse, so, we can choose n

2

vertices of S and hence, ω(Γ) = n
2

+ 1. The color of every vertex in S is co-color with its inverse.
Therefore, the chromatic number of S is equal to n

2
, and so the maximum color number for all the

vertices of 3S is equal to n
2
. By only one color distinct from n

2
−color in 3S, we can color K̄n−2.

So, χ(Γ) = n
2

+ 1. For n = 6, K̄n−2 have four independent vertices, but with two non-adjacent
vertices chosen from any of the copies of S, we get 6 independent vertices. Therefore, in this case
α(Γ) = 6. Now, for n ≥ 8, the set K̄n−2 is the largest independent set and so, α(Γ) = n − 2. By
using Lemma 1.1, we have β(Γ) = n(Γ) − α(Γ). Hence, if n = 6 then β(Γ) = 16, else if n ≥ 8
then β(Γ) = 4n− 2− (n− 2) = 3n. By choosing any vertex in K̄n−2 and the other in one of the
copies of S, the domination set of Γ will be determined. Hence, γ(Γ) = 2.
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3. About perfectness and splitness of the non-commuting graph of a Moufang loop

In this section, first we show that the multiple complete split-like graphs are perfect and then
characterize all Chein loops that their non-commuting graphs are 3−split-like.

Theorem 3.1. Every multiple complete split-like graphMCSa
b,n
∼= K̄a∇(nKb), (n ≥ 2) is perfect,

but not chordal. Moreover, every complete split graph CSa
b,n
∼= K̄a∇Kb, is perfect and also

chordal.

Proof. Let Γ ∼= K̄a∇(nKb) and C be an odd cycle. If all vertices of C lie in only one copy of
Kb’s, clearly this cycle has a chord. Also, if some vertices of C lie in more than one copy of Kb’s,
then since in this case C has some vertices of K̄a and also these vertices in K̄a are adjacent to
each vertex of Kb, therefore, the cycle has a chord. In addition, the complement graph, Γ̄, is a
disconnected graph of the form Γ̄ ∼= Ka ∪ S such that S is strongly regular graph with parameters
(nb, (n − 1)b, (n − 2)b, (n − 1)b) or S ∼= Tnb,b, which is a complete n−partite graph with nb
vertices, and hence, each part has b vertices. Clearly, any cycle in Ka has a chord. If C be an odd
cycle in S, then by structure of S, there is an intersection of C with more than three sections of S
and these vertices are adjacent to any of the vertices in other sections and so, C has a chord. If C
has an instruction with only two sections of S, then the induced subgraph of these sections will be
a bipartite graph such that there is no any odd cycle in it. Now, by Berg Theorem ([9], Theorem
1.2) Γ is a perfect graph. Let Γ ∼= K̄a∇(nKb) and x1, x2 ∈ K̄a, x1 6= x2. Take x3 and x4 from two
distinct copies of Kb’s. Now the induced subgraph of Γ generated by x1, x2, x3 and x4 is a cycle
of length four without a chord. So, by definition, Γ is not chordal.

Similar to the proof of the first part, CSa
b,n
∼= K̄a∇Kb is perfect, but there is no cycle of length

four or more without any chord and so this is a chordal graph. This completes the proof.

Corollary 3.1. The non-commuting graph of M(D2n, 2) is perfect but not chordal.

Proof. Let Γ = Γ(M(D2n, 2)), where n be an odd integer. Then by Lemma 2.1 (a), Γ ∼= K̄n−1

∇(3Kn) and by Theorem 3.1, Γ is perfect but not chordal.
If n be an even integer then by Lemma 2.1(b), Γ ∼= K̄n−2∇3S such that S is a strongly regular

graph with parameters (n, n− 2, n− 3, n− 2). Assume that C is an odd cycle in Γ with length 5
or more, the length of the longest cycle without chord in each copy of S is equal to 4. Then there
are some vertices of K̄n−2 in C, and these vertices are adjacent to each vertex in 3S. Therefore,
C have a chord. On the other hand, Γ ∼= Kn−2 ∪ (n

2
K2∇n

2
K2∇n

2
K2). Let C be a cycle in Γ.

Clearly, every cycle in Kn−2 have a chord and if C be an odd cycle in n
2
K2∇n

2
K2∇n

2
K2, then

C have an intersection with more than two parts of n
2
K2, where one of them have more than one

vertex in C, and these vertices adjacent to all vertices of C in other parts and so, C have a chord
and by Theorem ([9], Theorem 1.2), Γ is perfect. The induced subgraph consist of any two vertices
of K̄n−2 and two non-adjacent vertices of S is a cycle with length 4 without chord then Γ is not
chordal.

