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Abstract

For any non-abelian group G, the non-commuting graph of G, I' = T'¢, is graph with vertex set
G\Z(G), where Z(G) is the set of elements of G that commute with every element of G and
distinct non-central elements = and y of G are joined by an edge if and only if xy # yz. The
non—commuting graph of a finite Moufang loop has been defined by Ahmadidelir. In this paper,
we show that the multiple complete split-like graphs and the non-commuting graph of Chein loops
of the form M (D,,,2) are perfect (but not chordal). Then, we show that the non-commuting
graph of a non-abelian group G is split if and only if the non-commuting graph of the Moufang
loop M(G,2) is 3—split. Precisely, we show that the non-commuting graph of the Moufang loop
M(G,?2), is 3—split if and only if G is isomorphic to a Frobenius group of order 2n, n is odd,
whose Frobenius kernel is abelian of order n. Finally, we calculate the energy of generalized and
multiple splite-like graphs, and discuss about the energy and also the number of spanning trees in
the case of the non-commuting graph of Chein loops of the form M (Ds,,, 2).
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1. Introduction

Let () be a set with one binary operation. Then it is a quasigroup if the equation xy = z has a
unique solution in () whenever two of the three elements x, y, z € () are specified. A quasigroup ()
is a loop if () possesses a neutral element e, i.e., if ex = ze = x holds for every = € (). Moufang
loops are loops in which any of the (equivalent) Moufang identities,

((zy)r)z = x(y(zz)), (M1)
z(y(zy)) = ((zy)2)y, (M2)
(ry)(z2) = ((yz)x), (M3)
(zy)(z2) = (x(yz))x. (M4)

holds for every z,y, z € (). Commutator of z, y and the associator of z, y and z are defined by
[z,y] = 7'y lzy and [x,y, 2] = ((xy)z) ' (z(yz)), respectively. We define the commutant (or
Moufang center) C(Q) of Q as {x € Q | xy = yx, Vy € Q}. The center Z((Q) of a Moufang
loop @ is the set of all elements of () which commute and associate with all other elements of ().
A non-empty subset P of () is called a subloop of () if P is itself a loop under the binary operation
of (), in particular, if this operation is associative on P, then it is a subgroup of ). A subloop
N of aloop @ is said to be normal in Q if «N = Nz; 2(yN) = (zy)N; N(xy) = (Nx)y; for
every x,y € . In Moufang loop @, the subloops Z (@) and C'(Q)) are normal subloops. For more
details about the Moufang loops one may see [8, 16, 13]. In 1974, Chein introduced a class of
non-associative Moufang loops M (G, 2), so called Chein loops. For a group G and a new element
u, (u ¢ G), M(G,2) = G U Gu such that the multiplication with the new binary operation o is
defined as follows:

h = gh, g,h € @G,

hu) = (hg)u, g€ G, hu € Gu,

h=(gh Yu, gue€ Gu, heq,

(hu) = h™tg, gu,hu € Gu.

Clearly, the Moufang loop M (G, 2) is non-associative if and only if GG is non-abelian, see [8]. In
[2], Ahmadidelir has investigated some probabilistic properties of M (G, 2), such as its commuta-
tivity degree.

There are many papers on assigning a graph to a ring or a group in order to investigation of
their algebraic properties. For any non-abelian group G the non-commuting graph of G, I' = I'
is a graph with vertex set G\ Z(G), where distinct non-central elements = and y of G are joined
by an edge if and only if xy # yx. This graph is connected with diameter 2 and girth 3 for a
non-abelian finite group and has received some attention in existing literature. For instance, one
may see [1, 10, 15, 17]. Similarly, the non-commuting graph of a finite Moufang loop has been
defined by Ahmadidelir in [3]. He has defined this graph as follows: Let M be a Moufang loop,
then the vertex set is M\C (M) and two vertices x and y joined by an edge whenever [x,y] # 1.
He has shown that this graph is connected (as for groups) and obtained some results related to the
non—commuting graph of a finite non-commutative Moufang loop.

We will denote a complete graph with n vertices by K,,. All graphs considered in this paper are
finite and simple. For a graph I, we denote its vertex and edge sets by V(I") and E(I"), respectively.
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The complement of T" is denoted by I'. A graph I' = (V, E), is called k—partite where k > 1, if
it is possible to partition V' into k subsets V;, V5, ..., V4, such that every edge of £ joins a vertex
of V; to a vertex of V}, @ # j. A clique in a graph I' is an induced subgraph whose all vertices
are pairwise adjacent. The maximum size of a clique in a graph I is called the clique number of
I" and denoted by w(I"). A subset X of the vertices of I is called an independent set (or stable) if
the induced subgraph on X has no edges. The maximum size of an independent set in a graph I’
is called the independence number of I" and denoted by «(I"). The vertex chromatic number of a
graph T' is denoted by x(I'), and it is the minimum £ for which k—vertex coloring of a graph T’
such that no two adjacent vertices have the same color. For a subset S of V/(I'), Nr[S] is the set
of vertices in I which are in S or adjacent to a vertex in S. If Np[S] = V/(I") then S is said to be
a dominating set of the vertices in I'. The minimum size of a dominating set of the vertices in I’
is dominating number of I" and denoted by ~(I"). A vertex cover of a graph I" is a set @ C V/(I')
such that contains at least one endpoint of every edge. The minimum size of a vertex cover is
denoted by 5(I"). Our other used notations about graphs are standard and for more details one may
see [6, 7, 11].

