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Abstract

Let G be a graph with an edge k-coloring γ : E(G)→ {1, . . . , k} (not necessarily proper). A path
is called a rainbow path if all of its edges have different colors. The map γ is called a rainbow
coloring if any two vertices can be connected by a rainbow path. The map γ is called a strong
rainbow coloring if any two vertices can be connected by a rainbow geodesic. The smallest k for
which there is a rainbow k-coloring (resp. strong rainbow k-coloring) on G is called the rainbow
connection number (resp. strong rainbow connection number) ofG, denoted rc(G) (resp. src(G)).
In this paper we generalize the notion of ”color codes” that was originally used by Chartrand et al.
in their study of the rc and src of complete bipartite graphs, so that it now applies to any connected
graph. Using color codes, we prove a new class of lower bounds depending on the existence of sets
with common neighbours. Tight examples are discussed, involving the amalgamation of complete
graphs, generalized wheel graphs, and a special class of sequential join of graphs.
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1. Introduction

In 2008, Chartrand et al. introduced rainbow colorings, as a way to strengthen connectedness.
A coloring on a graph G refers to any map γ : E(G) → {1, . . . , k}, which is also called edge-
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coloring or k-coloring. We write x
i−y to say xy ∈ E(G) and γ(xy) = i. A path

v1
c1−v2

c2− · · ·
cn−1− vn (1.1)

with color sequence c1, c2, · · · , cn−1 is said to be a rainbow path if all of its edges have different
colors. A coloring is called a rainbow coloring if any two vertices can be connected by a rainbow
path. A trivial way to produce a rainbow coloring on any connected graph is using |E(G)| colors
to give each individual edge its own color. This may not be efficient, e.g. two colors are enough to
rainbow-color C4 (put 1 and 2 alternately). The smallest k for which there is a rainbow k-coloring
on G is called the rainbow connection number of G, denoted by rc(G).

These notions can be developed further by considering the notion of a geodesic, which is a
shortest path between two vertices x, y in a graph G. The distance dG(x, y) is defined as the
length of any such shortest path. The diameter of G, denoted by diam(G), is defined as the largest
distance between pairs of vertices of G. A coloring is called a strong rainbow coloring if any
two vertices can be connected by a rainbow geodesic. The smallest k for which there is a strong
rainbow k-coloring onG is called the strong rainbow connection number ofG, denoted by src(G).

Chartrand et al. [1] noted the following chain,

diam(G) ≤ rc(G) ≤ src(G) ≤ |E(G)|. (1.2)

Some equality cases are known. The complete graphs are the only graphs whose rc and src are
equal to 1, and trees are the only graphs whose rc and src are equal to the number of edges in those
graphs (see [1]). However, it remains open to characterize when rc(G) = diam(G).

Li and Sun [5] tightened the upper bound to src(G) ≤ |E(G)| − 2t, where t is the number of
edge-disjoint triangles. Schiermeyer [7] observed a different lower bound rc(G) ≥ n1(G), where
n1 is the number of vertices of degree one. The reader is referred to [6] for a more detailed survey.

In this paper, we prove some lower bounds based on the presence of sets with common neigh-
bours. For a non-empty Q ⊆ V (G), its common neighborhood is denoted

CN(Q) =
⋂
v∈Q

N(v) (1.3)

A new graph Q∗ (called the CN-graph of Q) is defined with V (Q∗) = Q such that v, w ∈ Q are
adjacent in Q∗ if and only if they are already adjacent in G, or CN(v, w) 6= CN(Q). In Section
2.1 we prove that if CN(Q) 6= ∅ then

src(G) ≥ max

{
β0(Q

∗),
|Q|
ω(Q∗)

} 1

|CN(Q)|
(1.4)

where β0 is the vertex-independence number, and ω is the clique number. These parameters are
described e.g. in [4]. We also prove a version of (1.4) for multiple sets. In Section 2.2 we prove
similar bounds for rc. In Section 2.3 we discuss some miscellaneous bounds that will be useful
in our discussion of tight examples involving the amalgamation of complete graphs, generalized
wheel graphs, and a class of sequential join.
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We use color codes. This notion was used in [1] as a tool to study the rc and src of complete bi-
partite graphs. Now we adapt it to any connected graph. Given a coloring γ : E(G)→ {1, . . . , k}
(not necessarily rainbow) and a non-empty set Q ⊆ V (G) with non-empty common neighborhood
CN(Q) = {t1, . . . , tb}, we define the color code of a vertex v ∈ Q as follows,

code(v) = (γ(vt1), γ(vt2), · · · , γ(vtb)). (1.5)

The tuple code(v) depends on the set Q that we consider v a member of, as illustrated in Figure 1.

Figure 1. If we consider a ∈ {a, d}, code(a) is a 3-tuple. It is a 2-tuple if we consider a ∈ {a, d, f}.

To avoid ambiguity, we also refer to the tuple (γ(vt1), γ(vt2), · · · , γ(vtb)) as the code of v with
respect to {t1, . . . , tb}. Let code(Q) = {code(v)|v ∈ Q}. Since every code is a b-tuple, we have

|code(Q)| ≤ kb. (1.6)

Lemma 1.1. Let γ be a coloring on G, and Q ⊆ V (G) with CN(Q) 6= ∅. Then there is a rainbow
geodesic between two non-adjacent vertices in Q∗ if and only if their color codes are different.

