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Abstract

We correct a small error in a 1996 paper of Albertson and Haas,and extend their lower bound
for the fraction of properly colorable edges of planar subcubic graphs that are simple, connected,
bridgeless, and edge-maximal to other surface embeddings of subcubic graphs.
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1. Introduction and Background

Consider a graphG with maximum degree∆(G), and assign colors to the edges. It is well-
known from Vizing’s Theorem [7] that every simple graph withmaximum degree∆(G) = k may
be properly edge-colored using eitherk or k + 1 colors. In general, most of the edges of a graph
can be properly colored with∆(G) colors, with few (if any) edges needing an additional color.
The question then arises: What fraction of the edges ofG is guaranteed to be properly∆(G)-edge
colorable?

We will focus on graphs for which∆(G) = 3, namely the cubic (3-regular) and subcubic
(highest degree 3) graphs. Let|E(G)| be the number of edges inG, let c(G) be the number of
edges in a three-edge colorable subgraph ofG with the largest possible number of edges, and let

y(G) =
c(G)

|E(G)|
. In 1996, Albertson and Haas [1] gave lower bounds fory(G) for simple cubic

and subcubic graphs. They showed that

(a) if G is simple, cubic, and connected,y(G) ≥ 13
15

≈ .8667;
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(b) if G is simple, subcubic, and connected, theny(G) ≥ 26
31

≈ .8387;

(c) if G is simple, subcubic, planar, bridgeless, connected, and edge-maximal (no edges may be
added toG without violating one of the prior-listed conditions), then y(G) ≥ 6

7
− 2

35|E(G)|
(a

value in the range.8–.8571).

Note that this statement of (c) is a corrected version of Albertson and Haas’s original statement;
see Section 2.

While the bound in (a) is best possible for general simple cubic G (see the Petersen graph),
restricting the class of graphs under consideration produces better bounds. For example, Rizzi [5]
shows that if a subcubic graphG is triangle-free (but might have multiple edges), theny(G) ≥ 13

15
.

Mkrtchyan and Steffen [4] show that if the girth ofG is g, theny(G) ≥ g

g+1
wheng is even and

y(G) ≥ g−1
g

wheng is odd. (Note that in the subcubic case, the girth ofG must be at least 8 in
order for this result to give a stricter bound than the13

15
fraction for triangle-free graphs in [5].)

Kamiński and Kowalik [3] show that a simple subcubic graphG hasy(G) ≥ 13
15

unless it is a 5-
cycle with two adjacent chords (a result also shown in [2]), and that a subcubic multigraphG has
y(G) ≥ 7

9
≈ .7778 unless it isK3 with an arbitrary edge doubled. (This is not much better than

the bound ofy(G) ≥ 3
4

given for an arbitrary subcubic multigraph in [1].) Restricting to snarks
gives better bounds; Steffen [6] showed that the Petersen graph is the only snark withy(G) = 13

15
,

and that snarks with at least 16 vertices havey(G) ≥ 11
12

≈ .9167.
In contrast to the structural approaches given above, Albertson and Haas extended (b) to (c) by

restricting to planar graphs, or in other words, by using information about the possible embeddings
of G. In Section 3, we generalize using embedding information aboutG; that is, we take a topolog-
ical viewpoint. This is of interest because there are often constraints imposed on the colorability
of a graph by the genus of that graph.

2. Correction to Albertson and Haas

Albertson and Haas’ approach to (c) was as follows: First, vertices of degree one may be
eliminated as their incident edges do not affecty(G). Then, examine facial boundaries. Any
series of adjacent degree-two vertices may be replaced witha single one without improving the
colorability ofG. Thus, no face has two adjacent vertices of degree two.

Albertson and Haas additionally assumed that each face has at most one vertex of degree two,
reasoning that joining a pair of non-adjacent degree-two vertices by an additional edge increases
|E(G)| while leavingc(G) constant and thus decreasesy(G). However, an added edge may be
colorable so thatc(G) andy(G) both increase. (Unfortunately, it is not known whether an example
demonstrating this exists: Albertson and Haas conjectured([1, p. 5]) that every planar bridgeless
graphG with ∆(G) = 3 and at least two vertices of degree two hasy(G) = 1. This problem is still
open.) Thus an additional condition must be introduced for their Theorem 3 [1]: the embedding of
G must be edge-maximal.
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3. Non-planar Embeddings

Result (c) of [1] does not directly generalize to surfaces other than the sphere. Assuming
bridgelessness for planar graphs eliminates monofacial edges. This does not hold for higher-genus
surfaces; consider a cellular embedding ofK4 on the torus. See Figure 1 at left. It is bridgeless but

Figure 1. At left, a cellular embedding ofK4 on the torus; at right, the same embedding with a monofacial edge
subdivided.

has two monofacial edges. Unless we constrain ourselves to closed 2-cell embeddings, we may
have an edge-maximal embedding with a degree-two vertexv incident to two monofacial edges; in
this case,v is not shared between two faces, but occurs twice on the same face. (For an example,
consider the toroidal embedding ofK4 and subdivide one of the monofacial edges; this is shown
at right in Figure 1.)