There is a relation between «(T") and 3(I") as follows:

Lemma 1.1. ([7], p. 296) Let I" be a graph. Then (") + (') = n(I"), where n(T") is the number
of vertices of T'. 0

A perfect graph I, is a graph in which for every induced subgraph its clique number is equal
to its chromatic number. A graph I is called weakly perfect graph if w(I") = x(I"). So, all perfect
graphs are weakly perfect. A chordal graph is one in which all cycles of order four or more have a
chord, which is an edge that is not part of cycle but connects two vertices of the cycle. The class of
Chordal graphs is a subset of the class of perfect graphs. For more information about these types
of graphs, one may see [12, 14]. We have the following Theorem about perfect graphs, called
strongly perfect graph theorem, or Berg Theorem.

A graph is called k-regular, if the vertices of the graph are of the same degree £k and a strongly
regular graph S with parameters (n, k, A, i) is a k—regular graph of order n such that each pair of
adjacent vertices has A common neighbors and each pair of non-adjacent vertices has in which p
common neighbors. Let I'; = (V4, E) and 'y = (V4, E») be undirected simple graphs. The union
[’y UT; of graphs I'; and 'y is a graph I = (V, E) for which V =V, UV, and E = E; U Es. The
notation nl'is short for U .- - UT.

—_—

n—times

The complete product I'y VI'y of graph I'y and I'; is a graph obtained from I'y U I'; by joining
every vertex of I'; to every vertex of ['5. For every a,b,n € N, a complete split, or simply, a
split graph, is the graph K,V K, and denoted by C'S¢. By a theorem of Foldes and Hammer ([12],
Theorem 6.3), a graph is (complete) split iff contains no induced subgraph isomorphic to 2K2, C
or (5. Also, an undirected graph is split if and only if its complement is split ([12], Theorem 6.1).
Clearly, every split graph is chordal and so perfect, but the converses are not true. More generally, a
multiple complete split-like graph is K,V (nK}) and denoted by MC St Specially, in this paper,
for n = 3 we call MC'Sy; as a 3—split graph.

We generalize the above definitions as follows:
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Definition 1.1. The generalized complete split-like graph is GCS? = K,VS such that S is a

strongly regular graph with parameters (n,k, \, ). The multiple generalized complete split-like
graphis GMCS,, = K,V(mS).

The laplacian matrix of a simple graph I" with n vertices, is defined as L(I') = D(I") — A(T"),
where A(T) is its adjacency matrix and D(I') = (dy,...,d,) is the diagonal matrix of the vertex
degrees in I'. For any graph I', the energy of I' is defined as {(I') = > " | |\;|, where Ay, ..., \, are
the eigenvalues of the adjacency matrix of I'. A spanning tree of a graph I is an induced subgraph
of I', which is a tree and contains every vertex of I'.

In this paper, we show that the multiple complete split-like graphs are perfect (but not chordal)
and deduce that the non-commuting graph of Chein loops of the form M (D,,,2) is perfect but
not chordal. Then, we show that the non-commuting graph of a non-abelian group G is split if
and only if the non-commuting graph of the Moufang loop M (G, 2) is 3—split and then classify
all Chein loops that their non-commuting graphs are 3—split. Precisely, we show that for a non-
abelian group G, the non-commuting graph of the Moufang loop M (G, 2), is 3—split if and only if
G is isomorphic to a Frobenius group of order 2n, n is odd, whose Frobenius kernel is abelian of
order n. Finally, we calculate the energy of generalized and multiple splite-like graphs, and discuss
about the energy and also the number of spanning trees in the case of the non-commuting graph of
Chein loops of the form M (D,,,, 2). We recall the following Proposition and Theorems in order to
provide some tools to these purposes.

Theorem 1.1. ([5], p. 3: Schur complement) Let A be a n X n matrix partitioned as A =
A A
Ag1 A

can be calculated by the following formula:

}, where A1 and Ay, are non-singular square matrices. Then the inverse of A, A™*

Al = [Aﬁl + AR A (A/An) M An Ay A A (A/An) T

—(A/A1) T An Ay (A/A;)! ’
where
AJA1 = Ap — Ayt Al Avg
and
detA = detA1 X det(Agg — AglAl_llAlg),
such that det A is the determinant of A. 0J

Theorem 1.2. ([14], Theorem 1) For v = 1,2, let I'; be r;—regular graphs with n; vertices. Then
the characteristic polynomial of the complete product of these two graphs is as follows:

PFl (A)PFQ (A)
()\ — 7'1)()\ — 7"2)

Prvr,(A) = [(A = 71)(A = 72) — ningl.
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2. Some basic graph properties of the Moufang loop M (D5, 2)

Let D,,, denote the dihedral group of order 2n, which has the following presentation:
Dy, = (a,b| " =b"=(ab)* =1).

In this section, we want to study the non-commuting graph of the Moufang loops M (Ds,, 2),
simply denoted by I'. We will use the following Lemma in next sections.