Proof. Let v, w ∈ Q but vw 6∈ E(Q∗). Any v−w geodesic has the form v−t−w with t ∈ CN(Q).
So there is a rainbow v−w geodesic if and only if there is a t ∈ CN(Q) with γ(vt) 6= γ(wt).

A set is called co-neighboring if any two of its vertices have precisely the same (non-empty)
neighborhood. An independent set has any two of its vertices non-adjacent.

Lemma 1.2. Let γ be a coloring on G, Q ⊆ V (G) co-neighboring, and CN(Q) independent. If
v, w ∈ Q and code(v) = code(w), then the length of any rainbow path between them is at least 4.

Proof. Since Q is co-neighboring, vw 6∈ E(G) and N(v) = N(w) = CN(Q). So vw 6∈ E(Q∗).
By Lemma 1.1 there are no rainbow v−w geodesics. Let L : v−x− · · ·−y−w be a rainbow path
with x ∈ N(v) and y ∈ N(w). Then x, y ∈ CN(Q) and x 6= y (since L is not geodesic). So, the
length of L is at least 2 + dG(x, y) ≥ 4 because x, y are non-adjacent.

Lemma 1.3. Let γ be a coloring on G, and Q ⊆ V (G) with CN(Q) 6= ∅. If

|code(Q)| < max

{
β0(Q

∗),
|Q|
ω(Q∗)

}
, (1.7)

then there are non-adjacent vertices in Q∗ with the same color code.
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Proof. Let b = |CN(Q)|. If |code(Q)| < β0(Q
∗), then let X ⊆ Q be an independent set in Q∗

with |X| = β0(Q
∗); since |X| > |code(Q)|, some two v, w ∈ X have the same code.

If |code(Q)| < |Q|
ω(Q∗)

, then |code(Q)|ω(Q∗) < |Q| so at least ω(Q∗) + 1 vertices in Q have the

same code; if X is a set of such vertices, then some v, w ∈ X are non-adjacent in Q∗.

Later we deal with multiple subsets. The problem is how to compare the codes in different
subsets. Let us call two disjoint sets Q1, Q2 ⊆ V (G) CN-bridged if for every v ∈ Q1 and w ∈ Q2

we have v andw non-adjacent inG, and any geodesic between them has the form v−x− · · ·−y−w
with x ∈ CN(Q1) and y ∈ CN(Q2). A diagonal tuple has the form (i, i, . . . , i).

Lemma 1.4. Let Q1, . . . , Qp ⊆ V (G) with p ≥ 2 and |CN(Qi)| = b for all i ∈ {1, . . . , p}, and let
γ be a k-coloring on G. Suppose there is a natural number r that satisfies the following condition,

r ≤ k ≤ b

√√√√1

p

(
r − 1 +

p∑
i=1

max

{
β0(Q∗i ),

|Qi|
ω(Q∗i )

})
. (1.8)

Then one of the following must hold:

(1) For some i ∈ {1, . . . , p}, there are non-adjacent vertices in Q∗i with the same code.
(2) For some i, j ∈ {1, . . . , p} with i 6= j, there is a diagonal tuple in code(Qi) ∩ code(Qj).

Proof. Suppose (1) fails to hold. Let A and B be the set of diagonal and non-diagonal b-tuples
of numbers from {1, . . . , k}, respectively. Then |A| = k and |B| = kb − k. We need to show
code(Qi) ∩ code(Qj) ∩ A 6= ∅ for some i 6= j. Assuming otherwise, for all i 6= j we have

0 = |code(Qi) ∩ code(Qj) ∩ A| ≥ |code(Qi) ∩ A|+ |code(Qi) ∩ A| − |A|
≥ |code(Qi)| − |B|+ |code(Qj)| − |B| − |A|
= |code(Qi)|+ |code(Qj)| − 2kb + k

so 2kb − k ≥ |code(Qi)| + |code(Qj)|. Summed up,
(
p
2

)
(2kb − k) ≥ (p − 1)

∑p
i=1 |code(Qi)|.

Hence

kb − 1

p

p∑
i=1

|code(Qi)| ≥
k

2
≥ r

2
. (1.9)

Since (1) fails, we have |code(Qi)| ≥ max

{
β0(Q

∗
i ),

|Qi|
ω(Q∗i )

}
for 1 ≤ i ≤ p by Lemma 1.3. So

r

2
≤ kb − 1

p

p∑
i=1

|code(Qi)| ≤ kb − 1

p

p∑
i=1

max

{
β0(Q

∗
i ),
|Qi|
ω(Q∗i )

}
≤ r − 1

p
(1.10)

where the rightmost inequality in (1.10) follows from the rightmost inequality in the hypothesis
(1.8). Since p ≥ 2, we get r

2
≤ r−1

p
≤ r−1

2
, a contradiction.
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2. Main Results

2.1. Lower bounds for src
Theorem 2.1. Let G be a connected graph and Q ⊆ V (G) with CN(Q) 6= ∅. Then

src(G) ≥ max

{
β0(Q

∗),
|Q|
ω(Q∗)

} 1

|CN(Q)|
. (2.1)

Proof. Let b = |CN(Q)|. Suppose src(G) ≤ k, where k =

⌈
b

√
max

{
β0(Q∗),

|Q|
ω(Q∗)

}⌉
− 1.

