
www.ejgta.org

Electronic Journal of Graph Theory and Applications 7 (2) (2019), 265–275

The second least eigenvalue of the signless Lapla-
cian of the complements of trees
Muhammad Ajmala, Masood Ur Rehman⇤,a, Tayyab Kamranb

a
School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China

b
Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan

majmal@mail.ustc.edu.cn, masood@mail.ustc.edu.cn, masoodqua27@gmail.com, tayyabkamran@gmail.com

Abstract

Suppose that Tc
n is a set, such that the elements of Tc

n are the complements of trees of order n.
In 2012, Li and Wang gave the unique graph in the set Tc

n\{Kc
1,n�1} with minimum 1st ‘least

eigenvalue of the signless Laplacian’ (abbreviated to a LESL). In the present work, we give the
unique graph with 2nd LESL in Tc

n\{Kc
1,n�1}, where Kc

1,n�1 represents the complement of star of
order n.
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1. Introduction

All the graphs considered in this paper are finite, undirected and simple. Suppose � = (V (�),
E(�)) is a graph, where V (�) and E(�) be the vertex set and the edge set respectively. The
graph �c := (V (�), Ē(�)) be the complement of graph � and its edge set Ē(�) = {xy : x, y 2
V (�), xy 62 E(�)}. If a vertex v adjacent to a vertex u, then we simply write v ⇠ u, other-
wise we write v ⌧ u. Define A(�) = [aij] be the adjacency matrix of a graph � with order n,
where the entry aij = 1 if i ⇠ j, and aij = 0 if i ⌧ j. The degree matrix of � is denoted by
D(�) and D(�) = diag(d�(v1), . . . , d�(vn)), where d�(v) means degree of vertex v. The Lapla-

cian matrix of a graph �, denoted by L(�), is defined as L(�) = D(�) � A(�). The Laplacian
matrix of a graph has been extensively studied, see [2, 3, 14, 19, 20, 22, 26, 31]. Zero is the
smallest eigenvalue of L(�) and the 2nd smallest eigenvalue of L(�) is known as the algebraic

connectivity of �. We may refer to [4, 34], for undefined notations, the concepts of graph theory
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and for the study of distance matrix we refer to [29, 32]. The matrix Q(�) = D(�) + A(�) is
the signless Laplacian matrix of � [28]. In particular, Q(�) is positive semidefinite. It is easy
to check that Q(�) is real and symmetric, and so the eigenvalues of Q(�) can be ordered as
q1(Q(�)) � q2(Q(�)) � · · · � qn(Q(�)) � 0. In this case, the signless Laplacian index of
� is q1(Q(�)). If � is a connected graph of order n and m edges, then � is called k-cyclic if
m = n � 1 + k. In particular, if k = 0, then � is called a tree [13, 39]. We denote the star graph
of order n by K1,n�1. Define Tn = {� | � is a tree of order n} and Tc

n = {�c | � 2 Tn}. In
last few years, many researchers work on the eigenvalues of signless Laplacian matrix, especially
they focus on signless Laplacian index and a brief survey on this work can be found in [9, 11].
Several bounds can be found in [6, 16, 24, 25, 33, 36, 37, 38] for the signless Laplacian eigen-
values. Furtheremore, for Q(�)-spread see [30]. Here, our focus is on the least eigenvalue of
Q(�) = D(�) + A(�) which is denoted by r(�).

Problem related to the signless Laplacian index was raised by Zhu in [38], he asked the fol-
lowing question: Let S be a set of graphs, find an upper bound for the signless Laplacian index of
graphs in S, and also determine the graphs which achieve the maximal index. Similar to the above
problem, the following problem is also natural: Let S be a set of graphs, for LESL, determine the
lower bound. Also give the characterization of graphs which coincide the lower bound.

Both problems are basically related to classical Brualdi-Solheid problem which base on sign-
less Laplacian matrix, for adjacency matrix, we refer [5].

Recently Li and Wang [23] studied the unique graph which has first LESL over Tc
n\{Kc

1,n�1}.
In the present work, we give the unique graph which has 2nd LESL over the same class of trees.