The following Lemma determines the structure of the non-commuting graph of the Moufang
loop M = M(Ds,,2).

Lemma 2.1. Let M = M(D,,,2) and " = T'); be its non-commuting graph.

(a) If nis odd then Ty = K, 1V S, such that S is a strongly regular graph with parameters
(3n,n — 1,n —2,0).

(b) If nis even then Ty = K,,_»V3S, such that S is a strongly regular graph with parameters
(n,n—2,n—3,n—2).

Proof. a) By Lemma ([3], Lemma 4.4) and the definition of the non-commuting graph, for every
odd integer n, we can partition the vertices of I into four sets, as follows:

ty ={a,d® ...;a" '}, ty ={byab,... a"" b},
ts ={u,au,...,a" u}, t; ={bu,abu,...,a" tbu}.

For every 0 < i,j < m — 1, since a’a’ = a’d’, t; is an independent set and from the relations
a' o (a'b) # (a’b) o a’, a* o (a?u) # (a’u) o a’ and a’ o (a’bu) # (a’bu) o a’, we find that all
vertices of ¢; are adjacent to all vertices of each of the sets to, 3 and ¢4. Also, by the relations
(a'b) o (a’b) # (a’b) o (a'b), the induced subgraph [t5] of T, is a clique. Similarly, we can show
that the induced subgraph [t3] and [t,] of T, are cliques. Hence, I' 2 K,, V3K, and the graph T
is 3—split and 3K,, = S, where S is a strongly regular graph with parameters (3n,n —1,n—2,0).

b) Let n be an even integer. Again, we can partition the vertices of I' into four sets, as follows:

t1 = {a, a?, ... ,a%*l7 a%Jrl’ o ,anfl}, ty ={b,ab,... ,anflb},

Since each pair of elements of ¢; commute, so the induced subgraph [¢;] is an independent set, that
means [t;] = K,,_,. Also, every element in M commutes with its inverse and since, Vz € t;, (i =
2,3,4), its inverse ! belongs to t;. Therefore, every element of ¢;, (i = 2, 3, 4) is adjacent to each
vertex in ¢;, i = 2, 3,4, except its inverse. Also any two elements x ,y in ¢;, (i = 2,3,4) commute
if and only if | — j| = %, where x = a’u or a’b, a’bu and y = a’u or a’b, a’bu. Then [t;] = S
, where S is a strongly regular graph with parameters (n,n — 2,n — 3,n — 2). Finally, for every
2 < 4,5 < 4 there is no edge of I" such that joins a vertex of ¢; to a vertex of ¢;, ¢ # 7, but each

vertex in ¢, joins to each vertex in t;, (i = 2,3, 4). Therefore, I'y; & K,,_,V385. O

In the following Theorem, we derive some important graph properties of I'y/(p,, 2)-
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Theorem 2.1. Let M = M(Ds,,2) and I' = Iy be its non-commuting graph.

(a) Ifn is odd then:

(b) If n is even then:

6, n==6 16, n=~0
a0 ={ v, I am={g Ui m-:
Proof. a) By Lemma 2.1, the non-commuting graph of M (Ds,, 2) is a generalized complete split-
like graph for any odd integer n. Then I' = K,,_1 V.S in which S is a strongly regular graph with
parameters (3n,n —1,n—2,0), where V(K,,_1) = {a,a?,...,a" '} and S = 3K,,. So this graph
is 3—split. By the structure of I', since every vertex of each copy of K, is joined to every vertex of
K,._1, so we have the complete product K,,V[a'], where ¢’ € K,,_1,1 <i < n—1. Also, K,V[a]
is the largest clique in I'. So, w(I") = n + 1. We need n distinct colors for coloring any K,, and
only one color for coloring K,,_; which is distinct with the previous ones. So, x(I') = n + 1. The
set of vertices of K,,_; is the largest independent set, so a(I') = n — 1. By Lemma 1.1, we have
B(I') = 4n—1—(n—1) = 3n. Clearly, the set of vertices of 3/, has the minimum size of a vertex
cover. Any vertex of K,,_; is dominating all vertices of S, and any vertex of S is dominating all
vertices in K,,_;. Thus (') = 2.

b) By Lemma 2.1, the non-commuting graph of M (D, 2), for every even integer n, is a multiple
generalized complete split-like graph as I' = K, 2V 35, where S is a strongly regular graph with
parameters (n,n —2,n — 3, n — 2) and the set of vertices of K, 5 is an independent set as follows:

V(Kn_s) ={a,a? ...,a27 a3, a" —1}.

In order to find the clique number, we may choose one vertex of K,,_, and the other vertices from
only one copy of S’s. By definition, every vertex is not joined to its inverse, so, we can choose 5
vertices of .S and hence, w(I") = 4 + 1. The color of every vertex in .S is co-color with its inverse.
Therefore, the chromatic number of .S is equal to %, and so the maximum color number for all the
vertices of 3.5 is equal to 7. By only one color distinct from § —color in 35, we can color K, .
So, x(I') = § + 1. For n = 6, K,,_» have four independent vertices, but with two non-adjacent
vertices chosen from any of the copies of S, we get 6 independent vertices. Therefore, in this case
a(T") = 6. Now, for n > 8, the set K,,_, is the largest independent set and so, a(T') = n — 2. By
using Lemma 1.1, we have 5(I') = n(I') — «(I"). Hence, if n = 6 then S(I') = 16, else if n > 8
then 3(T') = 4n — 2 — (n — 2) = 3n. By choosing any vertex in K,,_» and the other in one of the
copies of 5, the domination set of I" will be determined. Hence, (I") = 2. [
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3. About perfectness and splitness of the non-commuting graph of a Moufang loop

In this section, first we show that the multiple complete split-like graphs are perfect and then
characterize all Chein loops that their non-commuting graphs are 3—split-like.