Remark 3.1. The generalized multiple complete split-like graph GMCSa
k is not perfect. As a

counterexample, let we have a generalized complete split-like graph Γ ∼= K̄a∇(nS) in which S
is a Peterson graph. This graph is not perfect, since it has a cycle of length 5 without any chord.
Recall that a Peterson graph is a strongly regular graph with parameters (10, 3, 0, 1).
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Theorem 3.2. Let G be a non-abelian group. Then its non-commuting graph ΓG, is split if and
only if the non-commuting graph of the Moufang loop M(G, 2), ΓM , is 3−split.

Proof. Let ΓM be 3−split of the form ΓM = I∇3C, where I is an independent set and C is a
complete graph. First we show that Z(G) = C(M). By Lemma([3], Lemma 3.10), C(M) ⊆
Z(G). Let Z(G) * C(M). Then there exists x ∈ Z(G) such that x /∈ C(M). Also, there exists
yu ∈ Gu, where x ◦ (yu) 6= (yu) ◦ x, which yields (yx)u 6= (yx−1)u. Therefore, x 6= x−1 and
x ∈ I . So, every vertex y in each copy of C is adjacent to x and so xy 6= yx. But x ∈ Z(G) then
for every g ∈ G, we have xg = gx. Hence G ⊆ I . Now, let g ∈ G \ Z(G). So, there exist t ∈ G
such that tg 6= gt but in this case t, g ∈ I and this is a contradiction, since I is an independent set.
So, G = Z(G) and this contradicts with non-abelianity of G. Thus Z(G) = C(M). Obviously,
every element of 3C is an involution. Let x ∈ 3C and x 6= x−1. So, since each element of Gu has
order 2 then x ∈ G. Put 3C = C1 ∪ C2 ∪ C3, where each Ci is equal to a copy of C, (1 ≤ i ≤ 3).
Without loss of generality, let x ∈ C1 and x−1 ∈ C2 (note that xx−1 = x−1x). Let y ∈ G\Z(G)
and y /∈ 〈x〉. Then since every element of G which commutes with x, also commutes with x−1,
so if y ∈ C1 then xy 6= yx, and therefore x−1y 6= yx−1, but x−1 ∈ C2 and this is a contradiction.
Similarly, the case y ∈ C2 will reach to a contradiction. So, y ∈ I or y ∈ C3. Now, consider the
element xy. By the same reason as above, we have xy ∈ I or xy ∈ C3. Trivially, xy 6= x, x−1. We
have four cases as below:

Case 1. Let y, xy ∈ I . Then y(xy) = (xy)y ⇒ yx = xy. which is a contradiction, since y is
adjacent to every element of C1.

Case 2. Let y ∈ I and xy ∈ C3. Then x ∈ C1 ⇒ x(xy) = (xy)x, (x, y ∈ G)⇒ xy = yx and we
have the same contradiction as in case 1.

Case 3. Let y ∈ C3 and xy ∈ I . Then (xy)y 6= y(xy) ⇒ xy 6= yx, which is also a contradiction
since y ∈ C3 and x ∈ C1.

Case 4. Let y, xy ∈ C3. Then we have y(xy) 6= (xy)y ⇒ xy 6= yx and we obtain a similar
contradiction as in case 3.

Therefore, every element of 3C has order 2. On the other hand, ΓG is always connected and it is
the induced subgraph of ΓM . Therefore, ΓG

∼= Km, (Km ⊆ C) or ΓG
∼= I ′∇nC ′ such that I ′ ⊆ I ,

C ′ ⊆ C and nC ′ = ∪ni=1Ci, where 1 ≤ n ≤ 3, and each Ci is a subset of one copy of C’s. If
ΓG
∼= Km, then the order of every element of G will be equal to 2, so G must be abelian, which is

absurd. Therefore, we get, ΓG
∼= I ′∇nC ′. If n = 1 then ΓG is split. Suppose that 1 6= x, y ∈ G,

x ∈ C1 and y ∈ C2, then xy = yx and there exists z ∈ I ′ where yz 6= zy and xz 6= zx. So,
xy ∈ G. If xy ∈ I ′, then x(xy) 6= (xy)x and so, x2y 6= x(yx). Therefore, x2y 6= x(xy) and this
is a contradiction. If xy ∈ C1 then x(yx) 6= (xy)x and x2y 6= x2y, and it is a contradiction, and if
xy ∈ C2 then y(xy) 6= (xy)y and y2x 6= y2x, and it is also a contradiction. Finally, let xy ∈ C3.
Now, xu ∈M(G, 2) then:

1) If xu ∈ I or xu ∈ C1, then (xu) ◦ x 6= x ◦ (xu) and so (xx−1)u 6= (xx)u. Therefore, u 6= x2u,
this is a contradiction. So, every element of C in ΓM is of order 2 therefore, x2 = 1.

2) If xu ∈ C2 then (xu) ◦ y 6= y ◦ (xu) and so (xy−1)u 6= (xy)u. Thus (xy)u 6= (xy)u and this is
a contradiction.
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3) If xu ∈ C3 then (xu) ◦ (xy) 6= (xy) ◦ (xu) and so (x(xy)−1)u 6= (x(xy))u or (x(y−1x−1))u 6=
(x2y)u. So, (x(yx))u 6= (x2y)u, or (x(xy))u 6= yu. Thus (x2y)u 6= yu and this is a contradiction.

Therefore, ΓG
∼= I ′∇C ′ and ΓG is split.

Conversely, let ΓG be split. Then ΓG
∼= I∇C. We show that ΓM is 3−split. By splitness of ΓG

and Lemmas ([4], Lemmas 2.4 and 2.5), we have, Z(G) = 1 and C(M) ⊆ Z(G). So, C(M) = 1.
Let V (I) = {a1, a2, . . . , ak} and V (C) = {b1, b2, . . . , bt}. Then, V (ΓM) includes V (I), V (C) and
the set of vertices of the form, V (Iu) = {a1u, a2u, . . . , aku} and V (Cu) = {b1u, b2u, . . . , btu}.
To prove 3−splitness ΓM , we consider and stablish the following claims.

Claim 1. The induced subgraph containing the vertices in V (Iu) forms a clique.

Suppose that there exist two non-adjacent vertices aiu and aju. So, (aiu)◦(aju) = (aju)◦(aiu)
and then aia−1

j = aja
−1
i or (aia

−1
j )2 = 1. Therefore, by Lemmas ([4], Lemmas 2.4 and 2.5),

I∗ = I ∪ {1} is a maximal subgroup of odd order and there is not any element of even order. So,
aia
−1
j ∈ C, where in this case (aia

−1
j )aj 6= aj(aia

−1
j ). Then ai 6= aj(aia

−1
j ) and a−1

j ai 6= aia
−1
j

and this is a contradiction.

Claim 2. The induced subgraph containing the vertices in V (Cu) is a clique.

Suppose that there exist two vertices biu and bju such that are not adjacent. So, (biu) ◦ (bju) =
(bju) ◦ (biu). Therefore, bib−1

j = bjb
−1
i and bibj = bjbi, since, each element of C is an involution

and which yields to a contradiction.

Claim 3. There is no edge between V (Iu) and V (Cu).

Suppose that there exist two vertices aiu and bju such that (aiu) ◦ (bju) 6= (bju) ◦ (aiu) then
b−1
j ai 6= a−1

i bj and bjai 6= a−1
i bj , therefore (bjai)

2 6= 1. On the other hand bjai ∈ G. So, bjai ∈ I
or bjai ∈ C.

1) If bjai ∈ I then (bjai)ai = ai(bjai) and bjai = aibj , which yields to a contradiction.

2) If bjai ∈ C then (bjai)
2 = 1 and this is a contradiction. Therefore, any two elements of V (Iu)

and V (Cu) are non-adjacent.

Claim 4. There is no edge between V (C) and V (Cu).

Suppose that there exist two vertices bi and bju such that bi ◦ (bju) 6= (bju)◦bi. Then (bjbi)u 6=
(bjb

−1
i )u, so, (bjbi)u 6= (bjbi)u, and this is a contradiction. Therefore any two elements of V (C)

and V (Cu) are non-adjacent.

Claim 5. There is no edge between V (C) and V (Iu).

Suppose that there exist two vertices bi and aju such that bi ◦ (aju) 6= (aju) ◦ bi. Then
(ajbi)u 6= (ajb

−1
i )u and ajbi 6= ajbi. This is a contradiction. Therefore, any two vertices in V (C)

and V (Iu) are non-adjacent.

