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Abstract

In computer science, graphs are used in variety of applications directly or indirectly. Especially
quantitative labeled graphs have played a vital role in computational linguistics, decision making
software tools, coding theory and path determination in networks. For a graph G(V,E) with the
vertex set V and the edge set E, a vertex k-labeling φ : V → {1, 2, . . . , k} is defined to be an edge
irregular k-labeling of the graph G if for every two different edges e and f their wφ(e) 6= wφ(f),
where the weight of an edge e = xy ∈ E(G) is wφ(xy) = φ(x) +φ(y). The minimum k for which
the graph G has an edge irregular k-labeling is called the edge irregularity strength of G, denoted
by es(G). In this paper, we determine the edge irregularity strengths of some chain graphs and
the join of two graphs. We introduce a conjecture and open problems for researchers for further
research.
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1. Introduction

A graphG(V,E) with the vertex set V and the edge setE is connected if for any pair of vertices
in G there exists a path connecting them. For a graph G, the degree of a vertex v is the number of
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edges incident to v and denoted by d(v). Two vertices are adjacent if and only if there is an edge
between them.

A graph labeling is an assignment of integers to the vertices or edges or both with subject to
certain condition(s). If the domain of the mapping is the set of vertices (or edges), then the labeling
is called a vertex labeling (or an edge labeling). If the domain is V (G) ∪ E(G) then we call the
labeling a total labeling. Thus, for an edge k-labeling φ : E(G) → {1, 2, . . . , k} the associated
weight of a vertex x ∈ V (G) is

wφ(x) =
∑

φ(xy),

where the sum is over all vertices y adjacent to x.
Chartrand et al. [9] introduced edge k-labeling φ of a graph G such that wφ(x) 6= wφ(y) for

all vertices x, y ∈ V (G) with x 6= y. Such labelings were called irregular assignments and the
irregularity strength s(G) of a graph G is known as the minimum k for which G has an irregular
assignment using labels at most k. This parameter has attracted much attention [5, 6, 8, 11].

In 2007, Bača et al. [7] investigated two modifications of the irregularity strength of graphs,
namely a total edge irregularity strength, denoted by tes(G) and a total vertex irregularity strength,
denoted by tvs(G). Some results on total edge irregularity strength and total vertex irregularity
strength can be found in [1, 2, 3, 12, 13].

Motivated by these papers, Ahmad et al. [4] introduced the following irregular labeling: A ver-
tex k-labeling φ : V → {1, 2, . . . , k} is defined to be an edge irregular k-labeling of the graph
G if for every two different edges e and f their wφ(e) 6= wφ(f), where the weight of an edge
e = xy ∈ E(G) is wφ(xy) = φ(x) + φ(y). The minimum k for which the graph G has an edge
irregular k-labeling is called the edge irregularity strength of G denoted by es(G).

The following theorem that is proved in [4], establishes a lower bound for the edge irregularity
strength of a graph G.

Theorem 1.1. [4] Let G = (V,E) be a simple graph with maximum degree ∆ = ∆(G). Then,

es(G) ≥ max

{⌈
|E(G)|+ 1

2

⌉
,∆(G)

}
.

In [4] it is shown that for a path Pn, n ≥ 2, es(Pn) = dn
2
e, for a starK1,n, n ≥ 1, es(K1,n) = n,

for a double star Sm,n, 3 ≤ m ≤ n, es(Sm,n) = n and for the Cartesian product of two paths Pn
and Pm,m, n ≥ 2, es(Pn2Pm) = d2mn−m−n+1

2
e. I. Tarawneh et al. [14, 15] determined the edge

irregularity strength of the corona product of graphs with paths and cycle with isolated vertices.

2. Edge irregularity strength of chain graphs

A chain graph is a graph with blocks B1, B2, . . . , Bn such that for every i, Bi and Bi+1 have a
common vertex in such a way that the block-cut- vertex graph is a path. We will denote the chain
graph with n blocks B1, B2, . . . , Bn by C[B1, B2, . . . , Bn]. If B1 = B2 = · · · = Bn = B. we will
write C[B1, B2, . . . , Bn] as C[B(n)]. Suppose that c1, c2, . . . , cn−1 are the consecutive cut vertices
of C[B1, B2, . . . , Bn]. In the next theorem, we study the edge irregularity strength of chain graphs
whose blocks are combination of C4.
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Theorem 2.1. For n ≥ 2, the edge irregularity strength of C[C
(n)
4 ] is 2n+ 1.

Proof. Let us consider the vertex set and the edge set of C[C
(n)
4 ] are

V (C[C
(n)
4 ]) ={x0, y0} ∪ {xi1, xi2 : 1 ≤ i ≤ n} ∪ {c1, c2, . . . , cn−1}

E(C[C
(n)
4 ]) ={cixi1, cixi2, cixi+1

1 , cix
i+1
2 : 1 ≤ i ≤ n− 1} ∪ {x0x11, x0x12, y0xn1 , y0xn2}.

