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Abstract

Many graphs such as hypercubes, star graphs, pancake goajulss tori etc are known to be
good interconnection network topologies. In any netwonbotogy, the vertices represent the
processors and the edges represent links between the gsoce3wo most important criteria -
efficiency and reliability of network models - can be studieith the help of graph theoretical
techniques. The lexicographic product is a well studieglyqaroduct. The distance notions such
as various diameters of a graph help to analyze the efficieh@ny interconnection network.
In this paper, we study some distance notions such as wideetéa, diameter variability and
diameter vulnerability of lexicographic products that kcbioe used in the design of interconnection
networks.
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1. Introduction

The processors of a parallel and distributed system andti@ections between the processors
can be represented as an interconnection network. Theoipal structure of an interconnection
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network can be modelled by a connected graph where the @eiditd edges represent sites of the
network and the physical communication links respectiviglsiny graph theoretic parameters that
are useful to study the efficiency and reliability of an ist@rnection network are discussed in [6].

A simple graphG = (V, E) with |V| = n and |E| = m is denoted ag7 = (n,m). The
degreeof a vertexu in G, dg(u) or simply d(u), is the number of edges incident within G.
The minimum degree and the maximum degree of a gi@pre denoted by (G) and A(G)
respectively. Thelistancebetweenu andv in GG, denoted byi;(u, v), is the length of a shortest
path joiningu andv in G. Thediameterof a graphGz, diam(G), is the maximum distance between
any two vertices inG. The diameter often measures efficiency of a network withimar time
- delay or signal degradation. Tlkametral verticef G are two vertices,, v € V(G) such that
d(u,v) = diam(G). A subsetS C V(G) of vertices is arindependent sdf no two vertices of
S are joined by an edge i@. Theindependent domination numbef a graphG, ~;(G), is the
minimum cardinality of a maximal independent setinThevertex connectivity;(G) of a graph
G is the minimum number of vertices whose removal fr@rmakes the graph either disconnected
or K. Theedge connectivityy/(G) of a graphG is the minimum number of edges whose removal
makes the graph disconnected. The network fault toleramgaacity can be measured by studying
the connectivity of the corresponding graph. A good netwoust be hard to disrupt even if some
vertices or edges are being attacked and the transmisseiwedn the processors must remain
connected. For all notions not given here, see [13].

Thelexicographic producti; o H, of any two graphd{; and H, is the graph with the vertex-
setV(H,) x V(H,) and two verticegu;, v,) and (u;,v,) of H, o H, are adjacent if eithes; —
u; € E(H,), oru; = u; andv, — v, € E(H,). The necessary and sufficiency condition for the
lexicographic product of two graplf$; o H, to be connected is tha&f; is connected. I/, # K,,,
then dianiH; o H,) = diam(H;) and diamK,, o H) = 2, [7]. In [14], Yang et al. studied the
connectivity of the lexicographic product of graphs and/thave proved that if/; = (ny,m;) is
a connected simple graph afty = (ns, ms) is any simple graph then:

o x(Hy o Hy) = k(Hy) |nsol, if Hy is not complete,
o k(K,o0Hy)=(n—1)|ny|+ r(H>),
o «'(Hy o Hy) = min{r'(Hy)n3,(Hs) + §(H;)na}.

Let H, *« H, be any of the graph products. For any vertex H,, the subgraph off; x H;
induced by{u} x V(H,) is the H,-layer atu and is denoted byH,. For any vertex € Hs, the
subgraph off; x Hs induced byV' (H;) x {v} is the H;-layer atv and is denoted byi}.

For every integew, 1 < w < k(G), any collection of &’ internally vertex disjoint paths
between two verticeg andv of G is termed as the-containerand it is denoted by, (u, v). In
Cy(u,v), the parametew is thewidth of the container. Théengthof the container is the length of
the longest path id’,, (u, v). Thew-wide diameterD,,(G) of a graphG is the minimum number
such that there is @, (u, v) of length at most between any pair of distinct verticesandv in G.
Thewide diameterof a graph isD,)(G). This concept was introduced by Hsu [6] to unify the
concepts of diameter and connectivity. The wide diametspaie networks are studied in [9] and

[5].
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Vulnerability measures maximum routing delay that can leappecause of vertex or edge
faults. Diameter can be used to measure the maximum delayiimg. In this context, the vertex
fault diameter and the edge fault diameter are defined anliestlby several authors. Thertex
fault diameteris f(G) = max{diam(G — S)|S C V(G),|S| = k(G) — 1} and theedge fault
diameteris f'(G) = max{diam(G — F)|F C E(G), |F| = x'(G) — 1}, [8]. Chung and Garey
[3] proposed the problem of determining the diameter viahgity of a graph. In [15] Ye et al.
improves the result of Peyrat [10] and gave a bounthé& —6 < f'(G) < max{59, 5v/2t+7} for
t > 4. The concept of fault diameter was introduced by Krishnamigyaand B. Krishnamurthy [8].
The problem of diameter vulnerability is proved to be NP-ptete by Schoone et al. [11].