Claim 6. Every vertex in V (Iu) is adjacent to every vertex in V (I).
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Suppose that there exist two vertices ai and aju such that ai ◦ (aju) = (aju) ◦ ai. Then
(ajai)u = (aja

−1
i )u and ajai = aja

−1
i . So, ai = a−1

i . Therefore, a2
i = 1 and this is a contradiction.

Claim 7. Every vertex in V (Cu) is adjacent to every vertex in V (I).

Suppose that there exist two vertices ai ∈ I and bju ∈ Cu such that ai◦(bju) = (bju)◦ai. Also,
(bjai)u = (bja

−1
i )u then bjai = bja

−1
i and ai = a−1

i , therefore a2
i = 1 and this is a contradiction.

Thus the non–commuting graph of M(G, 2) is 3−split, where the induced subgraphs contain-
ing the vertices of C and Cu and Iu are cliques and I is an independent set.

Now, by using Theorems ([4], Theorem 2.3) and 3.2, we can classify all 3−split Chein loops:

Corollary 3.2. Let G be a non-abelian group. Then the non-commuting graph of the Moufang
loop M(G, 2), is 3−split if and only if G is isomorphic to a Frobenius group of order 2n, n is odd,
whose Frobenius kernel is abelian of order n. �

4. About the energy and the number of spanning trees of generalized and multiple splite-like
graphs

In this section, we are going to calculate the energy of generalized complete and multiple
splite-like graphs and derive the energy and also the number of spanning trees in the case of the
non-commuting graph of Chein loops of the form M(D2n, 2).

Theorem 4.1. Let Γ be a generalized complete split-like graph, Γ ∼= K̄a∇(nKb). Then ε(Γ) =
2n(b− 1).

Proof. Let PKb
(λ) be the characteristic polynomial of Kb. Then,

PKb
(λ) = (−1)b(λ+ 1)b−1(λ− b+ 1).

So,
PnKb

(λ) = (−1)nb(λ+ 1)n(b−1)(λ− b+ 1)n

and
PK̄a

(λ) = (−λ)a.

By using Theorem 1.2, we have:

PΓ(λ) = (−1)nb+a(λ+ 1)n(b−1)(λ− b+ 1)n−1λa−1(λ2 − (b− 1)λ− nab)

and by definition of the energy of a graph, we get:

ε(Γ) = n(b− 1) + (n− 1)(b− 1) + b− 1.

Hence, ε(Γ) = 2n(b− 1).

Corollary 4.1. Let n be an odd integer. Let G = D2n and M = M(G, 2). Then:
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(i) if n is an odd integer, thenε(ΓM) = 6(n− 1);

(i) if n is an even integer, then ε(ΓM) = 6(n− 2).

Moreover, in both cases, ε(ΓG) divides ε(ΓM).

Proof. Since, ΓM
∼= K̄n−1∇3Kn, by Theorem 4.1, ε(ΓM) = 6(n − 1). We know that ΓG

∼=
K̄n−1∇Kn and by Theorem 4.1, we have ε(ΓG) = 2(n− 1). Thus ε(ΓG) divides ε(ΓM).
ii) Now, let n be an even integer. Then, by Theorem 2.1, ΓM

∼= K̄n−2∇3S, in which S is a
strongly regular graph with parameters (n, n−2, n−3, n−2). Thus, by Theorems ([5], Theorems
6.2 and 6.22), the adjacency matrix of S has exactly three distinct eigenvalues: λ1 = n− 2, whose
multiplicity is 1, λ2 = 0, whose multiplicity is 1 and λ3 = −1, whose multiplicity is n − 2.
Therefore,

PS(λ) = (λ− n+ 2)(λ+ 1)n−2λ.

So,
P3S(λ) = (λ− n+ 2)3(λ+ 1)3n−6λ3

and
PK̄n−2

(λ) = λn−2.

By Theorem 1.2, we have:

PΓM
(λ) = (λ− n+ 2)2(λ+ 1)3n−6λn−2(λ2 + (2− n)λ− 3n(n− 2)).

Thus, ε(ΓM) = 6(n − 2). We know that ΓG
∼= K̄n−2∇S, such that S is a strongly regular graph

with parameters (n, n− 2, n− 3, n− 2). Therefore, by Theorems ([5], Theorems 6.2 and 6.22),

PΓG
(λ) = (λ+ 1)n−2λn−2(λ2 + (2− n)λ− n(n− 2)).