According to the Theorem 1.1, es(C[C
(n)
4 ]) ≥ max

{⌈
4n+1

2

⌉
, 4
}

= 2n + 1, for n ≥ 2. For the
converse, we define a vertex labeling φ as follows:

φ(x0) = 1, φ(y0) = 2n+ 1, φ(ci) = 2i+ 1, for 1 ≤ i ≤ n− 1,
φ(xi1) = 2i− 1, φ(xi2) = 2i, for 1 ≤ i ≤ n.

Since wφ(x0x
1
1) = 2, wφ(x0x

1
2) = 3, wφ(y0x

n
1 ) = 4n,wφ(y0x

n
2 ) = 4n + 1 and wφ(cix

i
1) =

4i, wφ(cix
i
2) = 4i + 1, wφ(cix

i+1
1 ) = 4i + 2, wφ(cix

i+1
2 ) = 4i + 3, for 1 ≤ i ≤ n − 1. It is a

routine matter to verify that all vertex labels are at most 2n+ 1, and the edge weights form the set
of different integers, namely {2, 3, 4, . . . , 4n+1}. Thus, the labeling φ is the desired edge irregular
(2n+ 1)-labeling. This completes the proof.

From the Theorem 2.1, we proposed the following conjecture:

Conjecture 1. For n ≥ 2,m ≥ 5, the edge irregularity strength of C[C
(n)
m ] is

⌈
nm+1

2

⌉
.

We denote bymKn-path a chain graph withm blocks where each block is identical and isomor-
phic to the complete graph Kn. We consider edge irregular k-labelings of mKn-paths for n = 2, 3
and 4. If n = 2 then mK2-path ∼= Pm + 1. It is well known that Pn has an edge irregular dn

2
e-

labeling. Consequently, es(Pn) = dn
2
e. If n = 3, then mK3-path∼= C[C

(n)
3 ]. In the next theorem,

we determine the bounds for edge irregularity strength of mK3-path.

Theorem 2.2. If Hm is a mK3-path, then
⌈
3m+3

2

⌉
≤ es(Hm) ≤ 2m+ 1.

Proof. Let us consider the vertex set and the edge set of Hm(∼= mK3-path):

V (Hm) ={xi : 1 ≤ i ≤ m+ 1} ∪ {yi : 1 ≤ i ≤ m},
E(Hm) ={xixi+1, xiyi, yixi+1 : 1 ≤ i ≤ m}.

Observe that the graph Hm has 2m+ 1 vertices, 3m edges and ∆(Hm) = 4, for m ≥ 2. According
to the Theorem 1.1, es(Hm) ≥ max

{⌈
3m+1

2

⌉
, 4
}

=
⌈
3m+1

2

⌉
, for m ≥ 2. Since every block is a

complete graph K3, therefore under every edge irregular labeling no couple of adjacent vertices
can be assigned by the same label. This implies that the smallest edge weight 2 is not possible. So
if the smallest edge weight is 3 then the largest edge weight will be at least 3m + 2. Since each
edge weight is a sum of two labels, at least one label is at least

⌈
3m+2

2

⌉
, as 3m + 2 is divisible by

2, when m is even, therefore the label of both end vertices of largest edge weight will be
⌈
3m+2

2

⌉
,

which is not possible because no couple of adjacent vertices can be assigned by the same label.
Therefore, at least one label is at least

⌈
3m+3

2

⌉
, form even. Form odd,

⌈
3m+2

2

⌉
=
⌈
3m+3

2

⌉
. Hence,

es(Hm) ≥
⌈
3m+3

2

⌉
.

For the upper bound, we define a vertex labeling φ1 as follows:
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φ1(x1) = 1, φ(xi) = 2i− 2, for 2 ≤ i ≤ m+ 1 and φ1(yi) = 2i+ 1, for 1 ≤ i ≤ m.

Sincewφ1(x1x2) = 3, wφ1(x1y1) = 4, wφ1(xixi+1) = 4i−2, wφ1(xiyi) = 4i−1, for 2 ≤ i ≤ m and
wφ1(yixi+1) = 4i+1, for 1 ≤ i ≤ m, so the edge weights are distinct for all pairs of distinct edges.
Thus, the vertex labeling φ1 is an optimal edge irregular (2m+1)-labeling i. e. es(Hm) ≤ 2m+1.
This completes the proof.

Open Problem 1. Determine the edge irregularity strength of a mK3-path for m ≥ 2.

Theorem 2.3. If G is a mK4-path, then the edge irregularity strength of G is 3m+ 2.