The diameter of a graph may change by the addition or theidelef edges. The following
notations denote thiameter variabilityof a graphG. Letk > 1 be any positive integeD~*(G)
is the minimum number of edges to be added-tdo decrease the diameter by (at ledsgnd
D°(@) is the maximum number of edges that can be deleted fibso that the diameter is not
altered. In [1], [2], the diameter variability of the prodgraphs are discussed. In [12], Wang et
al. studied the diameter variability of cycles and tori. & and Harary studied the diameter
variability of hypercubes in [4].

In this paper, we study the wide diameter, the diameter valikty and the diameter vari-
ability of the lexicographic product of graphs. We consideth H, and H, to be connected
graphs withV (Hy) = {uy, ug, ... ,u,, } andV (Hy) = {vy, vq, ..., }. ThenG = H; o Hy has
V(G) = {(ug,v1), (u1,v2), ey (U1, V) cey (Unyy V1), vey (Uny, Uny) } SiNCeH; 0 K7 = Ky 0 Hy =
H,, we assume that botH; and H, are different fromk;.

2. Widediameter of the lexicographic product of graphs

Lemma2.l. LetG’' = G o H. If there exists a container of width, 1 < w < k(G), in G with the
length! then there exists a container of widthGG) x |V (H)| in G" with the same length

Proof. The proof is divided into three cases.

Case 1: Consider(u;, v;) and(ug, v;) in G’ wherei # k andi, k € {1,2,...n}.

There exists a container of length at mbsetween any two vertices;, andu,, in G, since there
exists a container of lengthn G, If P, = u; — u; 11 — uj 2 — ... — up_1 — uy iS @ path in the con-
tainerC,, (u;, ug) of G, then(u;, v;) — (wis1,v;) — (Wito, vj) — ... — (uk—1,v;) — (ug, v;) is a path
connecting(u;, v;) and(ug, v;) iIn G" and (u;, v;) — (Wit1, Vo) — (Wi, Va)-.-(Ug—1,Vs) — (Uk, V})
are also paths connectirig;, v;) and (ug,v;) wherea # j anda € {1,2,...,n2} in G'. Thus,
corresponding to the internally vertex disjoint paths i), (u;, ux) of G, there existw |V (H)|
internally vertex disjoint paths betwe¢n;, v;) and (u;, v;) in G which are of length at mogt
Since the length of the containernis [, there exists a pair of vertices andu, in G such that
the path joining., andu,, is of length exactly equal tb ThenC., v (m)|((uz, v;), (uy, v;)) IN G is
of length exactly equal ta

Case 2: Consider(u;, v;) and(u;, v;) in G’ wherej # k andj, k € {1,2,...no}.
If u, is adjacent tay, in G, then both(u,, v;) and(u;, vi;) will be adjacent tqu,, v1), (ug, v2), - - -
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(ua,vn,) IN G'. Thus, there exists at leadtu,) |V (H)| internally vertex disjoint paths between
(u;, v;) and(u;, vi;) which are of length two. So we can say that for any vertgx G, there exists
Csiay vy ((us, v5), (ui, vi,)) of length two inG”.

Case 3: Consider(u;, v;) and(u,, vp) in G’ wherei # a andyj # b.

Consider the vertices; andu, in H;. By the assumption there exists a container of length at most
[ in betweenu; andu, in G. If P, = u; — u;1 1 — ujp0 — ... — Uq_1 — U, IS @ path in the container
Cuw(us, ug), then(u;, vj) — (wir1,v;) — (ita, vj) — ... — (Ua—1, v;) — (uq, vp) iS @ path connecting
(ui, v;) and (uq, vp) I G" Which is of length same as that éf. Again, by the structure of the
lexicographic product, there exists|V (H)| internally vertex disjoint paths betwe¢n;, v;) and

(uq, vp) Which is of length at mogt Since the length of the containerdis [, there exists a pair

of verticesu,, andu,, in G such that the path joining, andu, is of length exactly equal th So
Cowpvmy((ug, v5), (uy, v)) in G" is of length exactly equal tb

Sincel < w < k(G’) andk(G’) < §(G'), the result follows. O

Theorem 2.1. If G is a connected non-complete graph alids a connected graph, then
Dyayxjvm)| (G o H) Dy (G).

