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Abstract

We correct a small error in a 1996 paper of Albertson and Haag,extend their lower bound
for the fraction of properly colorable edges of planar suficgraphs that are simple, connected,
bridgeless, and edge-maximal to other surface embeddfrsggoubic graphs.
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1. Introduction and Background

Consider a grapli with maximum degreé\(G), and assign colors to the edges. It is well-
known from Vizing’s Theorem [7] that every simple graph wittaximum degreé\(G) = k may
be properly edge-colored using eithieor k + 1 colors. In general, most of the edges of a graph
can be properly colored with (G) colors, with few (if any) edges needing an additional color.
The question then arises: What fraction of the edges fguaranteed to be propeny(G)-edge
colorable?

We will focus on graphs for whicl\(G) = 3, namely the cubic (3-regular) and subcubic
(highest degree 3) graphs. LUdi(G)| be the number of edges @, let ¢(G) be the number of
edges in a three-edge colorable subgrap& efith the largest possible number of edges, and let

(@) = dG)
S
and subcubic graphs. They showed that

In 1996, Albertson and Haas [1] gave lower boundsyfi@r) for simple cubic

(a) if G is simple, cubic, and connected () > % ~ .8667;
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(b) if G is simple, subcubic, and connected, the6') > g—(f ~ .8387,;

(c) if G is simple, subcubic, planar, bridgeless, connected, agd-athximal (no edges may be
added toGG without violating one of the prior-listed conditions), thg(G) > % — e (@

. 35|E(G)]
value in the range’s—8571).

Note that this statement of (c) is a corrected version of Afflmm and Haas’s original statement;
see Section 2.

While the bound in (a) is best possible for general simpldacab(see the Petersen graph),
restricting the class of graphs under consideration preslbetter bounds. For example, Rizzi [5]
shows that if a subcubic graghis triangle-free (but might have multiple edges), thé&') > }—g
Mkrtchyan and Steffen [4] show that if the girth 6fis ¢, theny(G) > g% wheng is even and

y(G) > % wheng is odd. (Note that in the subcubic case, the girtlzomust be at least 8 in

order for this result to give a stricter bound than éléefraction for triangle-free graphs in [5].)
Kaminski and Kowalik [3] show that a simple subcubic grapthasy(G) > 12 unless it is a 5-
cycle with two adjacent chords (a result also shown in [2}y that a subcubic multigraph has
y(G) > g ~ .7778 unless it isK3 with an arbitrary edge doubled. (This is not much better than
the bound ofy(G) > % given for an arbitrary subcubic multigraph in [1].) Redling to snarks
gives better bounds; Steffen [6] showed that the Peterssgphgs the only snark with(G) = }—g
and that snarks with at least 16 vertices ha(@) > 11 ~ .9167.

In contrast to the structural approaches given above, Aberand Haas extended (b) to (c) by
restricting to planar graphs, or in other words, by usingiinfation about the possible embeddings
of G. In Section 3, we generalize using embedding informatiauay; that is, we take a topolog-
ical viewpoint. This is of interest because there are oftamstraints imposed on the colorability
of a graph by the genus of that graph.

2. Correction to Albertson and Haas

Albertson and Haas’ approach to (c) was as follows: Firsttices of degree one may be
eliminated as their incident edges do not affgff’). Then, examine facial boundaries. Any
series of adjacent degree-two vertices may be replacedansithgle one without improving the
colorability of G. Thus, no face has two adjacent vertices of degree two.

Albertson and Haas additionally assumed that each facetlmagst one vertex of degree two,
reasoning that joining a pair of non-adjacent degree-twtoes by an additional edge increases
|E(G)| while leavingc(G) constant and thus decreasgsr). However, an added edge may be
colorable so that(GG) andy(G) both increase. (Unfortunately, it is not known whether aaregle
demonstrating this exists: Albertson and Haas conject(ifieg. 5]) that every planar bridgeless
graphG with A(G) = 3 and at least two vertices of degree two h&S) = 1. This problem is still
open.) Thus an additional condition must be introducedHeirtTheorem 3 [1]: the embedding of
G must be edge-maximal.
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3. Non-planar Embeddings

Result (c) of [1] does not directly generalize to surfacdsepthan the sphere. Assuming
bridgelessness for planar graphs eliminates monofacggsedrhis does not hold for higher-genus
surfaces; consider a cellular embeddindgs@fon the torus. See Figure 1 at left. It is bridgeless but

AN AN

Figure 1. At left, a cellular embedding df4 on the torus; at right, the same embedding with a monofadigée
subdivided.

has two monofacial edges. Unless we constrain ourselveesed 2-cell embeddings, we may
have an edge-maximal embedding with a degree-two vertesident to two monofacial edges; in
this caseyp is not shared between two faces, but occurs twice on the sacee fFor an example,
consider the toroidal embedding &f;, and subdivide one of the monofacial edges; this is shown
at right in Figure 1.)

Theorem 3.1. If GG is simple subcubic and edge-maximally cellularly embedded on a surface S,

then y(G) > L — _X5)

X2 wh is the Euler characteristic of th ing surface.
<30 20[EG)] ere x(S) isthe Euler characteristic of the embedding surface

Proof. Let V; and V3 be the number of degree-two and degree-three verticés oéspectively.
Additionally, let £ = | E(G)| and F' be the number of faces in the embedding-bbn S. Euler’s
Formula says that(S) = Vo + Vs — E+ F = Va + V3 — 1(2V5 + 3V5) + F = F — V4. Each
degree-two vertex is on at least one face (but possibly at aresface as well), sé’ > V5. Thus
X(S) > Vo — Vs 0rVa < x(S) + 1V5. We may eliminaté/; from this equation by noting that
E =Vy+3Vysothatl, < 2x(S)+1E. From[1](1) we have(G) > 12 E— £ V5, which becomes
¢(G) > i1 E — 5. Dividing through byE produces the desired result. O

Notice that in Theorem 3.1 we subtragtS) from our lower bound. In effect, thisicreases
the lower bound for embeddings on most surfaces;(& < 0 as long asS is not the projective
plane, Klein bottle, torus, or sphere. Even witéis a torus or Klein bottle, the lower bound given
in Theorem 3.1 is stronger than given by [1] (b). In the case dbsed 2-cell embedding, we have
a result that gives a stronger bound than in [1] (b) and [1hé&clong as(S) < 0.

Theorem 3.2. If GG is simple subcubic and edge-maximally closed 2-cell embedded on a surface

S,theny(G) > g - % where x(.5) isthe Euler characteristic of the embedding surface.
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Proof. We will use the same notation as in the proof of Theorem 3.1d&hynition, no face can
touch itself at a vertex in a closed 2-cell embedding, so emgree-two vertex is on two faces
and thusF' > 2V,. Theny(S) > 2V; — fV3 or Va < 1x(S) + 1V5. We may eliminatd/; from
this equation by noting that' = V, + %V?, so thatl; < %X(S) + %E From [1](1) we have
¢(G) > $£FE — V3, which becomes(G) > ¢E — £x. Dividing through byE produces the
desired result. O

The bounds given in Theorems 3.1 and 3.2 are weaker than thms@% bounds, even for
those graphs that embed cellularly on surfaces of high gefng analogous results to Theorems
3.1 and 3.2 exist for subcubic edge-maximally embeddedignatihs, but give completely useless
bounds—the bounds are only better than §Heound from [3] wher|E(G)| is so small that no
corresponding- could embed cellularly on a surface withS) < 1.
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