Theorem 3.1. Every multiple complete split-like graph M CSy,, = [_(,EV(nKb), (n > 2) is perfect,
but not chordal. Moreover, every complete split graph C'Sy, = K,V K, is perfect and also
chordal.

Proof. LetT' = K,V(nK,) and C be an odd cycle. If all vertices of C' lie in only one copy of
Ky’s, clearly this cycle has a chord. Also, if some vertices of C' lie in more than one copy of K;’s,
then since in this case C' has some vertices of K, and also these vertices in K, are adjacent to
each vertex of K, therefore, the cycle has a chord. In addition, the complement graph, [, isa
disconnected graph of the form I 22 K, U S such that S is strongly regular graph with parameters
(nb, (n — 1)b, (n — 2)b,(n — 1)b) or S = T, which is a complete n—partite graph with nb
vertices, and hence, each part has b vertices. Clearly, any cycle in K, has a chord. If C' be an odd
cycle in .S, then by structure of S, there is an intersection of C' with more than three sections of S
and these vertices are adjacent to any of the vertices in other sections and so, C has a chord. If C
has an instruction with only two sections of S, then the induced subgraph of these sections will be
a bipartite graph such that there is no any odd cycle in it. Now, by Berg Theorem ([9], Theorem
1.2) T'is a perfect graph. LetI' & K,V (nK,) and 71, 15 € K,, 71 # . Take x3 and z, from two
distinct copies of K}’s. Now the induced subgraph of I' generated by 1, x2, x5 and x4 1s a cycle
of length four without a chord. So, by definition, I" is not chordal.

Similar to the proof of the first part, C'Sy’,, = K,V K, is perfect, but there is no cycle of length
four or more without any chord and so this is a chordal graph. This completes the proof. [

Corollary 3.1. The non-commuting graph of M (Ds,,2) is perfect but not chordal.

Proof. Let I' = I'(M(Dy,,2)), where n be an odd integer. Then by Lemma 2.1 (a), I' & K,_;
V(3K,,) and by Theorem 3.1, I" is perfect but not chordal.

If n be an even integer then by Lemma 2.1(h), I = K,,_,V3S such that S is a strongly regular
graph with parameters (n,n — 2,n — 3,n — 2). Assume that C' is an odd cycle in I" with length 5
or more, the length of the longest cycle without chord in each copy of S is equal to 4. Then there
are some vertices of K,,_» in C, and these vertices are adjacent to each vertex in 35. Therefore,
C have a chord. On the other hand, T & K,,_5 U (%nggnggKg). Let C be a cycle in T.
Clearly, every cycle in K,,_, have a chord and if C' be an odd cycle in §K,VZ K,V 3Ky, then
C have an intersection with more than two parts of 5K, where one of them have more than one
vertex in C', and these vertices adjacent to all vertices of C' in other parts and so, C' have a chord
and by Theorem ([9], Theorem 1.2), I is perfect. The induced subgraph consist of any two vertices
of K,_, and two non-adjacent vertices of S is a cycle with length 4 without chord then I is not
chordal. 0

Remark 3.1. The generalized multiple complete split-like graph GAMC'S}! is not perfect. As a
counterexample, let we have a generalized complete split-like graph I' = K,V (n.S) in which S
is a Peterson graph. This graph is not perfect, since it has a cycle of length 5 without any chord.
Recall that a Peterson graph is a strongly regular graph with parameters (10, 3,0, 1).
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Theorem 3.2. Let G be a non-abelian group. Then its non-commuting graph U, is split if and
only if the non-commuting graph of the Moufang loop M (G, 2), Ty, is 3—split.

Proof. Let I'j; be 3—split of the form I'y; = I'V3C, where [ is an independent set and C' is a
complete graph. First we show that Z(G) = C(M). By Lemma([3], Lemma 3.10), C'(M) C
Z(G). Let Z(G) € C(M). Then there exists © € Z(G) such that z ¢ C(M). Also, there exists
yu € Gu, where z o (yu) # (yu) o z, which yields (yz)u # (yz~')u. Therefore, v # z~! and
x € I. So, every vertex y in each copy of C is adjacent to = and so zy # yx. But z € Z(G) then
for every g € G, we have xg = gz. Hence G C I. Now, let g € G\ Z(G). So, there existt € G
such that tg # gt but in this case ¢, g € [ and this is a contradiction, since / is an independent set.
So, G = Z((G) and this contradicts with non-abelianity of G. Thus Z(G) = C(M). Obviously,
every element of 3C' is an involution. Let € 3C and = # x~!. So, since each element of Gu has
order 2 then z € G. Put 3C' = C} U Cy U (3, where each C; is equal to a copy of C, (1 <i < 3).
Without loss of generality, let x € C; and 27! € Cy (note that zz~! = z7'x). Lety € G\Z(G)
and y ¢ (). Then since every element of G which commutes with z, also commutes with z~*,
so if y € O] then xy # yx, and therefore z 71y # yz~!, but 7! € C, and this is a contradiction.
Similarly, the case y € Cy will reach to a contradiction. So, y € I or y € C3. Now, consider the
element xy. By the same reason as above, we have xy € I or 2y € Cs. Trivially, zy # z, 2~ 1. We
have four cases as below:

Case 1. Let y,xy € I. Then y(zy) = (zy)y = yx = xy. which is a contradiction, since y is
adjacent to every element of C'.