Proof. Suppose that?’ = G o H. Thenk(G’) = k(G) x |V (H).
Let D) (G) = k. Then there exists a container of widthG’) between any two vertices @f
which is of length at most. Then, by Lemma 2.1, there exists a container of widifi) x |V (H)|
between any two vertices 6f' which is of length at most.
Hence DH(G)X|V (G o H) < DH(G)(G).

Let D)« vy (G o H) = k. There exists a container of length at mégbining (u;, v:)
and (u;,v;). More over there exists a container of width at leagtr) between(u;,v,) and
(uj,v1) where all the internal vertices are of the foifm,,v;), a« € {1,2,...,z,y,...,n}.

(wi,v1), (Ug, v1), (uy, v1), ..., (uj, v1) is @ path in the container ¢¥, thenu; — u, —u, — ... — u;
is a path inGG. Thus there exist a container of widtfiGG) which is of length at most joining u;
anduj inG. Hence,D,i(G)( ) < D/-;(G)X|V (G o H) O

3. Diameter vulnerability of the lexicographic product of graphs

Theorem 3.1. Let G’ = G o H whereG and H are connected graphs withy, n, > 3. Then,
(G < f'(G) + diam(H).

Proof. Let G’ = G o H. Thenx'(G') = min{x'(G)n3,0(H) + 6(G)ns}. Letu,, u, be a pair of
diametral vertices of7, by a pathu, — u,+1 — uzy0 — ... — uy—1 — uy. LetG” be the subgraph
obtained from’ after the deletion ot/ (G')—1 edges fronG’. Let us consider the following cases.

Casel: +/'(G') =0(H) + nad(G).

Case la: Let/(G’) — 1 edges be deleted froti-layer of G’ atv,. Then, the deleted edges are of
the form(u;, v) — (u;, vx) Wherei, j € {1,2,...n; }.

Consider any two vertice@u,, vy) and (up, vx) In G'. If u, — wgr — uae — ...uq; — uyp IS @ path
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joining u, andw, in Hy then (u,, vr) — (a1, vz) —(Ua2,Ve)— oo = (Ui, V) — (up, i) Where
k # 2 € {1,2,..ny} is a path joining(u;, vx) and(u;,vy) in G”. Clearly, this length is at most
diam(G).

Case 1b: Let/(G’) — 1 edges be deleted frofd-layer of G’ atw;. Then, the deleted edges are of
the form(w;, v;) — (u;, vi) Wherej, k € {1,2, ..., ns}.

If u;+, is a vertex adjacent to; in G then(u;, v;) — (w41, v;) — (u;, vi) is a path of length two in
G". Thus the diar’) is unaltered by this type of deletion.

Case 1c: Let/(G’) — 1 edges deleted fro@’ be any arbitrary collection of edges.

Consider a pair of diametral vertices,, v,,) and(u,, v,,) in G’. Let thex'(G’) — 1 edges adjacent
to the vertexu,, v,,) except(u,, v,+1) be deleted frond+’ to getG”. Then,dg: ((us, vw), (Uy, Vy))
=diam(G’) +1 by a path(u,, vy,) — (Ug, V1) = (Ugt1, Vi) — (Ugta, Vi) — oo — (Uy, V) — (Uy, Vy),
wheredg: ((Uy, V), (Ug, V1)) = 1 anddegr ((Ug, Vy+1), (Uy, vy)) = diam(G') (see Figure 1).

X ~\//v+2 X Ser2\w+2 uy-ﬂvw+2 u y W42

c @ ————

Figure 1.x'(G’) — 1 edges adjacent to the vertéx,, v,,) are deleted frond.

Consider a pair of diametral verticés,, v,,) and(u,, v,) in G’. Since, we have already con-
sidered Cases la and 1b, there exist a path of length(dfarbetween(u,, v,,) and (u,, v,) in
G, (g, V) — (Uag1,Vp) — (Ugy2,Vq) — (Ugts, Up)... — (Uy—1,0s) — (uy,v,), Where the vertex
(ug, vy ) In “= H-layer will be adjacent to at least one vertex (fay) 1, v,) in "=+ H-layer, the ver-
tex (u.41, vp) in "=+ H-layer will be adjacent to at least one vertex (s@y,).», v,) in "=+ H-layer
and so on (see Figure 2).