2. Preliminaries

The eigenvectors correspoding to the eigenvalue r(�) known as least eigenvectors of �. As-
sume X 2 Rn be the vector defined on given graph � of order n. A one-one map ' from vertex
set of � to entries of X , write as Xu = '(u) for each vertex u of V (�). If Q(�) has an eigenvector
X , obviously this vector defined over V (�). The entry in vector X with respect to the vertex u is
Xu, it can be easily verified that for any X 2 Rn

XTQ(�)X =
X

uv2E�

(Xu +Xv)
2 (1)

and when X is the eigenvector corresponding to µ (signless Laplacian eigenvalue of �) ,X 6= 0,

(µ� d(v))Xv =
X

u2N�(v)

Xu. (2)

Eq. (2) is called the eigenvalue-equation for the �. In Eq. (2), d(v) and N�(v) denote the
degree and the neighborhood of vertex v 2 V (�) respectively. Furthermore, for any arbitrary unit
vector X 2 Rn,
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r(�) = min(XTQ(�)X)  XTQ(�)X. (3)

Note that the equality sign in Eq. (3) holds if and only if X is a least eigenvector of �.

p
Pl+2

T (p, l, q)
q

Figure 1. Graph T (p, l, q) such that p+ l + q = n� 2 where l � 0.

By �c we denote the complement of �. It is trivial to see that Q(�c) = J �Q(�) + (n� 2)I ,
where J is the square matrix having all entries 1 and I is the identity matrix, with desired size. So,
for each X 2 Rn,

XTQ(�c)X = XT (J + (n� 2)I)X �XTQ(�)X. (4)

A tree of order n+1 obtained by joining n isolated vertices to a specific vertex is called a star,
we denote this by K1,n. Let T be a tree and v, u be the two vertices in T , the distance between v
and u is denoted by dT (v, u). Now, we define a special tree obtained by joining the center vertices
of two disjoint stars K1,p and K1,q where p, q � 0 by a path having length l + 1, where l � 0, and
it is denoted by T (p, l, q). The tree T (p, l, q) is shown in Figure 1 with some of vertices are labeled.

In the following results by �min(Q) we mean LESL of �.

Lemma 2.1 ([9]). For a connected graph �, �min(Q) = 0 , � is bipartite.

Lemma 2.2 ([9]). Suppose � is a graph. Then m(0) = #⌧(�), where m(0) is the multiplicity of

signless Laplacian eigenvalue 0 and ⌧(�) is equal the bipartite components of �.

Lemma 2.3 ([23]). Given a graph �, r(�)  �(�) where �(�) = min{dv, v 2 V�}.

Lemma 2.4 ([23]). For any T 2 Tc
with n � 5, �min(T c) = 0, T ⇠= K1,n�1.

3. Our Results

In the present section we are in the position to determine the unique graph with the 2nd LESL
in the set Tc

n\Kc
1,n�1. Before to do so 1st we give the following lemmas, which is crucial for the

main result. Note, that from now p, q and n are positive integers, and of course the vector X is
least eigenvector.

Lemma 3.1. r(T (p, 2, q)c) more than r(T (p+1, 2, q�1)c), for n � 7, p � q � 2 and p+q = n�4.
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v2

v1

p
v3 v4

T (p, 2, q)

v5

v6

q

Figure 2. A tree T (p, 2, q).

Proof. Suppose that T (p, 2, q) is a graph with some vertices are labeled (see Figure 2). Assume
that X is a vector of T (p, 2, q)c. By Eq. (2), as r(T (p, 2, q)c) greater than 0, all pendent vertices
adjacent to v2 have the same values, write X1. In the same way, all pendent vertices adjacent to v5
have the same values, write X6. Write Xvi =: Xi, 2  i  5 and r(T (p, 2, q)c) := µ1. By using
Eq. (2) on vertices vi where 1  i  6, we obtains the following system of equations

8
>>>>>>>><

>>>>>>>>:

(µ1 � (p+ q + 2))X1 = (p� 1)X1 +X3 +X4 +X5 + qX6

(µ1 � (q + 2))X2 = X4 +X5 + qX6

(µ1 � (p+ q + 1))X3 = pX1 +X5 + qX6

(µ1 � (p+ q + 1))X4 = pX1 +X2 + qX6

(µ1 � (p+ 2))X5 = pX1 +X2 + qX6

(µ1 � (p+ q + 2))X6 = pX1 +X2 +X3 +X4 + (q � 1)X6

transform the above system of equations into a matrix equation (µ1I � B1)X = 0 where X =
(X1, . . . , X6) and

B1 =

2

6666664

✓1 0 1 1 1 q
0 ✓2 0 1 1 q
p 0 ✓3 0 1 q
p 1 0 ✓4 0 q
p 1 1 0 ✓5 0
p 1 1 1 0 ✓6

3

7777775

where ✓1 = 2p + q + 1, ✓2 = q + 2, ✓3 = ✓4 = p + q � 1, ✓5 = p + 2 and ✓6 = p + 2q + 1. Let
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f1(µ, p, q) := (µ1I � B1), we get the following equation:

f1(µ, p, q) = (1 + p+ q � µ)(2p+ 2p2 + 8p3 + 4p4 + 2q + 12pq

+ 22p2q + 16p3q + 2p4q + 2q2 + 22pq2 + 24p2q2

+ 6p3q2 + 8q3 + 16pq3 + 6p2q3 + 4q4 + 2pq4 � 4µ

� 15pµ� 30p2µ� 20p3µ� 2p4µ� 15qµ� 60pqµ

� 59p2qµ� 13p3qµ� 30q2µ� 59pq2µ� 22p2q2µ

� 20q3µ� 13pq3µ� 2q4µ+ 14µ2 + 38pµ2 + 35p2µ2

+ 7p3µ2 + 38qµ2 + 69pqµ2 + 25p2qµ2 + 35q2µ2

+ 25pq2µ2 + 7q3µ2 � 16µ3 � 26pµ3 � 9p2µ3

� 26qµ3 � 19pqµ3 � 9q2µ3 + 7µ4 + 5pµ4 + 5qµ4 � µ5),

when µ = 0, we have

f1(0, p, q) = (1 + p+ q)(2p+ 2p2 + 8p3 + 4p4 + 2q + 12pq + 22p2q

+ 16p3q + 2p4q + 2q2 + 22pq2 + 24p2q2 + 6p3q2

+ 8q3 + 16pq3 + 6p2q3 + 4q4 + 2pq4) > 0,

and

f1(µ; p, q)� f1(µ; p+ 1, q � 1) = (1 + p� q)(1 + p+ q � µ)(8� 2p+ 2p3 � 2q + 6p2q

+ 6pq2 + 2q3 + pµ� 5p2µ+ qµ� 10pqµ� 5q2µ� µ2

+ 4pµ2 + 4qµ2 � µ3).

Lemma 2.3 and Lemma 2.4) µ1 is a least zero of f1(µ; p, q), for 0  µ1  q+2. In addition,
since p � q, we have f1(µ; p, q) � f1(µ; p + 1, q � 1) > 0. In particular, f1(µ1; p + 1, q � 1) less
than 0, ) r(T (p, 2, q)c) greater than r(T (p+ 1, 2, q � 1)c).

Remarks 1. Lemma 3.1 ) r(T (p, 2, q)c) > r(T (p + 1, 2, q � 1)c) > · · · > r(T (n � 5, 2, 1)c) =
r(T (n� 5, 3, 0)c), since T (n� 5, 2, 1) ⇠= T (n� 5, 3, 0), this ) the last equality hold.

Lemma 3.2. r(T (p, 3, q)c) more than r(T (p+1, 3, q� 1)c) > · · · > r(T (n� 5, 3, 0)c), for n � 7,

p � q � 1 and p+ q = n� 5.