Theorem 3.1. If G is simple subcubic and edge-maximally cellularly embedded on a surface S,

then y(G) ≥
17

20
−

χ(S)

20|E(G)|
, where χ(S) is the Euler characteristic of the embedding surface.

Proof. Let V2 andV3 be the number of degree-two and degree-three vertices ofG, respectively.
Additionally, letE = |E(G)| andF be the number of faces in the embedding ofG onS. Euler’s
Formula says thatχ(S) = V2 + V3 − E + F = V2 + V3 −

1
2
(2V2 + 3V3) + F = F − 1

2
V3. Each

degree-two vertex is on at least one face (but possibly at most one face as well), soF ≥ V2. Thus
χ(S) ≥ V2 −

1
2
V3 or V2 ≤ χ(S) + 1

2
V3. We may eliminateV3 from this equation by noting that

E = V2+
3
2
V3 so thatV2 ≤

3
4
χ(S)+ 1

4
E. From [1](1) we havec(G) ≥ 13

15
E− 1

15
V2, which becomes

c(G) ≥ 17
20
E − 1

20
χ. Dividing through byE produces the desired result.

Notice that in Theorem 3.1 we subtractχ(S) from our lower bound. In effect, thisincreases
the lower bound for embeddings on most surfaces, asχ(S) < 0 as long asS is not the projective
plane, Klein bottle, torus, or sphere. Even whenS is a torus or Klein bottle, the lower bound given
in Theorem 3.1 is stronger than given by [1] (b). In the case ofa closed 2-cell embedding, we have
a result that gives a stronger bound than in [1] (b) and [1] (c)as long asχ(S) ≤ 0.

Theorem 3.2. If G is simple subcubic and edge-maximally closed 2-cell embedded on a surface

S, then y(G) ≥
6

7
−

χ(S)

35|E|
, where χ(S) is the Euler characteristic of the embedding surface.
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Proof. We will use the same notation as in the proof of Theorem 3.1. Bydefinition, no face can
touch itself at a vertex in a closed 2-cell embedding, so eachdegree-two vertex is on two faces
and thusF ≥ 2V2. Thenχ(S) ≥ 2V2 −

1
2
V3 or V2 ≤ 1

2
χ(S) + 1

4
V3. We may eliminateV3 from

this equation by noting thatE = V2 +
3
2
V3 so thatV2 ≤ 3

7
χ(S) + 1

7
E. From [1](1) we have

c(G) ≥ 13
15
E − 1

15
V2, which becomesc(G) ≥ 6

7
E − 1

35
χ. Dividing through byE produces the

desired result.

The bounds given in Theorems 3.1 and 3.2 are weaker than the various 13
15

bounds, even for
those graphs that embed cellularly on surfaces of high genus. And analogous results to Theorems
3.1 and 3.2 exist for subcubic edge-maximally embedded multigraphs, but give completely useless
bounds—the bounds are only better than the7

9
bound from [3] when|E(G)| is so small that no

correspondingG could embed cellularly on a surface withχ(S) < 1.

Acknowledgement

The author is grateful to Mike Albertson for suggesting thatshe examine this problem, and to
both Mike Albertson and Ruth Haas for discussions (both long-ago and recent) of their paper.

References

[1] M. Albertson and R. Haas, Parsimonious Edge Coloring,Discrete Math. 148 (1996), 1–7.
https://doi.org/10.1016/0012-365X(94)00254-G

[2] J. Fouquet and J. Vanherpe, On Parsimonious Edge-Colouring of Graphs with Maximum
Degree Three,Graphs Combin. 29 (2013), 475–487.http://doi.org/10.1007/
s00373-012-1145-3

[3] M. Kamiński and Ł. Kowalik, Beyond the Vizing’s bound for at most seven colors,SIAM J.
Discrete Math., 28 (3) (2014), 1334–1362.https://doi.org/10.1137/120899765

[4] V.V. Mkrtchyan and E. Steffen, Maximum∆-edge-colorable subgraphs of class II graphs.J.
Graph Theory 70 (4) (2012), 473–482.http://doi.org/10.1002/jgt.20629

[5] R. Rizzi, Approximating the maximum 3-edge-colorable subgraph problem.Discrete Math.
309 (2009), 4166–4170.http://doi.org/10.1016/j.disc.2008.11.017

[6] E. Steffen, Measurements of edge-uncolorability.Discrete Math. 280 (2004), 191–214.
https://doi.org/10.1016/j.disc.2003.05.005

[7] V.G. Vizing, On an estimate of the chromatic class of ap-graph.Diskret. Analiz 3 (1964),
25–30.

309