So, ε(ΓG) = 2(n− 2). Thus ε(ΓG) divides ε(ΓM).

Finally, in the following Theorems, we count the number of spanning trees of the non-commuting
graph ΓM , whereM = M(D2n, 2), for odd and even n, separately, and they lead us to an important
result.

Theorem 4.2. The number of spanning trees of the non–commuting graph ΓM , where M =
M(D2n, 2) and n is odd, is equal to:

κ(ΓM) = (2n− 1)3n−3(n− 1)2(3n)n−2.

Proof. There are 4n − 1 vertices in this graph, such that they are in t1, t2, t3, t4. Each of ti,
2 ≤ i ≤ 4, have n vertices of degree 2n − 2, and t1 have n − 1 vertices of degrees 3n. By the
structure of graph ΓM in Lemma 2.1, the matrix of vertex degree, namely D of this graph is equal
to:

D =

[
(2n− 2)I3n 03n(n−1)

0(n−1)3n (3n)In−1

]
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and the adjacent matrix of graph has the form:

A =

[
(Jn − In)

⊗
I3 J3n(n−1)

J(n−1)3n 0n−1

]
,

where,
⊗

denotes the tensor product of matrices. Thus,

L = D − A =

[
((2n− 1)In − Jn)

⊗
I3 −J3n(n−1)

−J(n−1)3n (3n)In−1

]
.

Now, to calculate det(L+ J), we have

L+ J =


(2n− 1)In Jn Jn 0

Jn (2n− 1)In Jn 0
Jn Jn (2n− 1)In 0
0 0 0 (3n)In−1 + Jn−1

 .
Also, in this case we have

det(L+ J) = detB × detC, (1)

where,

B =

(2n− 1)In Jn Jn
Jn (2n− 1)In Jn
Jn Jn (2n− 1)In


and C = (3n)In−1 + Jn−1. So,

detC = (3n)n−2(4n− 1) (2)

and

B =

[
E J(2n)n

Jn(2n) F

]
,

where,

E =

[
(2n− 1)In Jn

Jn (2n− 1)In

]
and F = (2n− 1)In. By Theorem 1.1, we have

detB = detF × det(E − JF−1J). (3)

So, by using the following relations

detF = (2n− 1)n, F−1 =
1

2n− 1
In, JF−1J =

n

2n− 1
J2n, (4)

we have

E − JF−1J =
1

2n− 1

[
G (n− 1)J

(n− 1)J G

]
,

330



www.ejgta.org

Some structural graph properties of the non-commuting graph ... | H. H. Bashir and K. Ahmadidelir

where, G = (2n− 1)2I − nJ and

detG = (2n− 1)2n−2(n− 1)(3n− 1), G−1 =
1

(2n− 1)2
(I +

n

(n− 1)(3n− 1)
J). (5)

Now,

det(E − JF−1J) = (
1

2n− 1
)2n det(G)× det(G− (n− 1)2JG−1J), (6)

where,

(n− 1)2JG−1J =
n(n− 1)

3n− 1
J

and
G− (n− 1)2JG−1J =

1

3n− 1
((α− β)I + βJ),

such that, α = (n− 1)(2n− 1)(6n− 1) and β = −2n(2n− 1). So,

det(G− (n− 1)2JG−1J) = (2n− 1)2(n−1) 8n3 − 14n2 + 7n− 1

3n− 1
. (7)

By using the relations 5, 6 and 7, we have

det(E − JF−1J) = (2n− 1)2(n−2)(n− 1)(8n3 − 14n2 + 7n− 1) (8)

and by replacing relations 4 and 8 in 3 we get

detB = (2n− 1)3n−4(n− 1)(8n3 − 14n2 + 7n− 1). (9)

Now, by replacing relations 2 and 9 in 1, we get

det(L+ J) = (2n− 1)3(n−1)(n− 1)2(4n− 1)2(3n)n−2.

By Theorem ([5], Theorem 4.11), we have κ = det(L+J)
(4n−1)2

. Therefore,

κ(ΓM) = (2n− 1)3(n−1)(n− 1)2(3n)n−2.

Theorem 4.3. The number of spanning trees of the non-commuting graph ΓM , where, M =
M(D2n, 2) and n is even, is equal to:

κ(ΓM) = 23n−3(3n)n−3(n− 1)
3n
2
−3(n− 2)

3n
2

+2.