Proof. Let us consider the vertex set and the edge set of G(∼= mK4-path):

V (G) ={xi : 1 ≤ i ≤ m+ 1} ∪ {yi, zi : 1 ≤ i ≤ m}
E(G) ={xixi+1, xiyi, xizi, yizi, yixi+1, zixi+1 : 1 ≤ i ≤ m}.

Observe that the graphG has 3m+1 vertices, 6m edges and ∆(G) = 6. According to the Theorem
1.1, es(G) ≥ max

{⌈
6m+1

2

⌉
, 6
}

= 3m+ 1, for m ≥ 2. Since every block is a complete graph K4,
therefore under every edge irregular labeling no two adjacent vertices can be assigned by the same
label. This implies that the smallest edge weight 2 is not possible. So if the smallest edge weight
is 3 then the largest edge weight will be at least 6m + 2. Since each edge weight is a sum of two
labels, at least one label is at least

⌈
6m+2

2

⌉
= 3m + 1, as 6m + 2 is divisible by 2, therefore the

label of both end vertices of largest edge weight will be 3m+ 1, which is not possible because no
two adjacent vertices can be assigned by the same label. Therefore, at least one label is at least
3m+ 2. For the converse, we define the vertex labeling φ2 as follows:

φ2(xi) = 3i− 1, for 1 ≤ i ≤ m+ 1 and φ2(yi) = 3i, φ2(zi) = 3i− 2 for 1 ≤ i ≤ m.

Sincewφ2(xixi+1) = 6i+1, wφ2(xiyi) = 6i−1, wφ2(xizi) = 6i−3, wφ2(yizi) = 6i−2, wφ2(yixi+1) =
6i + 2, and wφ2(zixi+1) = 6i, for 1 ≤ i ≤ m. It is a routine matter to verify that all ver-
tex labels are at most 3m + 2. and the edge weights form the set of different integers, namely
{3, 4, 5, . . . , 6m+2}. This implies that es(G) ≤ 3m+2, form ≥ 2. This completes the proof.

Open Problem 2. Determine the edge irregularity strength of a mKn-path for m ≥ 2 and n ≥ 5.

3. Edge irregularity strength of join of two graphs

There are several ways to produce a new graph from a given pair of graphs. For two vertex-
disjoint graphs G and H, G ∪H is disconnected graph with the vertex set V (G) ∪ V (H) and the
edge set E(G)∪E(H). The join G+H consists of G∪H and all the edges joining a vertex of G
and a vertex of H. For detail see [10].

Theorem 3.1. For n ≥ 3, the edge irregularity strength of G = K1,n +K1 is n+ 2.
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Proof. Let G = K1,n + K1 be a graph with the vertex set V (G) = {x, y} ∪ {xi : 1 ≤ i ≤ n}
and the edge set E(G) = {xy, xxi, yxi : 1 ≤ i ≤ n}. Then |V (G)| = n + 2, |E(G)| = 2n + 1
and ∆(G) = n + 1. According to the Theorem 1.1 es(G) ≥ max

{⌈
2n+2

2

⌉
, n+ 1

}
= n + 1.

Since each two adjacent vertices in G are a part of a complete graph K3, therefore under every
edge irregular labeling the all vertices in G must contain different labels. Since there are n + 2
vertices in G, then the maximum vertex label is at least n+ 2. Therefore es(G) ≥ n+ 2. To prove
the equality, it suffices to prove the existence of an optimal edge irregular (n + 2)-labeling. Let
φ : V (G)→ {1, 2, . . . , n+ 2} be a vertex labeling such that

φ(x) = 1, φ(y) = n+ 2, φ(xi) = i+ 1, for 1 ≤ i ≤ n.

Since wφ(xy) = φ(x) + φ(y) = n + 3 and wφ(xxi) = φ(x) + φ(xi) = i + 2, wφ(yxi) =
φ(y) + φ(xi) = n + 3 + i, for 1 ≤ i ≤ n, so the edge weights are distinct for all edges. Thus, the
vertex labeling φ is an optimal edge irregular (n+ 2)-labeling. This completes the proof.

When m = 1 and n ≥ 1, Pm + Kn is a star K1,n, the edge irregularity strength of star is
determined in [4] i. e es(K1,n) = n. When m = 2 and n ≥ 1, Pm + Kn is isomorphic to
K1,n + K1, the edge irregularity strength of K1,n + K1 is determined in Theorem 3.1. Therefore
es(Pm + Kn) = n + 2, for m = 2. In the next theorem, we determine the bounds of the edge
irregularity strength of Pm +Kn for m ≤ 6 and n ≥ 3.