Case 2. Lety € [ and xy € Cs. Then x € C) = z(xy) = (zy)x, (z,y € G) = zy = yx and we
have the same contradiction as in case 1.

Case 3. Lety € C3 and zy € I. Then (zy)y # y(zy) = xy # yx, which is also a contradiction
since y € C3 and x € (.

Case 4. Let y,zy € C3. Then we have y(zy) # (zy)y = zy # yx and we obtain a similar
contradiction as in case 3.

Therefore, every element of 3C' has order 2. On the other hand, I'; is always connected and it is
the induced subgraph of I';. Therefore, I'¢ = K,,, (K,,, C C) or I'¢ = I'VnC’ such that I’ C I,
C" C C and nC" = U C;, where 1 < n < 3, and each C; is a subset of one copy of C’s. If
I'c = K,,, then the order of every element of G will be equal to 2, so G must be abelian, which is
absurd. Therefore, we get, I'¢ = I'VnC". If n = 1 then ' is split. Suppose that 1 # =,y € G,
x € Cyand y € Cs, then xy = yx and there exists z € I’ where yz # zy and zz # zxz. So,
vy € G. If vy € I', then x(zy) # (xy)z and so, 2%y # x(yx). Therefore, 2%y # x(zy) and this
is a contradiction. If zy € C) then z(yx) # (zy)x and 2%y # x?y, and it is a contradiction, and if
xy € Cy then y(zy) # (zy)y and y?z # y>x, and it is also a contradiction. Finally, let zy € Cs.
Now, zu € M(G, 2) then:

) If zu € I or zu € C4, then (zu) o x # x o (zu) and so (xz~')u # (xx)u. Therefore, u # z?u,
this is a contradiction. So, every element of C in Iy, is of order 2 therefore, 22 = 1.

2) If zu € Cy then (zu) oy # y o (zu) and so (xy~1)u # (vy)u. Thus (zy)u # (zy)u and this is
a contradiction.
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3) If zu € Cs then (zu) o (zy) # (xy) o (wu) and so (z(zy) u # (x(zy))u or (z(y'z71))u #
(2%y)u. So, (z(yx))u # (2%y)u, or (z(zy))u # yu. Thus (x?y)u # yu and this is a contradiction.

Therefore, ' = I'VC" and ' is split.

Conversely, let ' be split. Then I'¢ = I'VC'. We show that Iy, is 3—split. By splitness of '
and Lemmas ([4], Lemmas 2.4 and 2.5), we have, Z(G) = 1 and C(M) C Z(G). So, C(M) = 1.
Let V(I) = {a1,as,...,axand V(C) = {by, ba, ..., b:}. Then, V(I'y,) includes V (1), V(C') and
the set of vertices of the form, V' (/u) = {a1u, asu, ..., aru} and V(Cu) = {byu, bou, ..., byu}.
To prove 3—splitness I'y;, we consider and stablish the following claims.

Claim 1. The induced subgraph containing the vertices in V (Iu) forms a clique.

Suppose that there exist two non-adjacent vertices a;u and a;u. So, (a;u)o(a;u) = (a;u)o(a;u)
and then aiaj’1 = aja;1 or (aiaj’l)2 = 1. Therefore, by Lemmas ([4], Lemmas 2.4 and 2.5),
I* = I U {1} is a maximal subgroup of odd order and there is not any element of even order. So,
aiaj_l € C, where in this case (aiaj_l)aj =+ aj(aiaj_l). Then a; # aj(aiaj_l) and aj_lai =+ aiaj_l
and this is a contradiction.

Claim 2. The induced subgraph containing the vertices in V (Cu) is a clique.

Suppose that there exist two vertices b;u and b;u such that are not adjacent. So, (b;u) o (bju) =
(bju) o (bu). Therefore, b;b; ' = b;b; ' and b;b; = b;b;, since, each element of C'is an involution
and which yields to a contradiction.

Claim 3. There is no edge between V (Iu) and V (Cu).

Suppose that there exist two vertices a;u and b;u such that (a;u) o (bju) # (bju) o (a;u) then
b 'a; # a; 'b; and bja; # a; 'b;, therefore (bja;)* # 1. On the other hand bja; € G. So, bja; € I
or bjai e C.
1) If bja; € I then (bja;)a; = a;(b;ja;) and bja; = a;b;, which yields to a contradiction.
2)If bja; € C then (bja;)* = 1 and this is a contradiction. Therefore, any two elements of V (/u)
and V' (Cu) are non-adjacent.
Claim 4. There is no edge between V(C) and V (Cu).

