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Abstract

In this paper, we consider the least integer d such that every k-connected graph G of order n (and
of independent number «) has a longest cycle containing all vertices of degree at least d. We
completely determine the d when &k = 2. We propose a conjecture for those k-connected graph,
where k > 3.
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1. Introduction

We use G(k,n) to denote the class of k-connected graph of order n. In [9], we considered a
problem involving large degree vertices in longest cycles, i.e., to determine the least integer d such
that for every graph G € G(k,n),

(a) every longest cycle of GG contains all vertices of degree at least d.
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Since a longest cycle does not always contain all large degree vertices, it would be also an interest-
ing problem to ask whether there is a (longest) cycle containing special vertices (all large degree
vertices from some degree). For examples that there is a (longest) cycle contains some special
vertices in a graph, see [1], [7], [11] and [12], [14]; for paths, see [8], [13], for digraphs, see [6].

In this paper, we consider a similar problem to determine the least integer d such that for every
graph G € G(k,n),

(b) there exists a longest cycle in GG containing all vertices of degree at least d.

In order to avoid the discussions of petty cases, we only consider 2-connected graphs. In the
following when we say a graph is k-connected, we always assume that £ > 2.

Following [9], we denote by ¢(k, n) the least integer d such that every longest cycle of a graph
G € G(k,n) contains all vertices of degree at least d. We now denote by ¢(k, n) the least integer d
such that every graph G € G(k,n) has a longest cycle containing all vertices of degree at least d.
Clearly, if ¢(k,n) and ¢(k, n) exist, we have ¢(k,n) < ¢(k,n).

By definition if a graph G is Hamiltonian, then every longest cycle of GG contains all vertices
of G. Thus for integers k and n, ¢(k,n) or ¢(k,n) always exists if and only if there is a non-
Hamiltonian graph G € G(k,n). This requires n > 2k + 1 by Dirac’s theorem [5]. On the other
hand, if n > 2k + 1, then the graph K, is a non-Hamiltonian graph in G(k, n). So in this paper
we assume that n > 2k + 1. In [9], we determined all values ¢ (k, n):

cp(k,n):max{{g-‘,n—?)quQ},fornZQk—i—l. (1)

In this paper, our first aim is to determine ¢(k,n). As we will show bellow, we have the
following formula:

¢(k,n):max{{g],n—4k+2},fornz2k:+1. (1)

We can see that ¢(k,n) = @(k,n) if n < 6k — 4. This means the result from [9] together
with some extremal graphs is enough to determine ¢(k,n) when n < 6k — 4. However, we
will completely prove the following Theorem 1.1, since to prove Theorem 1.1 only in the case
‘n > 6k — 3’ cannot reduce the length of the proof.

Theorem 1.1. Let G be a k-connected graph of order n. Then G has a longest cycle containing

all vertices of degree at least
d:max{[g—‘ ,n—4kj+2}.

The following result is an obvious corollary of Theorem 1.1, when the graphs G of order n are
k-connected with n < 8k — 4.
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Figure 1. Graph L(3,22).

Theorem 1.2. (Shi, [14]) Let G be a 2-connected graph of order n. Then G has a (not necessarily

. : n
longest) cycle containing all vertices of degree at least 5.

From Theorem 1.1, we know that ¢(k,n) < max{[n/2],n — 4k + 2}. As we pointed out
above, this is in fact the exact value of ¢(k, n) when n > 2k + 1. To prove this, we construct some
extremal graphs to show that if n > 2k + 1, then the bound on d in Theorem 1.1 is sharp.

For the case n > 8k — 4, we construct a graph as follows: Let R = 2P; U (k — 2) P, S = kK,
and T' = (n — bk + 1) K are vertex-disjoint. Let R’ be the subset of V'(R) each vertex of which is
either a vertex of a P; or an interior vertex of a P4 in R, let s’ be a fixed vertex of S and x a vertex
notin RU S UT. Let L(k,n) be the graph with vertex set {z} UV (R) UV (S)UV(T), and edge
set

E(R)U{r's,rs,s'z,sx,st,at : ' € R',r e V(R),s € V(S)\{s'},t € V(T)}.

For an example, see Fig. 1. One can check that L(k,n) € G(k,n) and every longest cycle of
L(k,n) excludes the vertex x of degree n — 4k + 1.
For the case 2k + 1 < n < 8k — 5, we let

L(k n) — K(n—l)/Q,(n+1)/2, if n is odd;
’ Knjo-1.n/241, if n is even.

Note that L(k,n) € G(k,n) and every longest cycle of L(k,n) excludes some vertices of degree

(n/2] — 1.

Thus we get the complete formula as (1).

Now we will consider this kind of problem on those graphs with a given independent number.

Let G(k, a, n) denote the class of k-connected graphs of order n and of independent number «.
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We use p(k,a,n) (and ¢(k, o, n), respectively) to denote the least integer such that for every
graph G € G(k,a,n), every longest cycle of GG contains all vertices of degree at least p(k, o, n)
(there exists a longest cycle of G containing all vertices of degree at least ¢(k, o, n)).

Similarly as the definitions for ¢(k, n) and ¢(k, n), we should take the triple (k, v, n) such that
there exist some non-Hamiltonian graphs in G(k, v, n). This required @ > k+ 1 by Chvatal-Erdés’
theorem [4], and o« < n — k since every k-connected graph of order n has independent number at
most n — k (every independent set excludes all the neighbors of some vertex). On the other hand,
if k +1 < o < n — k, then there indeed exists some non-Hamiltonian graphs in G(k, a, n) (e.g.,
Ki V (Kp_g—os1 U (e — 1)K7)). So we assume that k + 1 < o < n — k. By the definition of
¢(k,n), we have

o(k,n) = max{p(k,a,n) : k+1<a<n-—k},

and it is easy to see that
o(k,a,n) < p(k,a,n), fork+1<a<n-—k.