Under a strong rainbow k-coloring on G, we have |code(Q)| ≤ kb < max
{
β0(Q

∗), |Q|
ω(Q∗)

}
. So

Lemma 1.3 applies, and we get a contradiction with Lemma 1.1.

If we have several subsets Q1, . . . , Qp ⊆ V (G), then an application of Theorem 2.1 to each
individual set gives p lower bounds, which can be averaged to

src(G) ≥ 1

p

p∑
i=1

b

√
max

{
β0(Q∗i ),

|Qi|
ω(Q∗i )

}
. (2.2)

The following is a better bound that incorporates all the subsets simultaneously, under the addi-
tional assumption that the sets are pairwise CN-bridged. Moreover, the bound can also make use
of a previously known lower bound for src and possibly improve it to a sharper bound.

Theorem 2.2. Let G be a connected graph, p ≥ 2, and Q1, . . . , Qp ⊆ V (G) be pairwise CN-
bridged sets with |CN(Qi)| = b > 0 for 1 ≤ i ≤ p. If src(G) ≥ r for some r ∈ N, then

src(G) ≥ 1 +

 b

√√√√1

p

(
r − 1 +

p∑
i=1

max

{
β0(Q∗i ),

|Qi|
ω(Q∗i )

}) . (2.3)

Proof. Suppose src(G) ≤ k, where k is the right hand side minus 1. Let γ be a strong rainbow
k-coloring on G. Note that (1.8) holds, so one of the options (1) or (2) in Lemma 1.4 holds. If
(1) holds, Lemma 1.1 is contradicted. So (2) holds. Let v ∈ Qi and w ∈ Qj have the same
diagonal tuple as their code. By CN-bridging, any v−w geodesic has the form v−x− · · ·−y−w
with x ∈ CN(Qi) and y ∈ CN(Qj). But γ(vx) = γ(wy), so this geodesic is not rainbow.

Remark 2.1. Even if we start with the trivial estimate r = 1, this is already stronger than the
average bound (2.2), due to Jensen’s inequality for the concave function f(x) = b

√
x on x ≥ 0 and

the fact that 1 + bxc > x.
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2.2. Lower bounds for rc
We consider analogous version of the previous bounds for rainbow connection number.

Theorem 2.3. Let G be a connected graph and Q ⊆ V (G) a co-neighboring set, with CN(Q)
independent. Then

rc(G) ≥ min

{
4, |Q|

1

|CN(Q)|

}
. (2.4)

Proof. Let b = |CN(Q)|. Suppose rc(G) ≤ k, where k = min{3, d b
√
|Q| e − 1}. Then there is a

rainbow k-coloring γ on G. Since |code(Q)| ≤ kb < |Q|, some two v, w ∈ Q have the same code.
This contradicts Lemma 1.2, since k ≤ 3.

Two sets Q1, Q2 are called adjacent if some vertex in Q1 is adjacent to some vertex in Q2.

Theorem 2.4. Let G be a connected graph, p ≥ 2, and Q1, . . . , Qp ⊆ V (G) be co-neighboring
pairwise non-adjacent sets, with |CN(Qi)| = b > 0 and CN(Qi) independent for 1 ≤ i ≤ p. Let
rc(G) ≥ r for some r ∈ N. Then

rc(G) ≥ min

4, 1 +

 b

√√√√1

p

(
r − 1 +

p∑
i=1

|Qi|

) . (2.5)

Proof. Suppose rc(G) ≤ k, where is the right hand side minus 1. Let γ be a rainbow k-coloring on
G. Note that (1.8) holds, so one of the options (1) or (2) in Lemma 1.4 holds. If (1) holds, Lemma
1.2 is contradicted because k ≤ 3. So (2) holds. Let v ∈ Qi and w ∈ Qj have the same diagonal
tuple as their code, with i 6= j. In any path v−x− · · ·−y−w, we have x ∈ N(v) = CN(Qi) and
y ∈ N(w) = CN(Qj) since Qi and Qj are co-neighboring sets. Since v, w are non-adjacent, the
length of this path is at least two. But γ(vx) = u = γ(wy), so the path is not rainbow.

2.3. Miscellaneous Bounds
Now we prove some additional bounds that will be useful in our discussion in Section 3. We

call G an s-strong graph if G is connected and every rainbow s-coloring on G is strong rainbow.
For example, any connected graph is 1-strong, and any tree is s-strong for every s ∈ N.

Theorem 2.5. Let G be an s-strong graph. Then

rc(G) ≥ min{s+ 1, src(G)} (2.6)

with equality if and only if rc(G) ≤ s+ 1.

Proof. Suppose rc(G) ≤ k, where k = min{s, src(G)− 1}. Then there is a rainbow k-coloring γ
on G. Since k ≤ s, γ is a strong rainbow coloring. This contradicts k < src(G).

If equality occurs, then rc(G) = min{s + 1, src(G)} ≤ s + 1. Conversely, if rc(G) ≤ s + 1,
since rc(G) ≤ src(G) then we have rc(G) ≤ min{s+ 1, src(G)}, so equality occurs.
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Later we need 2-strong and 3-strong graphs.

Theorem 2.6. Any connected graph is 2-strong. Therefore,

rc(G) ≥ min{3, src(G)} (2.7)

for any connected graph G, with equality if and only if rc(G) ≤ 3.

Proof. Any path of length two between non-adjacent vertices must be a geodesic. So, any rainbow
2-coloring is strong rainbow.