Theorem 3.2. For 3 ≤ m ≤ 6 and n ≥ 3,

⌈
m(n+ 1)

2

⌉
≤ es(Pm +Kn) ≤


2n+ 2, for m = 3,

3n+ 3, for m = 4,

4n+ 3, for m = 5,

5n+ 4, for m = 6.

Proof. Let us consider the path Pm with V (Pm) = {x1, x2, . . . , xm}, E(Pm) = {xixi+1 : i ∈
[1,m− 1]}. Then the vertex set and the edge set of Pm +Kn are

V (Pm +Kn) ={y1, y2, . . . , yn} ∪ {x1, x2, . . . , xm},
E(Pm +Kn) ={xixi+1 : i ∈ [1,m− 1]} ∪ {xiyj : i ∈ [1,m], j ∈ [1, n]}.

According to the Theorem 1.1 es(Pm + Kn) ≥ max
{⌈

m(n+1)
2

⌉
, n+ 2

}
= dm(n+1)

2
e, for m ≥ 3.

Since each two adjacent vertices in Pm + Kn are a part of complete graph K3, therefore under
every edge irregular labeling the all vertices in Pm +Kn must contain different labels. For m = 2,
Pm + Kn

∼= K1,n + K1, therefore the edge irregular labeling φ of P2 + Kn is already defined in
Theorem 3.1. Let us define φ(x3) = 2n+ 2, φ(x4) = 3n+ 3, φ(x5) = 4n+ 3 and φ(x6) = 5n+ 4.
By using Theorem 3.1 and the labels of x3, x4, x5, x6. We obtain the vertex labeling φ of Pm +Kn,
for 2 ≤ m ≤ 6. Since wφ(x1x2) = n + 3, wφ(x2x3) = 3n + 4, wφ(x3x4) = 5n + 5, wφ(x4x5) =
7n + 6, wφ(x5x6) = 9n + 7 and wφ(x1yj) = j + 2, wφ(x2yj) = n + 3 + j, wφ(x3yj) = 2n + 3 +
j, wφ(x4yj) = 3n+ 4 + j, wφ(x5yj) = 4n+ 4 + j, wφ(x6yj) = 5n+ 5 + j, for 1 ≤ j ≤ n, so the
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edge weights are distinct for all edges. Thus, the vertex labeling φ is the required edge irregular
labeling, which shows that

es(Pm +Kn) ≤


2n+ 2, for m = 3,

3n+ 3, for m = 4,

4n+ 3, for m = 5,

5n+ 4, for m = 6.

This completes the proof.

Open Problem 3. Find the edge irregularity strength of Pm +Kn for any n ≥ 1 and m ≥ 7.

Theorem 3.3. Let H1 = K1,m and H2 = K1,n. Let V (H1) = {x, x1, x2, . . . , xm} and V (H2) =
{y, y1, y2, . . . , yn} with d(x) = m, d(y) = n. Then the graphG obtained by joining x to all vertices
of H2 and y to all vertices of H1 has the edge irregularity strength m+ n+ 2.

Proof. Let us consider the vertex set V (G) = {x, y, xi, yj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the
edge set E(G) = {xy, xxi, xyj, yyj, yxi : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Suppose that m ≤ n.
This implies that the maximum degree ∆(G) = n + 1. According to the Theorem 1.1, es(G) ≥
max

{⌈
2m+2n+2

2

⌉
, n+ 1

}
= m + n + 1. Since each two adjacent vertices in G are a part of

complete graph K3, in this way under every edge irregular labeling the smallest edge weight has
to be at least 3 and the largest edge weight has to be at least 2m + 2n + 3. Since the edge weight
2m + 2n + 3 is the sum of two labels, so at least one label is at least

⌈
2m+2n+3

2

⌉
= m + n + 2.

Therefore es(G) ≥ m+ n+ 2.
To prove the equality, it suffices to prove the existence of an optimal edge irregular (m+n+2)-

labeling. Let φ : V (G)→ {1, 2, . . . ,m+ n+ 2} be a vertex labeling such that

φ(x) = 1, φ(y) = m+ n+ 2,
φ(xi) = i+ 1, for 1 ≤ i ≤ m,

φ(yj) = m+ 1 + j, for 1 ≤ j ≤ n.

Since wφ(xy) = φ(x) + φ(y) = m+ n+ 3, wφ(xxi) = φ(x) + φ(xi) = i+ 2, wφ(yxi) = φ(y) +
φ(xi) = m+n+ 3 + i, for 1 ≤ i ≤ m and wφ(yyi) = φ(y) +φ(yj) = 2m+n+ 3 + j, wφ(xyj) =
φ(x) + φ(yj) = m+ 2 + j, for 1 ≤ j ≤ n, so the edge weights are distinct for all edges. Thus, the
vertex labeling φ is an optimal edge irregular (m+ n+ 2)-labeling. This completes the proof.
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