In [9], we proved that

1
go(k,k+1,n):{z—_—::1J+k—1, forn > 2k + 1. (2

This implies every graph G € G(k, a, n) with n > 2k+1 has a longest cycle containing all vertices

n—+1
d= k—1.
L:HJ*

On the other hand, every longest cycle of the graph

of degree at least

Lk,k+1,n)=kK;V (rK,qU((E+1—-1)K,),

wheren — k = q(k+ 1) +r, 0 < r <k, excludes some vertices of degree

_ 1
g+k—1= HJrlfJﬁtk—l: U«LileLk_z'

Thus we conclude that

n—+1
k+1

(b(k,k—i—l,n):{ J—l—k—l, forn > 2k + 1. 2)

Note that we determined all the values ¢(k, o, n) for &« = k + 1. However, we do not know the
exactly values ¢(k, o, n) for general case o > k + 2. In the following, we will determine all the
values ¢(k, o, n) for k = 2.
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If o = 3, then the value ¢(2, 3, n) was determined in (2). So we assume that o > 4. Also recall
that by our assumption n > o+ 2. We first deal with the two basic cases n = a+2andn = a+ 3.
From [9], we know that

02,0, +2) =3; p(2,a,a+ 3) =4, fora > 4. (3"
On the other hand, the graphs
L2,0,a+2) =Ky, and L(2,a,a + 3) = K3

has no longest cycle containing all vertices of degree at least 2 and 3, respectively. This implies
that

&2, a0, +2) =3; ¢(2,,a + 3) =4, fora > 4. 3)

Next we deal with the case n = o + 4. We will prove the following result.

Theorem 1.3. Let G be a 2-connected graph of independent number o > 7 and of order n = a+-4.
Then G has a longest cycle containing all vertices of degree at least
o
a=|2|+2
3 +
For o > 7, let ¢, r be defined by

a—1=3¢+r 0<r <3.

Let T = 7Ky 441 U (3 — r)K;,, be the union of three stars, X be the set of the centers of the
three stars, and s, s’ be two vertices not in 7. Let L(2,«,« + 4) be the graph with vertex set
{s,s'} UV(T) and edge set

E(T)U{st,sz:teV(T),z € X}

For an example, see Fig. 2. Note that the graph L(2, o, + 4) € G(2, a,  + 4) has no longest
cycles containing all vertices of degree at least ¢ +2 = | (a« —1)/3] +2 = [a/3] + 1. By Theorem
1.3, we have

«

62, o, a0+ 4) = {3

]+2, fora > 7, @)
whereas we had from [9] that

90(2704705 + 4) = «, for Z 4. (4/)

The remaining cases of n = o + 4 and 4 < a < 6 will be dealt with later. Now we consider

the case n > a + 5. We have the following result.

281



Large degree vertices in longest cycles of graphs, I |  Binlong Li et al.

Figure 2. Graph L(2,13,17).

Figure 3. Graphs L(2,7,14), L(2,8,14) and L(2,9, 14).

Theorem 1.4. Let G be a 2-connected graph of independent number o« > 4 and of order n > 12.

Then G has a longest cycle containing all vertices of degree at least

—9 3 0<r<2:
d_{Q(@ )+3, == wheren —7T=qa+7r, 0 <r <a.

ga=2)+r+1, 3<r<a,

When ¢ > 1 (i.e., when n > o+ 7), the bound on d in Theorem 1.4 is sharp. We can construct
a graph as follows: If 0 < r < 2, thenlet R = rK 13U (2 —r)K, 0o and T = (a — 2)K,; if
3<r<a,thenlet R =2K, 3and T = (r — 2)K,41 U (o — r)K,. Let s/, s, x be three vertices
notin RUT. Let L(2, «, n) be the graph with vertex set {s’, s,x} UV (R) U V(T') and edge set

E(R)UE(T)U{s'r,sr,s'z,sx,st,at : v € V(R),t € V(T)}.

For an example, see Fig. 3.
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One can check that L(2, o, n) € G(2, a, n), but every longest cycle of L(2, o, n) excludes the
vertex x of degree d — 1.

Note that when ¢ = 0, the above graph has independent number less than . However, for the
case n = a+ 5 or n = « + 6, the bound on d in Theorem 1.4 is also sharp. We can construct two
extremal graphs as follows: If n = o+ 5, then let R = 2P5;if n = o + 6, then let R = P3 U K.
Let "= (n — 9) K, and let ', s, = be three vertices not in R U T". Let L(2, o, n) be a graph with
vertex set {s’, s,x} U V(R) U V(T) and edge set

E(R)U{s'r,sr,s'z,sx,st,at :r € V(R),t € V(T)}.

Clearly L(2,a,n) € G(2,,n), and every longest cycle of L(2,a,n) excludes the vertex x of
degree d — 1.
Now we have a formula, for &« > 4 and n > max{« + 5,12},

q(a—2) + 3, 0<r<2;

wheren —7T=qa+7r, 0 <r<a. (5)
ga—=2)+r+1, 3<r<a,

¢(2,a,n) = {
The readers can compare the above formula with the one in [9], where we have, for « > 4 and
n > o+ 9,

qg(a—2)+ 3, 0<r<2;

wheren —5=qa+r, 0<7r < a. (5
gla=2)+r+1, 3<r<a,

o(2,a,n) = {

Now we have the remaining petty cases excluding in the formulas (3)(4) and (5): o = 4,
8<n<1l;a=59<n<1l;and o = 6,10 < n < 11. We list the exactly values ¢(2, a, n)
for these cases in Table 1. For each case, we also give an extremal graph in G(2, o, n) which has
no longest cycles containing all vertices of degree at least ¢(2, a,n) — 1.

a=4 a=25 a=6
8 |4, K3V (3K1UK,)
9 |4, K3V (2K, U2K5) | 5, K4 V5K,
10 | 4, K3V (K, U3Ky) | 5, K4V (4K, UKy) | 5, K4V 6K,
115, K3V 4K, 5, K,V (3K, U2K,) | 6, K5V 6K,

Table 1: The values ¢(2, o, n) and extremal graphs L(2, ., n) for petty cases.