Theorem 2.7. Any connected (C3, C5)-free graph is 3-strong. Therefore, if G is connected and
(C3, C5)-free (for example when G is bipartite) then

rc(G) ≥ min{4, src(G)} (2.8)

with equality if and only if rc(G) ≤ 4.

Proof. Suppose there is a rainbow 3-coloring on G that is not strong rainbow. Let v, w ∈ V (G)
be non-adjacent vertices without any rainbow geodesics. Let L be a rainbow v−w path. If the
length of L is two or dG(v, w) = 3, then L will be a geodesic. So the length of L is three and
dG(v, w) = 2. Suppose L : v−x1−x2−w, and let v−x3−w be a geodesic. If x3 ∈ {x1, x2}, then
G contains a C3. If x3 6∈ {x1, x2}, then G contains a C5.

3. Tight Examples

Our examples involve the notion of graph join. Recall that the join of two graphs A and B is a
new graph obtained from their disjoint union by adding a new edge between every vertex of A and
every vertex of B. The resulting graph is denoted by A + B. For example, the complete bipartite
graph Ks,t is a join Ks +Kt of two edgeless graphs.

In the case of a graph join, the CN-graph construction becomes the well-known construction
of graph square. Recall that the square graph of a graph A, denoted by A2, is a new graph with the
same vertex-set as A, but with edge-set E(A2) = {vw : 1 ≤ dA(v, w) ≤ 2}.

Lemma 3.1. Let A and B graphs, and G = A+B. If Q = V (A), then Q∗ = A2.

Proof. Let vw ∈ E(Q∗). Then vw ∈ E(G) or CN(v, w) 6= CN(Q). If vw ∈ E(G) then vw ∈
E(A) ⊆ E(A2). If CN(v, w) 6= CN(Q), there is x ∈ CN(v, w) with x 6∈ CN(Q) = V (B), so
x ∈ V (A) and dA(v, w) ≤ 2.

Conversely, let vw ∈ E(A2). If dA(v, w) = 1 then vw ∈ E(A) ⊆ E(Q∗). If dA(v, w) = 2,
there is a path v−x−w with x ∈ V (A), so x ∈ CN(v, w) but x 6∈ V (B) = CN(Q).
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3.1. Amalgamation of Complete Graphs
Our first example is one in which the β0 lower bound in Theorem 2.1 is stronger than the ω

lower bound. The amalgamation of (disjoint) complete graphs Km1 , . . . , Kmt , denoted by

Amal(Km1 , . . . , Kmt) (3.1)

is a new graph obtained by choosing one vertex from each Kmi
and identifying those vertices as a

single vertex (called the central vertex). The rainbow connection number of Amal(Km1 , . . . , Kmt)
when m1 = · · · = mt ≥ 3 was studied by Fitriani and Salman [2]. Now we settle the general case.

Theorem 3.1. If m1, . . . ,mt, t ≥ 2 and u is the number of i ∈ {1, . . . , t} with mi = 2, then

(1) src(Amal(Km1 , . . . , Kmt)) = t.

(2) rc(Amal(Km1 , . . . , Kmt)) =

{
2, if t = 2,

max{3, u} otherwise.

Proof. Let G = Amal(Km1 , . . . , Kmt). Note that

G =

(
t⋃

i=1

Kmi−1

)
+K1. (3.2)

Let A =
⋃t

i=1Kmi−1 and Q = V (A). By Lemma 3.1, Q∗ = A2 = A because there is no edge
in A between Kmi−1 and Kmj−1 for all i 6= j. So β0(Q∗) = t and ω(Q∗) = max{m1, . . . ,mt}.
By the β0 lower bound in Theorem 2.1, we have src(G) ≥ t. A strong rainbow t-coloring on G is
easily constructed by giving γ(e) = i if e ∈ E(Kmi

). Therefore src(G) = t.
It remains to compute the rc. Since G is not a complete graph, rc(G) ≥ 2. If t = 2, then

rc(G) ≤ src(G) = t = 2 and so rc(G) = 2. If t ≥ 3 and u = t, then G is a tree and
rc(G) = |E(G)| = u = max{3, u}.

Now let t ≥ 3 and u < t. By Theorem 2.6, rc(G) ≥ min{3, t} = 3. By Schiermeyer’s lower
bound, rc(G) ≥ n1(G) = u. So rc(G) ≥ max{3, u}. A rainbow max{3, u}-coloring γ on G can
be produced as follows. First, give all u vertices of degree 1 in G different colors. For all i such
that mi ≥ 3, put γ(e) = 3 for all e ∈ E(Kmi−1), put color 1 on half the edges from Kmi−1 to
K1, and put color 2 on the remaining edges from Kmi−1 to K1. This way, any two non-adjacent
vertices in A can be connected by a rainbow path whose color sequence is i, j, or i, 1, 3, or i, 2, 3,
or i, j where i, j ∈ {1, . . . , u} and j 6= i (see Figure 2 below).
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Figure 2. Illustration of a strong rainbow coloring on Amal(Km1
, . . . ,Kmt

).

3.2. Generalized Wheel Graphs
This is an example in which the ω lower bound in Theorem 2.1 is sharper than β0. The join of

a cycle with any graph, i.e. Cn + H , is called the generalized wheel graphs. This class of graph
has been studied under various labelling schemes [3]. Now we consider the rc and src.