Suppose that there exist two vertices b; and b;u such that b; o (b;ju) # (b;u)ob;. Then (b;b;)u #
(b;b; Hu, so, (b;bi)u # (bjb;)u, and this is a contradiction. Therefore any two elements of V (C)
and V' (Cu) are non-adjacent.

Claim 5. There is no edge between V (C) and V (Iu).

Suppose that there exist two vertices b; and a;u such that b; o (aju) # (aju) o b;. Then
(a;bi)u # (a;b;")u and a;b; # a;b;. This is a contradiction. Therefore, any two vertices in V (C)
and V' (/u) are non-adjacent.

Claim 6. Every vertex in V (1u) is adjacent to every vertex in V (I).
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Suppose that there exist two vertices a; and a;u such that a; o (a;u) = (aju) o a;. Then
(aja;)u = (aja; )uand aja; = aja;*. So, a; = a; *. Therefore, a? = 1 and this is a contradiction.

Claim 7. Every vertex in V (C'u) is adjacent to every vertex in V (I ).

Suppose that there exist two vertices a; € I and b;u € C'u such that a;0(bju) = (bju)oa;. Also,
(bja;)u = (bja; ')u then bja; = bja; ' and a; = a; ', therefore a? = 1 and this is a contradiction.

Thus the non—commuting graph of M (G, 2) is 3—split, where the induced subgraphs contain-
ing the vertices of C' and C'u and [u are cliques and [ is an independent set. [

Now, by using Theorems ([4], Theorem 2.3) and 3.2, we can classify all 3—split Chein loops:

Corollary 3.2. Let G be a non-abelian group. Then the non-commuting graph of the Moufang
loop M (G, 2), is 3—split if and only if G is isomorphic to a Frobenius group of order 2n, n is odd,
whose Frobenius kernel is abelian of order n. 0

4. About the energy and the number of spanning trees of generalized and multiple splite-like
graphs

In this section, we are going to calculate the energy of generalized complete and multiple
splite-like graphs and derive the energy and also the number of spanning trees in the case of the
non-commuting graph of Chein loops of the form M (Ds,,, 2).

Theorem 4.1. Let I' be a generalized complete split-like graph, T = K,V (nK,). Then ¢(T') =
2n(b —1).

Proof. Let Pk, ()) be the characteristic polynomial of K. Then,
Pr,(\) = (=DPA+ 1D (A = b+ 1).

So,
Puc,(\) = (=)™ 4+ D" D(N — b+ 1)"

and

By using Theorem 1.2, we have:
Pr(A) = (=)™ N+ 1)"C DN — b4 D)X (A2 — (b — 1)\ — nab)
and by definition of the energy of a graph, we get:
eM=nb-1)+n—-1)b—-1)+b— 1.
Hence, (I") = 2n(b — 1). O

Corollary 4.1. Let n be an odd integer. Let G = Dy, and M = M (G, 2). Then:
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(1) if nis an odd integer, thenc(I'y;) = 6(n — 1);
(i) if n is an even integer, then (I'y;) = 6(n — 2).
Moreover, in both cases, €(I'¢) divides £(I" ).

Proof. Since, I'y; = K,_V3K,, by Theorem 4.1, (I'y;) = 6(n — 1). We know that ' =
K, 1 VK, and by Theorem 4.1, we have £(I'¢) = 2(n — 1). Thus £(T'¢) divides £(T').

i1) Now, let n be an even integer. Then, by Theorem 2.1, I'), = K, 5V3S, in which S is a
strongly regular graph with parameters (n, n — 2, n — 3, n — 2). Thus, by Theorems ([5], Theorems
6.2 and 6.22), the adjacency matrix of .S has exactly three distinct eigenvalues: \; = n — 2, whose
multiplicity is 1, Ao = 0, whose multiplicity is 1 and A3 = —1, whose multiplicity is n — 2.
Therefore,

Ps(A) = (A—n+2)(A+1)" 2\

So,
Pys(A) = (A —n+2)3(A+1)>"70N°
and
Pf(n72()\) = \""2,

By Theorem 1.2, we have:
Pr,,(N) =\ =n+22A+ 12" A"2(\2 4 (2 — n)\ — 3n(n — 2)).

Thus, £(T"y;) = 6(n — 2). We know that ' = K,,_,V S, such that S is a strongly regular graph
with parameters (n,n — 2,n — 3, n — 2). Therefore, by Theorems ([5], Theorems 6.2 and 6.22),

Pro () = (A + 1) 2A"2(A2 + (2 — n)A — n(n — 2)).

So, (') = 2(n — 2). Thus e(I') divides (I"y;). O

Finally, in the following Theorems, we count the number of spanning trees of the non-commuting
graph I'y;, where M = M (Ds,, 2), for odd and even n, separately, and they lead us to an important
result.