It is sufficient to show the up bound for these cases. For the cases a = 4, n = 8; a = 5,
9<n<10;and @ = 6, 10 < n < 11, we are done from Theorem 1.1. For the case o« = 4,
9 <n<1land o = 5,n = 11, we can deduced from the following theorem.
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Theorem 1.5. Let d = 4 or 5. Let G be a graph of order at most d + 6 and of independent number

at most d. Then G has a longest cycle containing all vertices of degree at least d.

On above we gave the values of ¢(k, «,n) when a = k + 1 or k = 2. For the case £ > 3 and
a > k + 2, we have the following conjecture.

Conjecture 1. Let G be a k-connected graph, k > 3, of independent number o > k + 2 and of
order n > max{2a + 1,a + 4k + 1}. Then G has a longest cycle containing all vertices of degree

at least
ga—k)+k+1, 0<r<k;
d=1< qla—k)+k+2, E+1<r<2k+1;
ga—k)+r—k+1, 2k+2<r<a+k,
where

n—3k—1=qla+k)+r, 0<r<a+k.

We remark here that if the above conjecture is true, then the bound on d is sharp. To show
this, we construct a graph as follows: If 0 < r < £, then let R = rKy; 3 U (k — r)K2q+2 and
T=(a—k)Kg;ifk+1<r<2k+1thenlet R = (r —k— 1)Ko s U2k +1— 1)Ko 3
and T = K,y U (a—k—1DK;if2k+2 < r < a+k, thenlet R = kKy;yq and T =
(r—2k)K1U(a+k—r)K, andlet S = kK. Let x be a vertex notin RUSUT. Let L(k, o, n)
be the graph with vertex set {z} UV (R) UV (S) U V(T) and edge set

E(R)UE(T)U{sr,sx,st,xt : v € V(R),s € V(9),t € V(T)}.

One can check that L(k, a,n) € G(k,a,n), but every longest cycle of G excludes the vertex x of
degree d — 1.

2. Preliminaries

We will first give some terminology and notation.

Let G be a graph. For a vertex v € V(G) and a subgraph H of GG, we use Ny (v) to denote
the set, and dy(v) the number, of neighbors of v in H. We call Ny (v) the neighborhood of v in
H and dg(v) the degree of v in H. We use dy(u,v) to denote the distance between two vertices
u,v € V(H) in H. For two subgraphs H and L of a graph G, we set N.(H) = U,cy g Ni(v).
When no confusion occurs, we will denote N¢(v) and dg(v) by N(v) and d(v), respectively. We
set N[x] = N(z) U {z}.

Let G be a graph and =,y € V(G). An z-path is a path with = as one of its end vertices;
an (x,y)-path is one connecting x and y. If Y is a subset of V (), then an (x,Y)-path is one
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connecting x and a vertex in Y with all internal vertices in V(G)\Y; a Y-path is one connecting
two vertices in Y with all internal vertices in V' (G)\ Y. For a subgraph H of GG, we use the notations
(x, H)-path and H-path instead of (z, V' (H))-path and V (H)-path, respectively. It is convenient
to denote a path P with end-vertices z,y by P(zx,y).
For a cycle C' with a given orientation and a vertex x on C, we use 2™ to denote the successor,
and =~ the predecessor, of x on C. In the following, we always assume that C' has an orientation,
. For two vertices =, y on C, 8[:)&, y| or %[y, x| denotes the path from z to y along 8 Similarly,
if x,y are two vertices in a path P, P[x,y| denotes the subpath of P between = and y. For an
arbitrary path P or cycle C, we use [(P) or [(C') to denote its length.

The following Lemmas 2.1-2.3 is easy. One can find the proofs in [9].

Lemma 2.1. Let C be a longest cycle of a graph G, and P = P(u,v) be a C-path. Then
I(C[u,v]) = U(P).

Lemma 2.2. Let C be a longest cycle of a graph G, H be a component of G — C and P = P(u,v)
be a C-path of length at least 2 with all internal vertices in H. Then

(T, o)) > U(P) + 2| No(H) N V(T lu™, 7).

Lemma 2.3. Let G be a graph, C be a longest cycle of G and H be a component of G — C'.
(1) Ifu € No(H), thenu™,u~ ¢ No(H).
(2) If u,v € N¢(H), then utvt u~v™ ¢ E(G).

Let GG be a graph, M be a subset of V(G) or a subgraph of G, H be a component of G — M
and z € V(H). If there are two (x, M )-paths such that they have the only vertex = in common,
then we say x is locally 2-connected to M. If every vertex in H is locally 2-connected to M,
then we say that H is locally 2-connected to M. Note that if G’ is 2-connected and M has at least
2 vertices, then every component of G — M is locally 2-connected to M. We will also use the

following lemmas from [2] and [10].

Lemma 2.4 (Bondy and Chvital [2]). Let G be a graph of order n and let P = P(u,v) be a path
of G. If d(u) + d(v) > n, then G has a cycle containing all vertices of P.

Lemma 2.5 (Li and Zhang [10]). Let r > 2 be an integer. Let G be a connected graph, M C V(G),
H be a component of G — M, x € V(H) which is not a cut vertex of G. If H contains no induced
copies of K, with the center x, then there is an (v, M)-path P such that

V(P) N Ni()| > ——dn(a).
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Lemma 2.6 (Li and Zhang [10]). Let r > 4 be an integer. Let G be a graph, M C V(G), H be
a component of G — M which is locally 2-connected to M, x € V(H). If G contains no induced

copies of K , with the center x, then there is an M-path P passing through x such that
1
|[V(P)N Ny (x)| > de(x)

3. Proofs of main results

In this section, we shall present the proofs of our main results. Through out the proofs, for

convenient, we call a vertex hefty if it has degree at least d.
Proof of Theorem 1.1.

Let C be a longest cycle of G containing hefty vertices as many as possible. We assume on the
contrary that there is a hefty vertex  in G — C. Thus d(x) > d = max{[n/2],n — 4k + 2}.