Theorem 3.2. Let n ≥ 3 and H be any graph. Then

(1) rc(Cn +H) = min{3, src(Cn +H)}.
(2) If |V (H)| ≤

⌈
n
3

⌉
, then src(Cn +H) =

⌈(
n
3

) 1

|V (H)|

⌉
.

Proof. (1) By Theorem 2.6 it is enough to prove rc(G) ≤ 3. A rainbow 3-coloring onG = Cn+H
can be produced as follows. Put the color 3 on all edges inCn. Let the cycle be v1−v2− · · ·−vn−v1
in this order. If i is odd, assign color 1 to all vi−H edges. If i is even, assign color 2 to all vi−H
edges. In this way, any two vertices in H can be connected by a rainbow path with color sequence
1, 3, 2, and any two non-adjacent vertices in Cn can be connected by a rainbow path with color
sequence 1, 2 or 3, 1, 2. So this coloring is rainbow, and rc(G) ≤ 3.

(2) Let Q = V (Cn), b = |V (H)|, and k =
⌈
n
3

⌉
. Then Q∗ = C2

n by Lemma 3.1. If n = 3 then
|V (H)| = 1 and G = K4. Now let n ≥ 4, so that G is not a complete graph and src(G) ≥ 2. The
following claim simplifies computation.

Claim:
⌈

b
√

n
3

⌉
= d b
√
k e.

Since n
3
≤ k, we have

⌈
b
√

n
3

⌉
≤ d b
√
k e. From

⌈
b
√

n
3

⌉
≥ b
√

n
3

we have
⌈

b
√

n
3

⌉b ≥ n
3

and so⌈
b
√

n
3

⌉b ≥ k. This implies
⌈

b
√

n
3

⌉
≥ b
√
k, so

⌈
b
√

n
3

⌉
≥ d b
√
k e. The Claim is proved.

If 4 ≤ n ≤ 6, then k = 2 and |V (H)| ∈ {1, 2}, so d b
√
k e = 2 and in this case src(G) = 2.

Now let n ≥ 7. It is not hard to see that β0(C2
n) = bn

3
c and ω(C2

n) = 3. So by the ω lower bound
in Theorem 2.1 we have src(G) ≥

⌈
b
√

n
3

⌉
= d b
√
k e. For the upper bound, we quote Theorem 2.3

in [8] stating that

src(A+B) ≤ max
{

∆(A),
⌈
i(A)

1

|V (B)|

⌉
,
⌈
|V (B)|

1

i(A)

⌉}
(3.3)
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where i(A) is the independent domination number of A, which is the smallest cardinality of a set
of independent (pairwise non-adjacent) vertices that are also dominating (i.e. any other vertex is
adjacent to at least one of them). We apply this with A = Cn and B = H . The following figure
shows that i(Cn) ≤ k.

Figure 3. The marked vertices form an independent dominating set of cardinality k.

Remark 3.1. Regardless of the structure of H , we have rc(Cn + H) = 3 when n is sufficiently
large, as soon as n

3
> 2|V (H)|.

3.3. Sequential Join
This example shows that Theorem 2.2 can be strictly stronger than Theorem 2.1 alone. We

will also see some constructive use of color codes. The sequential join of vertex-disjoint graphs
G1, G2, . . . , Gt is defined as the union

(G1 +G2) ∪ (G2 +G3) ∪ · · · ∪ (Gt−1 +Gt)

denoted by G1 + G2 + · · · + Gt (see e.g. [3]). We consider on a sequential join of the form
mK1 + bK1 + bK1 + mK1. When b = 1 this graph is a tree so its rc and src are already known.
So, we assume b ≥ 2.

Theorem 3.3. Let Gm,b = mK1 + bK1 + bK1 +mK1, where m ≥ 1, b ≥ 2. Let n = b b
√
mc. Then

(1) rc(Gm,b) = min{4, src(Gm,b)}.

(2) n+ 1 ≤ src(Gm,b) ≤ n+ 3.

At least two of the values, namely n+ 1 and n+ 2, can be attained by the src. In fact,

(i) If m ≤ nb − n+
⌊
n
2

⌋
(2b − 1), then src(Gm,b) = n+ 1.

(ii) If m ≥ min
{

(b− 1)b, (n+ 1)b − (n+ 1)
}

, then src(Gm,b) ≤ n+ 2.

(iii) If m ≥ (n+ 1)b − n
2
, then src(Gm,b) = n+ 2.

Proof. Note that nb ≤ m < (n + 1)b. Let Q1 = {v1, . . . , vm} and Q2 = {w1, . . . , wm} be the
vertex set of the left and right mK1, with CN(Q1) = {t1, . . . , tb} and CN(Q2) = {u1, . . . , ub}.

(1) Since Gm,b is bipartite, by Theorem 2.7 it is enough to show rc(Gm,b) ≤ 4. We construct a
rainbow 4-coloring γ onGm,b as follows. Define γ in such a way so that code(vi) = (1, 2, 2, . . . , 2)
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with respect to {t1, . . . , tb}, and code(wi) = (1, 4, 4, . . . , 4) with respect to {u1, . . . , ub}, for all
i ∈ {1, . . . ,m}. The middle part of Gm,b i.e. the subgraph induced by CN(Q1) ∪ CN(Q2), is
a complete bipartite graph bK1 + bK1 = Kb,b whose src is according to [1] equal to d b

√
b e = 2

(because 1 < b < 2b for b ≥ 2). Put a rainbow 2-coloring on the middle part by using the colors 1
and 3. We modify the coloring in the middle part such that γ(t1u1) = 1, γ(t2u1) = 2, γ(t2u2) = 3,
and γ(t1u2) = 4, without destroying rainbow connectivity. Now we prove that γ is rainbow. Let
x, y ∈ V (Gm,b) be non-adjacent.