Case2: k/'(G') = k' (G)na.

Let £’ be the minimal edge cut @¥. Then corresponding to each edge— u; € E’, (u;,v,) —
(uj, vr)s (ui, vp) — (uj,vy) Wherer € {1,2, ... ;no— 1}, ¢ #p € {1,2, ... ,ny} are deleted. Also,
k' (G) —1 edges are deleted from tlie- layer atv,,, in G'. Now, dgr ((ta, Vny )y (U, Uny)) < f/(G)
by a path(u,, v, ) — (Uar1, Vny) — .. — (Up—1, U, ) — (up, vy, ), Since the deletion of(G) — 1 edges
from G increases the diaftr) to at mostf'(G). If v, € V(H) thendg:((ug, vy), (up, ) <
f(G) +diam(H) by a path(u,, vy,) — (ta, Vr1) — - — (Ua, Vny ) — (Uar1, Vny) — o — (Up—1, Uny ) —
(up, V) Whereder ((tg, V), (Ua, Uny)) < diam(H) anddegr ((ta, Vn, ), (U, vy)) < f/(G). Simi-
larly, the distance between any two verticegihis at mostf’(G) + diam(H). O
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:______

Figure 2. Arbitrary collection of’(G') — 1 edges are deleted fro6¥.

Remark: ConsiderH o P; whereH is the graph obtained by taking two copiesrof, n > 3
which is joined by an edge. For this grapi{H o P3) = 5, sincef’(H) = 3 and dianjP;) = 2.
Thus the above bound is strict for an infinite family of graphs

Theorem 3.2. If G’ = G o H is a connected graph, thef{G’') < maz{f(G), f(H)}.

Proof. Let S be a collection of<(G’) — 1 vertices inG’. WhenS is deleted fromG’ the new
subgraph obtained is denoted@$. Let u,, u, be a pair of diametral vertices ¢f, by a path
Uy — Upy1 — Ut — ... — Uy—1 — Uy. LET US cOnsider the following cases.

Casel: G' = K, o H.

Then diamG’) = 2 andk(G’) = (n1 —1)na+rx(H). Letthex(G') — 1 vertices adjacent tQu;, v;)
in the H-layer atu, except(u;, v,), be deleted. Theni((u;,v,), (w;,v,)) < f(H), since the dele-
tion of x(H) — 1 vertices fromH increases the diam{) to at mostf(H). Thusf(G’) < f(H).

Case2: G' = G o H wherex(G) = 1 andG # K.
Then dianiG’) = diam(G) andx(G’) = (G) |[V(H)| = ne. Now, let us consider the following
sub cases.

Case 2a: Leb = {(uy+1,v,)}, Whereu,, is a neighbour ofi, andp € {1,2,3, ..., na}.
Consider a pair of diametral verticés,, v,) and (u,, v,) in G’. Let then, — 1 vertices except
(Ugt1,Un,) from S be deleted. Thendgr((uy, va), (uy,v,)) = diamG’) by a path(u,,v,) —
(Uzt15Uny) — (Ugra, Vo) — (Upts, Vo) — .. — (Uy—1,V4) — (uy,v,). Thus, the diarG") remains
the same after removing vertices in S.

Case 2b: Let = {(u4,v,)} wherep € {1,2,3,...,n1}.

Letny, — 1 vertices fromS be deleted. Clearly the distance between any two verticé! is not
affected by the removal of these vertices.
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Case 2c: Let S be any arbitrary collection of vertices.

Consider a pair of diametral vertic@s,, v,) and(u,, v,) in G. Letthex(G’)—1 vertices fromG’ be
deleted. Therdg ((ug, vp), (uy, v,)) = diam(G) by a path(u,, v,) — (tyt1, Vo) — (Ugt2, Vb)) — ... —
(uy,v,), Since we have already considered the case of the deletieeridées of the forn{u;, v,)
where: € {1,2,3,...,n,}, there exist at least one vertex (say), v;) for eachj € {1,2, ... ,n,}
and are adjacent to the verticgs, v,) wherep € {1, 2, 3, ..., ny}. Thus the diarG’) remains the
same.

Case3: G' = G o H wherex(G) > 1.
Thenk(G’) > 2n,. We shall prove the theorem by considering the following cates.