An (x,C)-fan is a collection of (z, C')-paths such that they have the only vertex x in common.
Since G is k-connected, there is an (z, C')-fan with s > k paths P, = Pi(x, z;), 1 € {1,2,...,s}.
We choose the (2, C')-fan such that s is as large as possible. We suppose that zy, 2o, . . ., 2, appear

in this order along C'. Thus
1C) = ST UC [z, zi1)), ©)
i=1

where the subscripts are taken modulo s.
By Menger’s theorem, there is a vertex y; € V(P — z) suchthat S = {y; : 1 <i < s}isa
vertex-cut of GG separating x and C' — S. We choose y; in such a way that dp, (x, y;) is as small as

possible (note that y; is possibly equal to z;). Clearly

Neo(z) € S. (7
Let H be the component of G — S containing =. Then
Claim 1. For every vertex y; € S, either Ny (y;) = {x} or [Ny (y;)| > 2.

Proof. Suppose to the contrary that | Ny (y;)| = 1 and y, # x is the vertex in Ny(y;). Then y, is
the neighbor of y; on Pz, y;]. Let 8" = (S\{v;}) U {y;}. Then S’ is a vertex-cut of GG separating
x and C' — S’ such that dp, (z,y;) < dp,(x,y;), contradicting the choice of S. O

If H has only one vertex z, then d(z) = |S| = s. By Lemma 2.1, Z(B[zi, zit1]) > 2 for all
i€{1,2,...,s}. By (6),1(C) > 2s = 2d(z) and

n>1(C)+1>2d(z)+1>n+1,
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a contradiction.

If H has exactly two vertices, then let 2’ be the vertex in V (H)\{z}. By Claim 1, every vertex
y; in S is adjacent to z. Hence s = d(z) — 1. Note that d(z') = dgs(2’) + 1 and d(z') > k since G
is k-connected. We have dg(z’) > k — 1. By Lemma 2.1, I(C'[2;, z;41]) > 2 for all i. Moreover,
if 2'y; € E(G), then P = Pj[z;, yi|lyiv' vy 1 Piv1[yiv1, zit1] is a C-path of length at least 3, by
Lemma 2.1, 1(8[22-, Zi+1]) > 3. Thus

E l Zza Zz—l—l

23(k—1)+2(s—k+1)=23+k:—1
>2d(z)+k—-3>n+k—3,

andn > [(C)+2>n+k—12>n+ 1, acontradiction.

Now it remains to consider the case when H has at least three vertices.

Claim 2. Foreveryi € [1, 5|,

(a) l<8[2i72i+1]) > 3;

(b) if (Nar(s) U Nt (i)} # 0. then 1(C [z, z011]) > 4;

(c) if there is C-path P = P(z;, z;41) including x and [(P) > 4, then l(g[zi, Ziy1]) > 5;

(d) if H has an (x,z')-path P’ for some vertex ¥’ € Ng(y;) U Nu(y;y1) and I[(P') > 2, then
I(C'zi, zig1]) = 5.

Proof. (a) By Lemma 2.1, we have l(g[zi, ziy1]) > 2 for any i. Suppose now that there exists an
integer ¢ such that [(C'[z;, z;11]) = 2, i.e., 27 = z;,,. If 2 is hefty, then P’ = PizZ-C’[zZ, z is
an (x, z;")-path, and d(z) + d(z;") > n. By Lemma 2.4, there is a cycle containing all vertices of
P’, which is longer than C, a contradiction. If z;" is not hefty, then ¢’ = ﬁ[ziﬂ, 2i|zi Piw Py 241
is either a cycle longer than C' or a longest cycle containing hefty vertices more than C, also a
contradiction.

(b) By (a), l(ﬁ[zi7 zi+1]) > 3. Suppose now that l(ﬁ[zi, ziv1]) = 3. If 2} is hefty, then P’ =
P-zfa[zl, z]is an (z, 2;")-path, and d(x) +d(z;") > n. By Lemma 2.4, there is a cycle containing
all vertices of P’, which is longer than C, a contradiction. This implies that z;", and similarly, z;_ ,,
is not hefty. If one of P, and P, has length at least 2, then C’ = B[ziﬂ, 2i| 2 Pyx P 12,41 1s either
a cycle longer than C or a longest cycle containing hefty vertices more than C, a contradiction.
Thus we conclude that [(P;) = [(P,41) = 1, implying that y; = z;, y;11 = 241 and 22, £2;41 €
E(G). We assume without loss of generality that z; has a neighbor 2" in H other than x. Let P be
an (x,z’)-pathin H. Then C' = 8[2i+1, zi|zia' Pxz; 44 is either a cycle longer than C' or a longest

cycle containing hefty vertices more than C, a contradiction.
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(c) By Lemma 2.1, Z(B[zi, zi11]) > 4. Suppose now that l(a[zi, ziv1]) = 4. Similarly as
++

(b), we can prove that z;" and z;, are not hefty. If 2" is hefty, then P’ = P,z;C'[z;, 2] is an
(z, z;)-path, and d(x) + d(z;") > n. By Lemma 2.4, there is a cycle containing all vertices of
P’, which is either a cycle longer than C' or a longest cycle containing hefty vertices more than C,
a contradiction. Thus we conclude that z;"* is not hefty. Now C" = B[ziﬂ, 2i|zi Pz is either a
cycle longer than C' or a longest cycle containing hefty vertices more than C, a contradiction.