Case 1: x, y ∈ Q1 (or by symmetry x, y ∈ Q2).
The path x

1−t1
4−u2

3−t2
2−y is rainbow.

Case 2: x ∈ Q1 and y ∈ CN(Q2) (or by symmetry x ∈ CN(Q1) and y ∈ Q2).
The path x

2−t2
3−u2

4−w1
1−u1 is rainbow, and so is x

2−t2−ui for i ∈ {2, . . . , b}.

Case 3: x, y ∈ CN(Q1) (or by symmetry x, y ∈ CN(Q2)).
By construction, there is a rainbow path from x to y.

Case 4: x ∈ Q1 and y ∈ Q2.
The path x

2−t2
3−u2

4−y is rainbow. This completes the proof of (1).

To prove (2) and the remaining statements, we need the following claim.
Claim: Let c ∈ N satisfy m ≤ cb − c+

⌊
c
2

⌋
(2b − 1). Then src(Gm,b) ≤ c+ d, where

d =

{
1, if m ≥ cb − c or c ≥ b,

2, otherwise.
(3.4)

We prove this by constructing a strong rainbow (c + d)-coloring γ on Gm,b. Let m′ ≥ m be
such that cb − c + b c

2
c ≤ m′ ≤ cb − c +

⌊
c
2

⌋
(2b − 1). Construct H = Gm′,b from Gm,b by adding

new vertices, extending Qi into Q′i for all i ∈ {1, 2}. First, we define γ as a coloring on H . Later,
we will erase the new vertices and restrict γ to Gm,b.

We begin by coloring the middle part, i.e. bK1 + bK1 whose src is 2. If d = 2, put a strong
rainbow 2-coloring on this part with the colors c+1 and c+2. If d = 1, then we put γ(tiuj) = c+1
instead for all i, j ∈ {1, 2}.

Now we color the left wing. Including v1, choose any cb − c vertices in Q′1 to form a set Q11.
The edges adjacent to Q11 are colored in such a way so that, with respect to {t1, . . . , tb}, the set
code(Q11) consists of all non-diagonal b-tuples with entries from {1, . . . , c}. If c ≥ b, we also put
code(v1) = (1, 2, 3, . . . , b). Analogously, we form Q21 ⊆ Q′2 and put the coloring in the same way.

Next, for each i ∈ {1, 2}, choose any
⌊
c
2

⌋
vertices from Q′i\Qi1 and let them form a set Qi2.

Put the coloring on edges adjacent to Qi2 so that code(Q12) and code(Q22) are disjoint and their
union consists of all diagonal tuples with entries taken from {1, . . . , 2

⌊
c
2

⌋
} ⊆ {1, . . . , c}.

Finally, for each i ∈ {1, 2}, let Qi3 = Qi\(Qi1 ∪ Qi2). If Qi3 = ∅ we are done. Otherwise,
put the coloring on edges incident to Qi3 in a way so that code(Qi3) consists of permutations of
(a, a, . . . , a, c+1, c+1, . . . , c+1), where a ∈ {1, . . . , c}with (a, a, . . . , a) ∈ code(Qi2) is repeated
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j times, for some j ∈ {1, . . . , b}. The number of such a tuple (a1, a2, . . . , ab) is precisely

⌊ c
2

⌋ b−1∑
j=1

(
b

j

)
=
⌊ c

2

⌋
(2b − 2). (3.5)

The condition m′ ≤ cb − c+
⌊
c
2

⌋
(2b − 1) implies that

|Qi3| = m′ − (|Qi1|+ |Qi2|) = m′ − cb + c−
⌊ c

2

⌋
≤
⌊ c

2

⌋
(2b − 2). (3.6)

Therefore, all vertices of Qi3 can be allocated such tuples.
After erasing all the new vertices, we end the definition of γ. Now we prove that γ is strong

rainbow. Let x, y ∈ V (Gm,b) be non-adjacent.

Case 1: x, y ∈ Q1 or x, y ∈ Q2

For each i ∈ {1, 2}, all vertices in Qi have distinct codes. We are done by Lemma 1.1.

Case 2: x ∈ Q1 and y ∈ CN(Q2) (or by symmetry x ∈ CN(Q1) and y ∈ Q2).
There is i ∈ {1, . . . , b} such that γ(xti) ≤ c. Then x−ti−y is a rainbow geodesic.

Case 3: x, y ∈ CN(Q1) (or by symmetry x, y ∈ CN(Q2)).
Say x = ti and y = tj with 1 ≤ i < j ≤ b.

Subcase 3.1: m ≥ cb − c.
In this subcase the set code(Q11) contains all off-diagonal tuples with entries from {1, . . . , c}, so
there is v ∈ Q11 such that the i’th component of code(v) is different than the j’th component. Then
x−v−y is a rainbow geodesic.

Subcase 3.2: c ≥ b.
In this subcase code(v1) = (1, 2, . . . , b), so x

i−v1
j−y is a rainbow geodesic.