Proof. Suppose that T (p, 3, q) is a graph with some vertices labeled (see Figure 3). Assume that
X is a vector of T (p, 3, q)c. By the Eq. (2), as r(T (p, 3, q)c) greater than 0, all the pendant vertices
which are adjacent to v2 have the same values given by X , write X1. In the same way, all the
pendant vertices adjacent to v6 have the same values, write X7. Write Xvi =: Xi where 2  i  6
and r(T (p, 2, q)c) := µ1. Then, from Eq. (2) on vi where 1  i  7, we obtain the following
system of equations
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8
>>>>>>>>>>><

>>>>>>>>>>>:

(µ1 � (p+ q + 3))X1 = (p� 1)X1 +X3 +X4 +X5 +X6 + qX7

(µ1 � (q + 3))X2 = X4 +X5 +X6 + qX7

(µ1 � (p+ q + 2))X3 = pX1 +X5 +X6 + qX7

(µ1 � (p+ q + 2))X4 = pX1 +X2 +X6 + qX7

(µ1 � (p+ q + 2))X5 = pX1 +X2 +X3 + qX7

(µ1 � (p+ 3))X6 = pX1 +X2 +X3 +X4

(µ1 � (p+ q + 3))X7 = pX1 +X2 +X3 +X4 +X5 + (q � 1)X7

v2

v1

p
v3 v4

T (p, 3, q)

v5 v6

v7

q

Figure 3. Graph T (p, l, q) with p+ q = n� 5

transform the above system of equations into a matrix equation (µ1I � B2)X = 0 where X =
(X1, . . . , X7) and

B2 =

2

666666664

�1 0 1 1 1 1 q
0 �2 0 1 1 1 q
p 0 �3 0 1 1 q
p 1 0 �4 0 1 q
p 1 1 0 �5 0 q
p 1 1 1 0 �6 0
p 1 1 1 1 0 �7

3

777777775

where �1 = 2p+ q + 2, �2 = q + 3, �3 = �4 = �5 = p+ q + 2, �6 = p+ 3 and �7 = p+ 2q + 2

f2(0, p, q) = �2(32 + 140p+ 224p2 + 195p3 + 99p4 + 27p5 + 3p6

+ 140q + 472pq + 626p2q + 422p3q + 149p4q + 24p5q

+ p6q + 224q2 + 626pq2 + 646p2q2 + 312p3q2

+ 69p4q2 + 5p5q2 + 195q3 + 422pq3 + 312p2q3

+ 96p3q3 + 10p4q3 + 99q4 + 149pq4 + 69p2q4

+ 10p3q4 + 27q5 + 24pq5 + 5p2q5 + 3q6 + pq6) < 0,

and

f2(µ; p+ 1, q � 1)� f2(µ; p, q) = (1 + p+ q � µ)(3 + p+ q � µ)

(16 + 6p+ 4p2 + 2p3 + 6q + 8pq + 6p2q

+ 4q2 + 6pq2 + 2q3 � 7µ� 6pµ� 5p2µ� 6qµ

� 10pqµ� 5q2µ+ 2µ2 + 4pµ2 + 4qµ2 � µ3)(1 + p� q).
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Lemma 2.3 and Lemma 2.4) 0 < µ1  �(T c)  q+1 is a least zero of f2(µ; p, q). And if p � q,
then f2(µ; p + 1, q � 1) � f2(µ; p, q). In particular, f2(µ1; p + 1, q � 1) greater than 0, we have
r(T (p, 3, q)c) greater than r(T (p+ 1, 3, q � 1)c).

Lemma 3.3. If the sequence {Xi : 1  i  n} is the decreasing one, with X1 greater than 1
and Xn less than 0. Then for i, j 2 [1, n], (Xi + Xj)2  max{(Xi + Xj)2, (Xi + Xn)2} and

(Xi +Xj)2  max{(Xj +Xn)2, (Xj +Xn)2} hold.