(d) By (c), it suffices to prove that there is a C'-path P between z; and z;;, passing through z
and [(P) > 4. It I(P;) + [(P,41) > 4, then P = P,x P, is a required path. So we assume that
I(P;) + I(Piy1) < 3. We assume without loss of generality that 2’ € Ny (y;). If zy;41 € E(G),
then P = P[z;, yilyix' P'xy;s1Pis1[Yiv1, zi11] is arequired path. Now we have that zy,; 11 ¢ E(G).
This implies that I(P;,;) = 2 and [(P;) = 1. Hence y; = z;, yir1 = 241 and zy; € E(G). Let
w be the neighbor of 2 on P’. By Claim 1, y;,; has a neighbor, say «’, in H\{w}. Let P” be an
(w’, P')-path of H, and let w” be the end-vertex of P” on P'. If w” = x, then P = y; P’z P"w'y; 11
is a required path. If w” # z, then P = y;a P'[z, w"]w” P"w'y; 1, is a required path (note that if
P" is trivial, then w” = w' # w and {(P'[x,w"]) > 2). Thus we conclude that there is a C-path P
between z; and z;, passing through x such that [(P) > 4. Hence the assertion holds. 0

By b(x) we denote the number of vertices in V(G)\N[z]|. Then b(z) =n—1—d(x) < 4k —3.
Hence, by (7),
(C) < s+b(z) < s+4k — 3. )

Claim 3. Every vertex in V(H)\{z} is not a cut-vertex of H.

Proof. Suppose otherwise that 2’ # x is a cut-vertex of H. Let H; and Hs be two components of
H — 2/ such that x € V(H;).

Note that for every i with Ny, (y;) # 0, H has an (x,z”)-path of length at least 2 for some
" € Np,(y;). By Claim 2, l(a[zi, zi+1]) > b for those ¢ such that Ny, (y;) # 0. Since G is
Ns(Hs)| > k — 1. This implies that there are at least £ — 1 segments 8[21, Ziy1)
with length at least 5. Also note that every segment 8[2,, z;i+1) has length at least 3 by Claim 2.

k-connected,

Hence we have
(C)>5k—1)+3(s—k+1)=3s+2k—2> s+ 4k —2,
contradicting (8). [

By Claim 3, for any two vertices u,v € V(H), H has a (u, v)-path passing through z; and if
vr € E(H) is a cut-edge of H, then vz is a pendant edge of H.

Claim 4. H is a star with center .
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Proof. Suppose, otherwise, there is an end-block B of H which has at least three vertices (possibly
Bis H itself). For every vertex v € V(B)\{x}, H has an (z, v)-path of length at least 2. Thus by
Claim 2, Z(B[zi, ziy1]) > b for those ¢ such that y; € Ng(B — x). Thus we conclude that there are
at least k£ — 1 segments B[zi, z;i11] of length at least 5. Hence

(C)>5(k—1)4+3(s—k+1)=3s+2k—2> s+ 4k — 2,
a contradiction. O

By Claim 4, H = Ki,m-1. Let So = {y; € S : Nu(y;) = {«}}, S1 = {ys € S
|INi(yi)\{z}| =1} and Sy = S\(Sp U Sy). Lets; = |S;], ¢ = 0,1,2. Thus s = 59 + s1 + Sa.
Lety;,, 1 <ji1 <Jo<---<Js+ss < 8, bethe vertices in S; U Sy. Since G is k-connected,

51+ 83 > |Nsg(z)| >k —1 (10)
for any 2’ € V(H)\{z}, and
1+ (n(H) = 1)sy > |E(H — ,8)| > (k — 1)(n(H) — 1). (an

If s; + s = 1, then without loss of generality we assume that y; € S; U Sy. Note that {x, y; }
is a vertex cut of GG, implying that £ = 2. By Claim 2, Z(B[zl, 23]) > 4 and l(a[zl, zg]) > 4. Thus

(C)>4+442(s—2)=25s+4> s+ 4k -2,
a contradiction. Now we conclude that s; + so > 2.

Claim 5. For every vertex y;, € S1 U Sy,

1@l D>{4+3|N0(x) NVl D v € S
S 5+ 3|Ne(z) NV (C 2t 20 D v, € Sa

Ji? “Ji+1
where the subsubscripts are taken modulo s; + So.

Proof. Suppose first that Nc(x)ﬂV(ﬁ[z;-:, z;,.,1) # 0,ie. jit1 > ji+2. By Claim 2, we have that
U(Clz z1)) = 4U(C 21, 1,)) = dand forevery j € [jit+ 1, jip—21 1(C [z, 7111]) = 3.
Thus we have the assertion.

Now we assume that N (z) N V(B[zf, z;,.,]) = 0. For any y;, € S1 U Sy, we let wj, be a
vertex in Ny (y;,)\{z}.

If yj, € 51, then the assertion can be deduced by Claim 2. If y;, € S, then let wj, be a vertex in
Ny (yji)\{x’ Wit } Thus P = P, [Zji7 yji]yji w;il‘wji+1 Yjis Pji+1 [yji+l7 Zji-H] is a C-path of length
at least 4 passing through z. By Claim 2, we have the assertion. 0
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Note that 3572 [N () N V(C [+ | = 5. By Claim 5,

,]’L ) ]H—l])

S1+s82

Zl (250, 2j,1]) = 350 + 451 + 55y = 35 + 51 + 259.

By (10) and (11), we have

I(C) > 35+ 51+ 259

n(H 1

:3s+nEH; (81+82)+n(H) 2(81+(n(H)—1)52)
n(H) n(H)—1

> k—1)+ ———(k—1

3s + (H)—2( )+n(H)—2(k )
=3s+2k—2>s+4k — 2,
a contradiction.
The proof is complete. 0

Proof of Theorem 1.3.

Let C' be a longest cycle of GG containing hefty vertex as many as possible. We assume on the
contrary that there is a hefty vertex = such that z € V(G — C'). Let H be the component of G — C
containing .

If H has only one vertex z, then d¢(x) = d(z) > [a/3] + 2. Note that we assume that o > 7.
We have d¢(x) > 5. By Lemma 2.1, [(C') > 10. Hence
)

a(G) < a(C) +n(G - C) = { (2 J+n—l(C’) n— [@w <n-—5,

a contradiction. Thus we conclude that /1 has at least 2 vertices. Let / be a maximum independent
set of G. Thus |V (G)\I| = 4.