Proof. There are 4n − 2 vertices in this graph and they are in t1, t2, t3, t4. Each of ti, 2 ≤ i ≤ 4,
have n vertices of degree 2n − 4 and t1 have n − 2 vertices of degree 3n. By the structure of the
graph Γ in 2.1, the matrix of the vertex degree namely D, of this graph is:

D =

[
2(n− 2)I3n 0

0 3nIn−2

]
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and the adjacent matrix of the graph has the form:

A =


Xn 0 0 J
0 Xn 0 J
0 0 Xn J
J J J 0

 .
By Lemma 2.1, each vertex in every ti (2 ≤ i ≤ 4), is connected to the other vertices except its
inverse element and itself, and so,

X =

[
J − I J − I
J − I J − I

]
,

such that I and J are square matrices of order n
2

in X . So,

L = D − A =


Yn 0 0 −J
0 Yn 0 −J
0 0 Yn −J
−J −J −J 3nIn−2

 ,
such that,

Y =

[
(2n− 3)I − J I − J

I − J (2n− 3)I − J

]
.

Hence,

L+ J =


Z J J 0
J Z J 0
J J Z 0
0 0 0 3nI + J

 .
We have

Z = Y + J =

[
(2n− 3)I I

I (2n− 3)I

]
,

in which the order of I is equal to n
2
. Now we obtain

det(L+ J) = detB × detC, (10)

where C = 3nIn−2 + Jn−2 and

B =

Z J J
J Z J
J J Z

 .
Therefore,

detC = 2(3n)n−3(2n− 1) (11)

and by using Theorem 1.1, we have

detB = detZ × det(D − JZ−1J), (12)
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where,

D =

[
Z J
J Z

]
and

detZ = (4(n− 1)(n− 2))
n
2 . (13)

Also,

Z−1 =
1

(2n− 3)2 − 1

[
(2n− 3)In

2
−In

2

−In
2

(2n− 3)In
2

]
and so, JZ−1 = 1

2(n−1)
J2n×n and JZ−1J = n

2(n−1)
J2n×2n. So,

D − JZ−1J =

[
G H
H G

]
, (14)

such that, H = n−2
2(n−1)

J and

G =

[
G11 G12

G21 G22

]
,

where, G11 = G22 = (2n− 3)I − n
2(n−1)

J and G12 = G21 = I − n
2(n−1)

J .

By using elementary row or column operations in G we have

detG = det( 1
2(n−1)

[
(n− 1)(4n− 6)I − nJ 4(n− 2)(1− n)I

4(n− 2)(1− n)I 8(n− 1)(n− 2)I

]
)

= (8(n− 1)(n− 2))
n
2

1
(2(n−1))n

det(2(n− 1)2I − nJ).

Since,
det(2(n− 1)2I − nJ) = 2

n
2
−2(n− 1)n−2(n− 2)(3n− 2),

then
detG = 2n−2(n− 1)

n
2
−2(n− 2)

n
2

+1(3n− 2). (15)

By Theorem 1.1, G−1 is as follows:

G−1 =

[
G−1

11 + (G−1
11 G12)(G/G11)−1(G12G

−1
11 ) −G−1

11 G12(G/G11)−1

−(G/G11)−1G12G
−1
11 (G/G11)−1

]
,

such that, G/G11 = G11 −G12G
−1
11 G12. Therefore,

G−1
11 =

1

(n− 1)(2n− 3)
(
1

2
I +

n

(n− 2)(7n− 6)
J)

and G12 = I − n
2(n−1)

J. Then:

G12G
−1
11 G12 =

1

(2n− 3)
(2(n− 1)I +

n(2n2 − 15n+ 14)

(7n− 6)
J)
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and

G11 −G12G
−1
11 G12 =

8(n− 1)(n− 2)

2n− 3
((n− 1)I − 2n

7n− 6
J).

Now, we have

G/G11 =
8(n− 1)(n− 2)

(2n− 3)
((n− 1)I − 2n

7n− 6
J),

and
(G/G11)−1 =

1

8(n− 1)2(n− 2)
((2n− 3)I +

2n

3n− 2
J).

Therefore,

G−1 =
1

4(n− 1)(n− 2)
(

[
(2n− 3)I −I
−I (2n− 3)I

]
+

2n

3n− 2
J).