Case 3a: Leb = {(u;,v,)} wherei € {1,2,3,...,n;}.
Then, the diar(G") = diam(G’).

Case 3b: Let be any arbitrary collection of vertices.

Consider(u,, v,,) and(u,, v,,) in G'. Let the verticesu;, v,), where{u;} is a collection ofx(G)
vertices which form a vertex cut @ andp € {1,2,3,...,n, — 1}, be deleted. Now, from th&

- layer atv,,, in G', only k(G) — 1 vertices can be deleted, otherwiSé becomes disconnected.
Then!dG”((umvm)» (uqvvnz)) < f(G) by a path(upvvm) - (up-i-lavm) - (up-i-?vvm) e T
(Ug—1,Uny) — (ug, vn,), Since the deletion of(G) — 1 vertices fromG increases the diameter to at
most f(G). Now, d((up, vu), (ug, v)) < f(G) by @ path(up, vi) = (Upt1, Vny) = (Upt1, Vny) —

o = (Ug—1,Uny) — (ug, vy) (See Figure 3). Thug,(G') < f(G).

Yor1¥n2  Pe2'n2

Figure 3. The vertice§y;, v,), where{u;} is a vertex cut of7 andp € {1,2,3,...,no — 1} are deleted.

Consider a pair of diametral verticés,, v,,) and(u,, v,) in G'. Let thex(G") — 1 vertices be
deleted. Since, we have already considered Cases 3a, tisra path of length diafd’) between
(tg, V) @NA(wy, v,) ING”, (Uy, Vi) = (Ugt1, Vp) = (Ugp2, Vg) — (Ugys, V) — .o — (Uy—1, Vs) — (Uy, V),
where the verteXu,, v,) in “ H-layer will be adjacent to at least one vertex (say),v,) in
v=+1 H-layer, the vertexu,1,v,) in “*+* H-layer will be adjacent to at least one vertex (say)
(uz42,v,) in “=+2 H-layer and so on (see Figure 4). Thus, the di@m remains the same after
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removing vertices in S.

NN
ST

é\“\'l‘lls O\ l‘/ \\\l‘. {\\\\"‘
N
N T
U Do
PPN

\' \' g i

NUX /N \\\W’ ’V’If

NN b\»&»« W\

%ﬁ-« N M{»’?’; "é},{vw

U O IR N A

ﬁt\\?&ﬁ'/ﬂ{éﬂ\"l/’i\\ X \ ;' i)
o/MNd
b

N mwip o

b i
AL L

S

Figure 4. Arbitrary collection of(G’) — 1 vertices are deleted frod’.

From the above cases, the result follows. O

4. Diameter variability of the lexicographic product of graphs
Theorem 4.1. LetG’ = G o H whereG and H are connected graphs. TheR?(G’) > nymo.

Proof. Consider a pair of diametral verticés,, v,,) and(u,,v,) in G’ whereu, andu, in G are
joined by a pathu, — w,41 — ugyo...uy_1,u,. Let the edgegu,,v,) — (u;,v,) Wherep,q €
{1,2,...,no} andi € {1,2,..,n;} in G be deleted to getz". Then, dgr((uyz, vy), (Uy, v,))

= diam(G’) by a path(u,, v,) — (Ugt1, Vw) — (Ugs2, V) — . — (Uy—1, V) — (uy,v,). AlSO,
der ((ui,vp), (ui,vy)) = 2 by a path(u;, v,) — (ui41,v,) — (s, v,). Thus, the distance between any
two vertices inG” is not affected by the removal of these edges. O

Theorem 4.2. LetG’' = G o H whereG and H are connected graphs with didii) < diam(G).
Then,D°(G’) > nam; — (ming + 2myms).

Proof. Letu,, u, be a pair of diametral vertices 6f by a pathu, — w11 — upro — ... —uy—1 —uy,.