Let 2’ be a vertex in Ny (x). Since G is 2-connected, there is a C-path P = P(u,v) passing
through the edge xx’. We assume that u, z, x’, v appear in this order along P. By Lemma 2.1,
1(C'Tu,v]) > 3, 1(C [u, v]) > 3, and hence I(C) > 6. Thus

a(G) < a(C) +a(G—C) < L@J#—n—l(c*)—l:n— [@W —1<n—4

%
This implies that [(C') = 6, l(a[u,v]) = |(C'[u,v]) = 3, and P = uxz'v. Moreover, V(G)\I
consists of one vertex in {x, 2’} and three pairwise nonadjacent vertices of C' (but possibly adjacent
in G).

Since every hefty vertex has degree at least 5, it cannot be in / (otherwise I excludes all the
neighbors of it and has size at most n—5). This implies that x € V(G)\ 1. We denote the vertices of
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C by = uyy'vz'zu. We claim that V(G)\I = {x,y, z,v}. Otherwise V(G)\I = {z,u, v/, 2'},
and 2/, v € [ are adjacent in (G, a contradiction.

Note that 3/ is not hefty. If y is not hefty either, then C" = <a[u, v]vPu is a longest cycle of G
containing more hefty vertices than C'. This implies that y, and similarly, z, is hefty.

Claim 1. zy, xy, 2y, xz, 22/ 7'z, yz,y2', v 2 ¢ E(G), and any two vertices in {x,y, z} have no

common neighbors other than u, v.

Proof. If zy € E(G), then C' = uxyy'vz'zu is a cycle longer than C, a contradiction; if 2y’ €
E(G), then C" = uyy'zz'vz'zu is a cycle longer than C, a contradiction. By a similarly analysis,
we can see that xy, zy/, o'y, vz, x2'2' 2, yz,yz', y' 2 ¢ E(G).

If z, y have a common neighbor w # u, v, then clearly w # x’,3/, 2/, and C" = uxwyy'vz'zu

is a cycle longer than C, a contradiction. Other assertions can be proved similarly. [
Recall that z, y, z are all hefty. By Claim 1,
n = [N(@)\{u, v} + [N@)\{u, v} + [N)\{u, v}| + [{2,y, 2,0, 0}|

zad—m+5:3ﬂ%W+5za+a

a contradiction.

The proof is complete. ]
Proof of Theorem 1.4.

Suppose firstly that ¢ = 0. Thenr = n—7. Sincen > 12, wehaver > 5andd = r+1 = n—6.
By Theorem 1.1, GG has a longest cycle containing all hefty vertices. Now we assume that ¢ > 1.
Note that d > ¢(a — 2) + 3, and o > 4. We have

d>5, andif « > 5, thend > 6. (12)
Also note that 2d > g(a —2) + 3+ qla —2) +7r+1 >n — 3+ g(a — 4), that is
2d > n —3andif o > 5, then 2d > n — 2. (13)

Let C' be a longest cycle of G containing hefty vertices as many as possible. We assume on the
contrary that there is a hefty vertex z in G — C. Let H be the component of G — C' containing x.
Set
2 3, 0<r<2;
b=n—1—d={ ATTTS I=TsS
2q + 5, 3<r<a.
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We use b(x) to denote the number of vertices in V/(G)\N|x]. Then b(z) =n — 1 —d(x) < b,
b(z) < 2¢ + 5. (14)

Suppose first that H has only one vertex x. Recall that ¢ > 1. Thend > ¢(a —2)+3 > o+ 1.
Note that N/ () is an independent set of G. This implies that

o> [NG(@) = d(x) > d > a+1,

a contradiction. This implies that H has at least two vertices.

Since
o [@-De-neL osr<y
Tl @-De-2+r-1, 3<r<a
We haved —a > (¢ — 1)(aw — 2) + 1 and
d— -1 -2)+1
{ET%WZ[@ §i2)+ w:q (15)

Claim 1. G contains a C-path P passing through x such that

du ()
V(P)NN > .
V)N 2 |2
Proof. We first claim that H contains no induced copies of star K ()+1. Otherwise the end-
vertices of the star form an independent set of H of order o(H) + 1. If d(x) > 2, then by Lemma
2.5, there is an (z, C')-path P’ such that

\vwvmmmmZ{ﬁgﬂ.
Let v be the end-vertex of P’ on C, and let u be a neighbor of z on C other than v. Then P = ux P’
is a required path.
Now we assume that dc(x) < 1. Then G does not contain induced copies of star K 1La(H)+25
otherwise, the end-vertices of the star contained in /7 will be an independent set of order at least
a(H) + 1. By Lemma 2.6, there is a C'-path P passing through x such that

VP) 0 Nl = |42,

and P is a required path. [
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Let P be a C-path as in Claim 1 and let u, v be the two end-vertices of P on C'. Then

VPN 2 VPN Nao)] + o 2 |20 45

Since dy(z) = d(z) — de(z) > d — [No(H)|, and a(H) < a(G) — NG (H)| = o — |[No(H)
the above equality implies

o [ o ] 5]

)

From (15), we have
(P)=|V(P)|—-1>g+3. (16)

If l(ﬁ[u, v]) < ¢+ 2,then C' = 8[@, uluPv is a cycle longer than C, a contradiction. This
F
implies that l(a[u,v]) > ¢ + 3, and similarly, I(C'[u,v]) > ¢ + 3. Thus [(C) = l(ﬁ[u, v]) +
l(g[u, v]) > 2q + 6.

Case 1. |[No(H)| = 2.

In this case, No(H) = {u,v}. If {(C) > 2¢+8, then b(z) > I(C)—2 > 2¢+6, a contradiction.
This implies that [(C) < 2q + 7.

We claim that there are no paths from 8[u+, vT] to <a[zf, v internally disjoint with C'. Sup-
pose not. Let P’ be such a path and let y, z be the two end-vertices of P/, where y € V(a [ut,v7])
and z € V(%[u‘,vﬂ). Let Cy = 8[y,v]vpug[u, z]zP'y and Cy = <a[y,u]quB[v,z}zP’y.
Then

1(Cy) +1(Cy) — 1(C) = 2(L(P) + I(P")) > 2q + 8.

This implies that either C; or (5 is longer than C, a contradiction. Thus as we claimed there are
<_
no paths from 8[u+, v~ to C'[u~,v™] internally disjoint with C'.
We claim that |V (G —C— H)| < 1. Otherwise b(z) > |V (C)|—2+2 > 2q+6, a contradiction.