Proof. If Xi +Xj � 0, where 1  i, j  n, then by monotone of {Xi, i = 1, 2, . . . , n}, we have

0  Xi +Xj  Xi +X1, 0  Xi +Xj  Xj +X1, (5)

Hence,
(Xi +Xj)

2  (Xi +X1)
2, (Xi +Xj)

2  (Xj +X1)
2. (6)

Similarly if Xi +Xj is at most 0, we have

0 � Xi +Xj � Xi +Xn, (7)

then
(Xi +Xj)

2  (Xi +Xn)
2. (8)

Lemma 3.4. For any tree T 2 Tn\{K1,n�1}, r(T c) � r(T (p, l, q)c) hold, where n � 7, p, q 2
[0, n� 2], p+ q + l = n� 2 and l 2 [2, 3].

Proof. Suppose that X is a vector of T c. Then X is not 0 and X?1. Thus we can get a sequence
{Xvi : i = 1, 2, . . . , n} such that Xv1 � Xv2 � · · · � Xvn , Xv1 > 0, Xvn < 0.

First we consider l = dT (v1, vn) � 1 > 3. Let the path v1Tvn := v1 . . . u1vu2 . . . vn. For
any u 2 VT , by Lemma 3.3, we have (Xv + Xu)2)  max{(Xv + Xv1)

2, (Xv + Xvn)
2} if

(Xv +Xv1)
2 � (Xv +Xvn)

2, then remove the edge vu1 and plus the edge vv1; if not, then remove
the edge vu2 and plus the edge vvn.

Now we get a T ⇤ such that l⇤ := dT ⇤(v1, vn) � 1 less than l. In this situation, we get the
following: X

vivj2ET

(Xvi +Xvj)
2 

X

vivj2ET⇤

(Xvi +Xvj)
2.

This procedure repeated until l = dT (v1, vn) � 1  3. If the pendant vertex v, exists in the
new graph whose neighbor u is neither v1 nor vn satisfying (Xv + Xv1)

2 � (Xv + Xvn)
2, then

remove uv and plus vv1; if not, then remove vu and plus vvn. Repeat this re-arranging until
T 0 isomorphic to T (p, l, q), where 2  l  3. Lemma 3.3 )

X

vivj2ET

(Xvi +Xvj)
2 

X

vivj2ET 0

(Xvi +Xvj)
2.
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Now, consider l = dT (v1, vn)� 1 = 4; see Figure 4, if (Xv1 +Xvj)
2 � (Xvi +Xvn)

2, remove
the edge vivj and plus the edge vjv3, if not, then remove the edge vivj and plus the edge vivn. By
Lemma 3.3, we have

X

vivj2ET (p,4,q)

(Xvi +Xvj)
2 

X

vivj2ET (p+1,3,q)

(Xvi +Xvj)
2,

or X

vivj2ET (p,4,q)

(Xvi +Xvj)
2 

X

vivj2ET (p,3,q+1)

(Xvi +Xvj)
2.

v1
p

v2 v3

T (p, 4, q)

vi vj vn
q

Figure 4. Graph T (p, 4, q) with p+ q = n� 6

Hence, for any T 2 Tn\{K1,n�1}, there are some p, q, l with p+q+ l = n�2, p, q 2 [0, n�2]
and l 2 [2, 3], such that

r(T c) = XTQ(T c)X

= XT (J + (n� 2)I)X �XTQ(T )X

� XT (J + (n� 2)I)X �XTQ(T (p, l, q))X

� XTQ(T (p, l, q)c)X

� r(T (p, l, q)c).

By Lemmas 3.1 and 3.2, we get

r(T (p, 2, q)c) > r(T (p+ 1, 2, q � 1)c) > · · · > r(T (n� 5, 2, 1)c) = r(T (n� 5, 3, 0))

also
r(T (p, 3, q)c) > r(T (p+ 1, 3, q � 1)c) > · · · > r(T (n� 5, 3, 0)c).

As consequence of Lemmas 3.1, 3.2 and 3.3. Now, we obtain the following:

Theorem 3.1. For each T 2 Tn\{K1,n�1}, r(T c) � r(T (n � 5, 3, 0)c) hold (where n � 7), with

equality , T ⇠= r(T (n� 5, 3, 0)).
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