Also, HG−1H = n(n−2)
2(n−1)(3n−2)

J and

G−HG−1H =

[
(2n− 3)I I

I (2n− 3)I

]
− 2n

3n− 2
J.

By using elementary row or column operations, we have

det(G−HG−1H) =
2n

(3n− 2)
(n− 2)

n
2

+1(n− 1)
n
2
−1(2n− 1) (16)

By relation 14, we get

det(D − JZ−1J) = detG× det(G−HG−1H).

Then, by relations 15 and 16, we have

det(D − JZ−1J) = 22n−2(n− 1)n−3(n− 2)n+2(2n− 1). (17)

Also, from relations 12, 13 and 17, we obtain

detB = 23n−2(n− 1)
3n
2
−3(n− 2)

3n
2

+2(2n− 1) (18)

and by relations 10, 11 and 18, we have

det(L+ J) = 23n−1(3n)n−3(n− 1)
3n
2
−3(n− 2)

3n
2

+2(2n− 1)2, (19)

and from replacing 19 in κ = det(L+J)
(4n−2)2

, we get

κ(ΓM) = 23n−3(3n)n−3(n− 1)
3n
2
−3(n− 2)

3n
2

+2.

Corollary 4.2. Let M = M(G, 2), where G = D2n. Then κ(ΓG) divides κ(ΓM).
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Proof. By Example 1 in [4], the non-commuting graph of G = D2n, when in is odd, is a split
graph and ΓG

∼= I∇C, where I is an independent set with n − 1 vertices and C ∼= Kn. So, the
degree matrix of ΓG has the form:

D =

[
(2n− 2)In−1 0

0 nIn

]
and the adjacency matrix of ΓG is equal to:

A =

[
J − I J
J 0

]
.

So,

L = D − A =

[
2n− 1)I − J −J

−J nI

]
and

L+ J =

[
(2n− 2)I 0

0 nI + J

]
.

Thus, det(L+ J) = det((2n− 1)I)× det(nI + J) and this gives us:

det(L+ J) = (2n− 1)n+1nn−2.

Therefore,

κ(ΓG) =
det(L+ J)

(2n− 1)2
= (2n− 1)n−1nn−2.

By Theorem 4.2, κ(ΓM) = (2n−1)3(n−1)(n−1)2(3n)n−2.Hence, the proof is complete and κ(ΓG)
divides κ(ΓM), where n is an odd integer.

Now, let n be an even integer. Then ΓG
∼= Kn−2∇S, where S is a strongly regular graph with

parameters (n, n− 2, n− 4, n− 2). Also, the degree matrix, D, of ΓG is equal to:

D =

[
(2n− 4)I 0

0 nI

]
and the adjacency matrix of ΓG, namely A, has the form:

A =

[
X J
J 0

]
,

where,

X =

[
J − I J − I
J − I J − I

]
,

in which, I and J are of order n
2
. So,

L = D − A =

[
Y −J
−J nI

]
,
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where,

Y =

[
(2n− 3)I − J I − J

I − J (2n− 3)I − J

]
.

Hence,

L+ J =

[
Z 0
0 nI + J

]
,

where,

Z =

[
(2n− 3)I I

I (2n− 3)I

]
.

Since, det(L + J) = detZ × det(nI + J), detZ = (4(n − 1)(n − 2))
n
2 and det(nI + J) =

nn−3(2n− 2), then
det(L+ J) = 2n+1nn−3(n− 1)

n
2

+1(n− 2)
n
2 .

Therefore,

κ(ΓG) =
det(L+ J)

(2n− 2)2
= 2n−1nn−3(n− 1)

n
2
−1(n− 2)

n
2 .

Also, by Theorem 4.3, we have

κ(ΓM) = 23n−3(3n)n−3(n− 1)
3n
2
−3(n− 2)

3n
2

+2.

This proves that κ(ΓG) divides κ(ΓM).

5. Conclusion

In this research work, we studied some properties of the non–commuting graph of a class
of finite Moufang loops. Also, we proved that the multiple complete-like graphs and the non-
commuting graph of Chein loops of the form M(D2n, 2) are perfect, and both graphs are non
chordal. Finally, we characterized when the non-commuting graph of Moufang loop M(G, 2) is
3-splite and we give the energy of generalized and multiple splite-like graphs. In future, we will try
to study the similar graph properties of the non–commuting graph for the simple Moufang loops
and characterize relations between any group G with the non–commuting graph M(G, 2).
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