Thus as we claimed, there is at most one vertex in V(G — C' — H).

Claim 2. One of the following holds:
(a) l(ﬁ[u, v]) =q+ 3and 8[u+, v~ | has no neighbors in G — 8[u, v);
(b) l(%[u, v]) =q+ 3and <5[1(, v™| has no neighbors in G — <a[u, v).

Proof. We first suppose that V(G —C' — H) = (). Then 8[u+, v~ ] has no neighbors in G — B[u, V]
and g[u*, v~ | has no neighbors in G — <a[u, v]. Note that [(C') < 2g+T7and [(C) = l(a[u, v]) +
1(C[u,v]). Also note that I(C' [u, v]) > ¢+ 3 and I(C [u, v]) > ¢+ 3. We have either [(C [u, v]) =
g+30rl(Clu,v]) =g+ 3.
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Now we suppose that there is a vertex, say w, in V(G — C — H). If [(C) = 2q + 7, then
b(g > |V(C = {u,v})| + [{w}| > 2q + 6, a contradiction. This implies that [(C) < 2q + 6 and
I(C'u,v]) = I(C[u,v]) = g+3. Note that w has no neighbors in 8[u+, v~ | or has no neighbors in
C'[u™,v™]; otherwise there will be a path from 8[u+, v7] to E[U_, v™*] internally disjoint with C.
This implies that either B[UJF, v~ | has no neighbors in G — 8[15, v] or 6[1(, v™"] has no neighbors
inG — 6[% v]. O

By Claim 2, we assume without loss of generality that ]V(B[zﬁ7 v7])| = ¢+2and 8[u+, V7]
has no neighbors in G — 8[% v]. Let y be an arbitrary vertex in C'[ut, v~]. We claim that y is not
hefty. If ¢ = 1, then

dy) < |V(Clu,u)| —1=q+3=4<d

e
(by (12)). So we assume that ¢ > 2. Then |V (C [u™,v*])| > 4, and

d(x) + d(y) < |V(H - 2)| + [{u, 0} + [V(Clu, 0] — )|
< V(G)| = IV(Clu,0™])| < n — 4.

From (13), we also have d(y) < d. Thus as we claimed, every vertex in 8[u+, v~ ] is not hefty.
Now C" = C'[v, uJuPuv is a longest cycle of G containing hefty vertices more than C', a con-

tradiction.

Case 2. |[No(H)| > 3.
By Lemma 2.2,

1(C) = I(Cu, o)) + 1(C [u, ])
> 21(P) + 2(|Ne(H)| — 2) > 2q + 2 + 2|Ne(H)|,
and
b(z) > I1(C) — [Nc(H)| > 29+ 2+ [No(H)| > 2q + 5.

Recall that b(z) < 2¢ + 5. This implies that |[No(H)| = 3, [(P) = ¢+ 3 and {(C) = 2¢ + 8.
Moreover, z is adjacent to all vertices in (V (H)UN¢(H))\{z}, and G—C has only one component
H.

Let w be the unique vertex in N¢(H) other than u,v. We assume without loss of generality
that w is in 6[@(, vt]. Set

ki = I(Plu, z]), and ky = [(P[z,v]), where k; + ko = ¢ + 3.
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Then I(C [u,0]) > I(P) = q + 3, I(Clv,w]) > I(P[v,z)zw) = ko + 1 and I(C [w,u]) >
l(wxPlx,u]) = k1 + 1. Thus
1(C) = 1(C [u, 0]) + 1(C v, w]) + 1(C [w, u])

>q+tki+ke+52>2q+8.

Note that [(C) = 2¢-+8, this implies that {( C'[u, v]) = q+3, 1(C [v,w]) = ks+1and [(C [w, u]) =
ki + 1.

Recall that zw € E(G). Now we claim that Ny(w) = {z}. Suppose on the contrary that w
has a neighbor y in H other than z. If y ¢ V(P), then let P’ be a path of H from y to P — {u, v}
and let z be the end-vertex of P’ on P. Then

I(Pv, 2]2P'yw) + l(wyP'2P[z,u]) > I(P) + 2l(P'yw) > ¢ + 7, and
l(ﬁ[v, w]) + l(ﬁ[w,u]) > I(Plv, z]zP'yw) + l(wyP'2Plz,u]) > ¢+ 7,

a contradiction. Now we assume that y € V(P)\{u,v,z}. We assume without loss of generality
that y € V(P[u, x])\{u, x}. Then

l(a[v,w}) > [(Plv,ylyw) > I(Plv, z]) + [(Plx, ylyw) > ko + 2,

also a contradiction. Thus as we claimed, Ny (w) = {z}.

By Lemma 2.3, w # v",u~. We claim that w # v**. Suppose that w = v™™, ie.,
w~ = vt. Then ky = 1 and k; = ¢+ 2 > 3. Thus |V(8[w+,u_])] > 2. By Lemma 2.3,
viut vto vtwt vtu™ ¢ E(G). Moreover, vtu™t ¢ E(G); otherwise C' = C'[u't,v]v

%
PuC [u,vT|oTut" is a cycle longer than C' (note that [(P) > g + 3 > 4), a contradiction. Thus

d() + d(*) < [V(H = 2)| + {u, 0,0} + V(O = {ut, a0, 0%, wt,u )
<n-—4.

By (13), d(v") < d. Thus C" = B[w, v]vzw is a longest cycle of G containing hefty vertices
more than C, a contradiction. Thus as we claimed, w # v, and similarly, w # u™ ", i.e.,
I(C'[v,w]) > 3 and [(C [w,u]) > 3. This implies that k1, k» > 2, and u (and similarly, v) has a
neighbor in A other than z.

If H is a clique, then let y be a neighbor of u in H other than x, P’ be a Hamilton path of H

from z to y. Then

U(CTw,u)) > LwaP'yu) > |V(H)| +1> 1(P) = q+3,
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contradicting to the fact that [ (8[11), u]) = ko + 1 (noting that k; + ko = g + 3). This implies that
H is not a clique, i.e., a(H) > 2.