Theorem 4.2. The number of spanning trees of the non—commuting graph 1'y;, where M =
M (D, 2) and n is odd, is equal to:

k(Tar) = (2n — 1)*3(n — 1)*(3n)" 2

Proof. There are 4n — 1 vertices in this graph, such that they are in ¢y, t5, t3, t4. Each of ¢,,

2 <1 < 4, have n vertices of degree 2n — 2, and ¢, have n — 1 vertices of degrees 3n. By the

structure of graph I';; in Lemma 2.1, the matrix of vertex degree, namely D of this graph is equal
to:

D— (2n = 2)I3,  O3n(n-1)

O(n—l)?m (3n>ln—1
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and the adjacent matrix of graph has the form:

A= {(Jn - In) ® I3 J3n(n—1):|
J(n71)3n On—1 ’

where, Q) denotes the tensor product of matrices. Thus,

2n— 11, — J,) @ Iz —J3nin1
|: _J(n71)3n (3n)]n—1

Now, to calculate det(L + .J), we have

(2n — 1)1, Jn Jn 0
_ Jn (2n —1)I, I, 0
Lvd=1 "7 T, (2n -1, 0
0 0 0 (3n)[n_1 + Jn—l
Also, in this case we have
det(L + J) = det B x det C, (1)
where,
(2n—1)I, g Jn
B = I (2n — 1)1, s
I g, (2n — 1)1,
and C' = (3n)I,_1 + Ju_1. So,
det C = (3n)" " %(4n — 1) (2)
and
E J
B = (2n)n
{%m> F}’
where,

E:F%;ﬁh(mfbé

and F' = (2n — 1)1,,. By Theorem 1.1, we have

det B = det F x det(E — JE'J). (3)

So, by using the following relations

1
S oam—1

n
2n —1

det F=(2n—1),  F7! I, JF'J= Jon, 4)

we have
1 G (n—1)J

E—-JF'J=
e on—1|n-1J G |’
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where, G = (2n — 1)*I — nJ and

1 n

detG=(2n—1)""?(n—1)(3n—-1), G '= I J). 5
Now,
det(E — JF~'J) = (%—_1)2” det(G) x det(G — (n — 1)2JG1), (6)
where, ( )
-1
—1D2Jjalg = mn=2
(n—1)JGJ a1 J
and )
— — 2 -1 — —
G—(n—1JGJ 3n_1((a B + BJ),
such that, « = (n — 1)(2n — 1)(6n — 1) and § = —2n(2n — 1). So,
3 — 14n? -1
det(G — (n — 1)2JG1J) = (2n — 120 7+ T = 1 %
3n —1
By using the relations 5, 6 and 7, we have
det(E — JF~YJ) = (2n — 1)>" D (n — 1)(8n® — 14n® + Tn — 1) (8)
and by replacing relations 4 and 8 in 3 we get
det B = (2n — 1)*""*(n — 1)(8n® — 14n* + Tn — 1). ©)
Now, by replacing relations 2 and 9 in 1, we get
det(L +J) = (2n — 1)) Y(n — 1)*(4n — 1)*(3n)" %
By Theorem ([5], Theorem 4.11), we have k = ‘ﬁgﬁ’)‘?. Therefore,
k(Car) = (2n — 130D (n — 1)%(3n)" 2.
]

Theorem 4.3. The number of spanning trees of the non-commuting graph I'y;, where, M =
M (Ds,,2) and n is even, is equal to:

k() = 2273(3n)" 3 (n — 1)F 3(n — 2) 22

Proof. There are 4n — 2 vertices in this graph and they are in 1, ¢, t3, t4. Each of ¢;, 2 <1 < 4,
have n vertices of degree 2n — 4 and ¢, have n — 2 vertices of degree 3n. By the structure of the
graph I in 2.1, the matrix of the vertex degree namely D, of this graph is:

2n -2, 0

D= 0 3nl, o
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and the adjacent matrix of the graph has the form:

X, 0 0 J
0o X, 0 J
A= o 0 X, J
J J J 0
By Lemma 2.1, each vertex in every ¢; (2 < i < 4), is connected to the other vertices except its

inverse element and itself, and so,

J—1 J—1I
X= {J—I J—I}’

such that / and J are square matrices of order g in X. So,

Y, 0 0 —J

0 Y, O —J

0 0 Y, —J |’
—J —=J —=J 3nl,_»

L=D—-A=

such that,
v (2n —3)[ —J I1—-J
o I1—-J (2n—=3)—J|"
Hence,
Z J J 0
J Z J 0
Ld=1\; 72 o
0 0 0 3nl+J
We have
A (2n —3)I I

I (2n—3)I|’

in which the order of I is equal to 7. Now we obtain

det(L + J) = det B x det C, (10)
where C' = 3nl,,_s + J,_2 and
Z J J
B=\|J Z J
J J Z
Therefore,
det C =2(3n)"3(2n — 1) (11)

and by using Theorem 1.1, we have

det B = det Z x det(D — JZ'J), (12)
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where,
zZ J

o=[7 7

and
det Z = (4(n —1)(n —2))%. (13)
Also,
Zfl . 1 (2n - 3)[% —[%
S @n=32—-1| —Ix  (2n-=-3)I:

and SO, JZ_I = mt]%lxn and JZ_IJ = ﬁJQnXZn- SO,

G H
J— -1 —
D—-Jz7J {H G} , (14)
such that, H = 2(’7‘;_21) J and
Gu G
G = ,
[Gm GzJ
Where, G11 = G22 = (2n — 3)[ — mg] and G12 = G21 =] — ﬁj
By using elementary row or column operations in G we have
B 1 |m=1)(4n—-6)1 —nJ 4(n—-2)(1—n)l
det @ = det(55 { M= 2)(1—m)I  8(n—1)(n—2)1|
= 8(n—1)(n- 2))%m det(2(n — 1)21 — nJ).
Since,
det(2(n — 1)*I —nJ) =2272(n — 1)" %(n — 2)(3n — 2),
then
det G =2""%(n—1)2%(n—2):(3n — 2). (15)