Suppose thady (v,,v,) = L by a pathv, — vp41 — vp2 — ... —v,-1 — v,. Consider a pair of
vertices(u,, v,) ,(uy, v,) iN G'. By Theorem 4.1, even if the,m, edgegu;, v,) — (u;, v,) where
p,q € {1,2,..n2} andi € {1,2,...n,} are deleted, the diaf&’) remains the same. Now, let the
n3my — (mang + 2mym,) edges(u;, v,) — (u;,v,) wherei, j € {1,2,..n1}, p,q € {1,2,...ns},
v,’s andv,’s are nonadjacent vertices i, be deleted to get”’. Thendg: ((uy, vp), (uy,vy)) =
diam(G’) by a path(u,, v,) — (upt1,Vp) — (Ut Up) <o (Ui, Vp) — (Uit1, Vps1) o (Uy—2, Vg—2) —
(g1, 04-1) — (1. v) Whered((us, v,), (us,v,)) = diam(G) — L, andden ((us,v,). (1. 0,)) =
L. Also, dgn ((u;, vy), (ui,v,)) = diam(H) anddgr ((u;, vy), (u;, v,)) = diam(H) + 1 according as
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dy(vy,v,) is even or odd respectively. Thus, dig@) = diam(G”).
Hence,D°(G') > nymy + nimy — (nymy + ming + 2myms) = nimy — (myng + 2mymsy). 0O

Theorem 4.3. If G = G o H thenD~*(G) < 7,(H)D~++(Q).

Proof. Letdg(u,,u,) = diam(G) and lete; edges are added @ to decrease the diameter@fby
k+2. Consider a pair of diametral verticgs,, v,) and(u,, v,) in G'. Let thee, edgesi, v, —u;v,
wherea € v;(Hs), be added itz’. Then, clearlyls ((uy, va), (uy, v,)) = diam(G’) — (k+2). Also,

der (g, vg), (uy, v,)) = diam(G’) — k by a path(u,, vy) — (tg, va) — (wj, ve) — ... — (Uy—1,Va) —
(uy, v.) Wherede ((ug, vg), (s, Va)) = der((Uy—1,va), (Uy, v,)) = 1 andder (g, va), (Uy—1,v4))
=diamG) — (k +2). Thus,D*(G") < v (H)D~**2(@Q). O

Corollary 4.1. LetG’ = GoH. Then,D~*(G") < D~*(G) where the edges added are not incident
on the diametral vertices df.

Proof. Let d¢(u,,u,) = diam(G) and lete; edges are added 1@ to decrease the diameter of
G by k, where added edges are not incident on the diametral vertité&. Consider a pair
of diametral verticegu,,v,) and (u,,v,) in G'. Let thee; edges whose end vertices are of
the form (u;, v1), (u;,v1), be added irG’. Then,de ((ug, v1), (uy, v1)) = diam(G’) — k. Also,

der (12, 0y). (g, v,)) = diam(GY) — k by @ path(u,, v) — (tg41,01) — . — (ty—1,01) — (15, 0,)
wherede: ((us, vg), (Us+1,01)) = dar((uy-1,v1), (uy, vg)) = 1 andde ((Uzs1,v1), (uy—1,01)) =
diam(H) — 2 — k. Thus, the distance between any two vertices is at most(digm- . O

Corollary 4.2. If G = P,, o P,, thenD~*(G) = 1 wherek # n, /2.
Corollary 4.3. If G = C,, 0 C,,, thenD~*(G) = 2whenn, > 8and1 < k < |n; /2| — D*(C,,).

Proof. In [12], Wang et al. proved thab=*(C,,) = 2forallm > 8and1 < k < |m/2] —

D*(C,,), whereD*(C,,) denote the minimum diameter among those graphs obtaineddigica
two edgesq; = (0, |m/2]) andey = (|m/4], [3m/4]) for m =2 mod 4 ore; = (0, [m/2]) and
es = (|m/4],|3m/4]) for m = 0,1,3 mod 4] toC,,,. Note that, in this case,

x _f [m/4]+1 m=0,1,2 mod 4,
D(Cm)_{ lm/4]+2 m=3 mod 4.

Then, the corollary follows from the above result. O

5. Concluding Remarks and Further Scope

Two main interconnection network models - grids and toritisated us to study the graph
product structures from the view point of interconnectioodels. We have seen several papers
in which the distance notions have been studied and the gnaygluct considered mainly in those
papers was the Cartesian product. In [14], connectivityefitographic product is studied and this
motivated us to think the Lexicographic product as a netwooklel. In this paper, we have studied
wide diameter, diameter variability and fault diameterted texicographic product of graphs since
it is important in the design of interconnection networksl ave established some bounds for
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these parameters. We have noted ttiab H, has better wide diameter, diameter variability, fault
diameter as compared to that&f. HenceH, o H, can be a better network model as compared
to that of H;. One can extend this work by characterizing the graphs fochwine equality of the
bounds is attained. We have discussed the diameter notasesilon connectivity. One may think
of these notions based on some other graph parameter whicherteelpful to study the reliability
and efficiency of the model.
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