Subcase 3.3: d = 2.
In this subcase there is a rainbow geodesic between x and y in the middle part (bK1 + bK1).

In the remaining cases we consider x ∈ Q1 and y ∈ Q2.

Case 4: x ∈ Q11 and y ∈ Q21.
If code(x) with respect to {t1, . . . , tb} is equal to code(y) with respect to {u1, . . . , ub}, choose
i, j ∈ {1, . . . , b} with i 6= j and γ(xti) 6= γ(xtj) = γ(yuj). Then the geodesic x−ti−uj−y is
rainbow. Now suppose that code(x) 6= code(y), say they differ at the i’th component. Then the
geodesic x−ti−ui−y is rainbow.

Case 5: x ∈ Q11 and y ∈ Q22 ∪Q23 (or by symmetry, x ∈ Q12 ∪Q13 and y ∈ Q21).
There is j ∈ {1, . . . , b} with γ(yuj) ≤ c. Since code(x) is non-diagonal, there is i ∈ {1, . . . , b}
with γ(xti) 6= γ(yuj). Then the geodesic x−ti−uj−y is rainbow.

Case 6: x ∈ Q12 and y ∈ Q22.
Since code(Q12) ∩ code(Q22) = ∅, code(x) and code(y) are distinct diagonal tuples with entries
from {1, . . . , c}. So the geodesic x−t1−u1−y is rainbow.

Case 7: x ∈ Q12 and y ∈ Q23 (or by symmetry, x ∈ Q13 and y ∈ Q22).
Let code(x) = (a, a, . . . , a) and code(y) = (w1, . . . , wb). Let i ∈ {1, . . . , b} be such that
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(wi, wi, . . . , wi) ∈ code(Q22). Then a 6= wi since code(Q12) ∩ code(Q22) = ∅, so the geodesic
x

a−t1−ui
wi−y is rainbow.

Case 8: x ∈ Q13 and y ∈ Q23.
Let code(x) = (v1, . . . , vb) and code(y) = (w1, . . . , wb). Let i, j ∈ {1, . . . , b} be such that
(vi, vi, . . . , vi) ∈ code(Q12) and (wj, wj, . . . , wj) ∈ code(Q22). Then vi 6= wj since code(Q12) ∩
code(Q22) = ∅, so the geodesic x

vi−ti−uj
wj−y is rainbow. This completes the proof of the Claim.

(2) From Theorem 2.1 with Q = Q1 ∪ {u1}, we have src(Gm,b) ≥ b
√
m+ 1 > n. So we get

the lower bound src(Gm,b) ≥ n+ 1. Let c = n+ 1. Note that
⌊
n+1
2

⌋
(2b − 1) ≥ 3

⌊
n+1
2

⌋
≥ n+ 1.

So cb − c+
⌊
c
2

⌋
(2b − 1) ≥ cb = (n+ 1)b > m, and the Claim gives src(Gm,b) ≤ c+ 2 = n+ 3.

(i) Ifm ≤ nb−n+
⌊
n
2

⌋
(2b−1), use the Claim with c = n and d = 1 to obtain src(Gm,b) ≤ n+1.

This and the lower bound src(Gm,b) ≥ n+ 1 prove (i).
(ii) If m ≥ min

{
(b− 1)b, (n+ 1)b − (n+ 1)

}
, then the Claim with c = n+1 and d = 1 gives

src(Gm,b) ≤ n+ 2.
(iii) Now suppose m ≥ (n + 1)b − n

2
. Then m ≥ (n + 1)b − (n + 1), so by (ii) we have

src(Gm,b) ≤ n+2. Next we use Theorem 2.2 withQ1 andQ2 with the initial estimate src(Gm,b) ≥
n+ 1 to obtain src(Gm,b) ≥ 1 +

⌊
b
√
m+ n

2

⌋
≥ 1 + b b

√
(n+ 1)bc = n+ 2.

Remark 3.2. As a result, we have rc(Gm,b) = 4 when m is sufficiently large compared to b, as
soon as m ≥ 3b.

When b = 2, we have a complete solution for the rc.

Theorem 3.4. rc(Gm,2) =

{
3, if 1 ≤ m ≤ 5,

4, if m ≥ 6.

Proof. We continue to use the same notation as in the proof of previous theorem. If 1 ≤ m ≤ 3,
then by Theorem 3.3(2) we have rc(Gm,2) ≤ src(Gm,2) ≤ b

√
mc + 2 = 3. If 4 ≤ m ≤ 5, then

Theorem 3.3(1) gives rc(Gm,2) ≤ src(Gm,2) = b
√
mc + 1 = 3. Now let m ≥ 6 and suppose

rc(Gm,2) ≤ 3. Then there is a rainbow 3-coloring γ on Gm,2.

Claim 1: For any i ∈ {1, 2}, all vertices in code(Q1) ∪ {ui} have different codes with respect to
{t1, t2}. Also, all vertices in code(Q2) ∪ {ti} have different codes with respect to {s1, s2}.

A path between vertices in Q1 ∪ {ui} not passing through t1 or t2 has length at least 4. So, any
rainbow path between vertices in Q1 ∪ {ui} must be of the form x−tj−y. This proves Claim 1.