By Theorem 1.1, G~ is as follows:

Gl G + (G Gu)(G/Gn) (GG =G Gra(G/Gi) ™!
—(G/Gn) GG (G/Gn)™! ’

such that, G/G11 = G11 — G12G1'G1a. Therefore,

1 1 n
D =39 T o9 =9

G1_11 -
and G =1— ﬁl Then:

7 1 n(2n? — 15n + 14)
Gl Gz = (55 (20 - =
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and
Gt — GGGy = 21 gnl)_(”g_ 2 ((n— 1)1 - )
Now, we have 8(n— 1)(n — 2) o
Gl = =5, g (= D=5,
and 3 o
(/0™ = gy (20— 3+ 3oy
Therefore,
o1 1 (l(Qn —-3)I -1 ] n 2n J)
4(n—1)(n—2) -1 (2n=3)I| 3n-2"7"

Also, HG™'H = 5522 ] and

iy [@n=3)I I 2
G-HG HF‘{ I (2n — 3)I In —277

By using elementary row or column operations, we have

2’!’L

det(G — HG'H) = G2

(n—2) " (n—-1)>2"12n-1)

By relation 14, we get
det(D — JZ71J) = det G x det(G — HG 'H).
Then, by relations 15 and 16, we have
det(D — JZ71J) =2*""2(n — 1)"3(n — 2)""?(2n — 1).
Also, from relations 12, 13 and 17, we obtain
det B =2""2(n—1)% 3(n—2)22(2n — 1)
and by relations 10, 11 and 18, we have

det(L + J) = 22" 1(3n)" 3 (n — 1) 7 3(n — 2) 2 2(2n — 1)?,

det(L+J)

and from replacing 19 in k = n—2)2 °

we get

K(Tar) = 2273(3n)" 3 (n — 1)F 3(n — 2) 22

Corollary 4.2. Let M = M(G,2), where G = Da,,. Then k(I'¢) divides (I ).
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Proof. By Example 1 in [4], the non-commuting graph of G = D,,,, when in is odd, is a split

graph and ' = IV, where I is an independent set with n — 1 vertices and C' = K,,. So, the
degree matrix of I'¢ has the form:

o (Qn - 2)]71—1 0
D= [ 0 nl,

and the adjacency matrix of I'; is equal to:

J—1 J
=150
So,
B 2n-DI-J —J
L_D_A_{ —J nl}
and

(@2n—=2)1 0
L+J_{ 0 nl+J|

Thus, det(L + J) = det((2n — 1)I) x det(nl + J) and this gives us:
det(L + J) = (2n — 1)"" "2,
Therefore,
det(L + J)
(2n — 1)?
By Theorem 4.2, (T'y;) = (2n—1)*"=Y(n—1)%(3n)"~2. Hence, the proof is complete and x(I's)
divides (L"), where n is an odd integer.

Now, let n be an even integer. Then ' = K,,_» V.S, where S is a strongly regular graph with
parameters (n,n — 2,n — 4,n — 2). Also, the degree matrix, D, of I' is equal to:

D:{@n—QI 01

k(Tq) = = (2n —1)"1n" 2

0 nl

and the adjacency matrix of [';, namely A, has the form:

X J
=15
where,
J—1 J—-1
X_{J—I J—]}’
in which, I and J are of order % So,
Y -—-J
L_D_A_[—J n[}’
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where,
v (2n —3)[ —J I—J
N I1—J (2n—=3)—J|°
Hence,
Z 0
L= [o nI+J} :
where,

g (2n —3)I I
- I (2n—3)I|"
Since, det(L + J) = det Z x det(nl + J), det Z = (4(n — 1)(n —2))2 and det(nl + J) =
n"3(2n — 2), then
det(L +J) =2""'n"3(n — 1)2H (n — 2)2.
Therefore,
det(L + J)
(2n — 2)?
Also, by Theorem 4.3, we have

k(Tq) = = 2" I3 — 1)2 7 (n — 2)5.

k(o) = 2273(3n)" 3 (n — 1)7 3(n — 2) 22

This proves that x(I'¢) divides x(I'y/). O

5. Conclusion

In this research work, we studied some properties of the non—commuting graph of a class
of finite Moufang loops. Also, we proved that the multiple complete-like graphs and the non-
commuting graph of Chein loops of the form M (D,,,2) are perfect, and both graphs are non
chordal. Finally, we characterized when the non-commuting graph of Moufang loop M (G, 2) is
3-splite and we give the energy of generalized and multiple splite-like graphs. In future, we will try
to study the similar graph properties of the non—commuting graph for the simple Moufang loops
and characterize relations between any group GG with the non—commuting graph M (G, 2).
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