Note that an independent set of H together with {u",v" w™} forms an independent set of G.
Thus we conclude that o > 5. From (12) and (13), d > 6 and 2d > n — 2.

Claim 3. Let y be an arbitrary vertex in V(C — {u,v,w}). If there are four vertices in V (C)\{y}
that are nonadjacent to vy, then y is not hefty.

Proof. Note that all neighbors of y are in C, and d(y) < |V(C)| — 5.

d(z) +d(y) < |V(H — 2)| + {u,0,w}| + [V(C)| =5 <n =3
By (13), d(y) < d, implying y is not hefty. O
Claim4. Lety, z € {u,v,w}, y # z. Theny*z*, y*ztT ¢ E(G).

Proof. Note that for any choice of y and z, there is a (y, z)-path P’ internally disjoint with C, such
%
that [(P") > 3. If yT2" € E(G), thenlet C" = B[yﬂ z]zP'yCly, zt]zTy ™ if yT2tt € E(Q),
%
then let C' = C'[yt, z]zP'yCly, 27 T]z"TyT. Then C’ is a cycle longer than C, a contradiction.
0

From Claims 3 and 4, we can see that u™, v, w™ are not hefty.
We claim that every vertex in 8[@*, w~] is not hefty. Suppose not. Let y be the first hefty
vertex in 8[2}*, w~]. Then y # v™. Let

B[y,u]qu%[v,uJ“]u*y, if yu™ € E(G);
o _ ) ClyuluPoClo,ututty, if yut € E(Q);
B B[y,w]wxP[:c,v]v%[v,w*]ery, if ywt € E(G);
[y,w]me[w,v]v%[v,w*Jr]erer, if ywt™ € E(G).

Then C” is either a cycle longer than C' or a longest cycle of GG containing hefty vertices more
that C. In any case, we get a contradiction with the choice of C'. This implies that any of
{yu™, yu* T ywT, ywt} is not in E(G). By Claim 3, y is not hefty. Thus as we claimed, ev-
ery vertex in C'[v™, w™] is not hefty.

Now ¢’ = 8[10, v]JuPlv, x]zw is a longest cycle of G containing hefty vertices more than C,
a contradiction.

The proof is complete. ]
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Proof of Theorem 1.5.

Let C be a longest cycle of G containing hefty vertices as more as possible. We assume on the
contrary that there is a vertex x € V(G — C') with d(z) > d. Let H be the component of G — C
containing .

Note that N} (H) U {x} is an independent set of G, implying that |[No(H)| < d — 1. Since
N(z) € Ne(H)U (V(H)\{z}), x has a neighbor 2’ € V(H). Since G is 2-connected, G has
a C-path P = P(u,v) passing through the edge xz’. We assume that u, z, 2, v are in this order
along P.

First we assume that |[No(H)| = 4 (when d = 5). By Lemma 2.2,

1(C) > 21(P) + 2| Ne(H)\{u,v}| > 10,

and n(G) > I(C) + n(H) > 12, a contradiction.

Second we assume that |[No(H)| = 3. Since d(z) > d, we have dy(x) > d — 3. Let w be
the third vertex in N¢(H). We suppose without loss of generality that w € V(ﬁ[u*, v~]). By
Lemmas 2.1 and 2.2, l(a[u, v]) > 5 and l(%[u, v]) > 3. Thus

n(G) > 1(C)+dy(z) +1>8+d—-3+1=d+6.

This implies that V(G) = V(C)UV(H), I(C [u, v]) = 5and [(C [u, v]) = 3and N(z) = (V(H)U
Nec(H))\{z}. Moreover, we have by Lemma 2.1 that l(a[u,w]) = 2 and l(a[w,v]) = 3. Thus
C = wutwwtv vvtu u. By Lemma 2.3, u* is nonadjacent to every vertex in {w™, v™, vt u™}.
This implies that d(ut) < 3. Thus C’" = uxwa[w, u] is a longest cycle containing vertices of
degree at least 4 more than C', a contradiction.

Now we assume that |[No(H)| = 2. Then dy(z) > d — 2. By Lemma 2.1, Z(B[u, v]) >
[(P) > 3and Z(E[u, v]) > 3. On the other hand, Since n(G) < d+ 6 and n(H) > d — 1, we have
n(G — H) <7.Thus [(C) =6 or7.

If there is a C-path P’ = P'(y, z) (say) from 8[u+,v*] to g[uﬂv*], then we let C} =

E%, y]P’g[z,v]P and Cy = E[u, z]P’B[y, v] P. Note that
I(Ch) +1(Cy) = 1(C) > 2l(P) 4+ 21(P") > 8.

This implies either C'; or C5 is a cycle longer than C, a contradiction. So we assume that there are
%
no C-path from B[uﬂ v7] to C'lu™,vT]. Recall that n(G — H) < 7. It is not difficult to see that

one of the following is true:
(a) l(a[u, v]) = 3 and 8[u+, v~| has no neighbors other than u and v; or

%
(b) l(g[u, v]) = 3 and C'[u~,v*] has no neighbors other than u and v.
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Without loss of generality we assume that Z(B[u, v]) = 3 and B[uﬂ v~] has no neighbors other
than v and v. Thus d(u*) < 3 and d(v~) < 3. Thus u™, v~ are not hefty and C’ = Pa[v, ul is a
longest cycle containing hefty vertices more than C, a contradiction.

The proof is complete. ]

4. Concluding remarks

In this paper, we show that there is a longest cycle passing through large degree vertices,
while we show that every longest cycle passes through large degree vertices in the sequel of our
previous work [9]. These works relate longest cycle and large degree vertices, which are popular
in Hamiltonian literature. There would also be interesting to consider the same problem in some
special graphs, for example bipartite graph and claw-free graphs and so on. It is wide open in this
kind of problems. On the other hand, our results may be applied in the similar problem related
longest cycle and large degree vertices.
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