Claim 2: There is at least one diagonal tuple in code(Q1), and at least one in code(Q2).
Assume otherwise. Suppose code(Q1) has no diagonal tuple. Since there are only six non-

diagonal tuples, we have m = 6 and code(Q1) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}. By
Claim 1, the codes of u1 and u2 with respect to {t1, t2} are both diagonal. If code(u1) 6= code(u2),
say code(u1) = (1, 1) and code(u2) = (2, 2), then there are no rainbow path from the vertex in
Q1 with code (1, 2) to any vertex in Q2. Now suppose code(u1) = code(u2), say (1,1). There
is some x ∈ Q2 with code(x) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}, because otherwise code(Q2) ⊆
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{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}. Let y ∈ Q2 with code(y) = code(x). Then there are no rain-
bow paths between x and y. The proof of Claim 2 is complete.

Claim 3: There is at most one diagonal tuple in code(Q1), and at most one in code(Q2).
Assume otherwise. WLOG, let a, b ∈ Q1 with code(a) = (1, 1) and code(b) = (2, 2). If there

is some c ∈ Q2 with code(c) ∈ {(1, 1), (2, 2)}, then there are no rainbow paths between c and a,
or between c and b. So code(Q2) ⊆ {(3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

Case 1: (3, 3) ∈ code(Q2).
Suppose c ∈ Q2 with code(c) = (3, 3). There is a rainbow path from a to c, so γ(tiuj) = 2 for
some i, j ∈ {1, 2}. By symmetry, we may assume γ(t1u1) = 2. Consider code(u1) = (2, γ(u1t2))
with respect to {t1, t2}. By Claim 1, code(u1) 6∈ code(Q1). So code(u1) 6= (2, 2).

Subcase 1.1: code(u1) = (2, 1).
Since |code(Q2)\{(3, 3)}| ≥ 5, at least one of (1,2) or (2,1) is in code(Q2). If x ∈ Q2 with
code(x) = (1, 2), then there are no rainbow path from x to b. If x ∈ Q2 with code(x) = (2, 1),
then there are no rainbow path from x to a.

Subcase 1.2: code(u1) = (2, 3).
There is a rainbow path from c to b, so either γ(u2t1) = 1 or γ(u2t2) = 1.

Subsubcase 1.2.1: γ(u2t1) = 1.
Since |code(Q2)\{(3, 3)}| ≥ 5, at least one of (1,2) or (2,1) is in code(Q2). If x ∈ Q2 with
code(x) = (1, 2), then because there is a rainbow path from x to a, we must have γ(t2u2) = 3.
If x ∈ Q2 with code(x) = (2, 1), then because there is a rainbow path from x to b, we must have
γ(t2u2) = 3. In either case, code(t2) = (3, 3) with respect to {u1, u2}, contradicting Claim 1.

Subsubcase 1.2.2: γ(u2t2) = 1.
Now code(t2) = (3, 1) with respect to {u1, u2}, so by Claim 1 and |code(Q2)\{(3, 3)}| ≥ 5 we
must have code(Q2) = {(3, 3), (1, 2), (2, 1), (1, 3), (2, 3), (3, 2)}. Let x ∈ Q2 with code(x) =
(1, 3). There must be a rainbow path from x to a, so γ(u2t1) = 2. Then there are no rainbow paths
from a to the vertex in Q2 whose code is (1, 2).

Case 2: (3, 3) 6∈ code(Q2).
Since m ≥ 6, in this case code(Q2) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}. Let x ∈ Q2 with
code(x) = (1, 3). There must be a rainbow path from x to a, so either γ(u2t1) = 2 or γ(u2t2) = 2.
By symmetry, we may assume γ(u2t2) = 2. By Claim 1, code(t2) with respect to {u1, u2} cannot
be an non-diagonal tuple, so code(t2) = (2, 2).

Now let y ∈ Q2 with code(y) = (2, 1). There must be a rainbow path from y to b, so γ(u2t1) =
3. Because code(t1) with respect to {u1, u2} cannot be an non-diagonal tuple, we must have
code(t1) = (3, 3). Then there are no rainbow paths from b to the vertex in Q2 whose code is (3,2).
This completes the proof of Claim 3.

Now, by Claim 2 and Claim 3, there is exactly one diagonal tuple in code(Q1), and similarly in
code(Q2). By Claim 1, this forces m ≤ 7, each of code(Q1) and code(Q2) can only miss at most
one non-diagonal tuple, and at most one non-diagonal tuple can occur as code(u1) or code(u2).

WLOG, let us assume (1, 1) ∈ code(Q1), say x ∈ Q1 with code(x) = (1, 1). If none of
code(u1), code(u2) is equal to (2,2) or (3,3), then code(u1) = code(u2) = (a, b) with a 6= b.
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But then code(t1) = (a, a) and code(t2) = (b, b). Therefore, exchanging the role of Q1 and Q2 if
necessary, we may assume without loss of generality that (1, 1) ∈ code(Q1) and code(u1) = (2, 2).

If (2, 1) ∈ code(Q2), then there are no rainbow paths from x to the vertex in Q2 whose code
is (2,1). So (2, 1) 6∈ code(Q2). Hence, all non-diagonal tuples except (2,1) are in code(Q2). In
particular, there is some y ∈ Q2 with code(y) = (1, 2).

Because there is a rainbow path from x to y, we must have γ(t1u2) = 3 or γ(t2u2) = 3. So
either code(t1) = (2, 3) or code(t2) = (2, 3), contradicting Claim 1 since (2, 3) ∈ code(Q2).
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