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Abstract

Let F,G, and H be simple graphs. The notation F → (G,H) means that if all the edges of
F are arbitrarily colored by red or blue, then there always exists either a red subgraph G or a
blue subgraph H. The size Ramsey number of graph G and H, denoted by r̂(G,H) is the smallest
integer k such that there is a graph F with k edges satisfying F → (G,H). In this research, we will
study a modified size Ramsey number, namely the connected size Ramsey number. In this case,
we only consider connected graphs F satisfying the above properties. This connected size Ramsey
number of G and H is denoted by r̂c(G,H). We will derive an upper bound of r̂c(nK2, H), n ≥ 2
where H is 2Pm or 2K1,t, and find the exact values of r̂c(nK2, H), for some fixed n.
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1. Introduction

All graphs in this paper are finite, undirected, and simple. Let F,G, and H be graphs. The
number of vertices and edges of graph F will be denoted by |V (F )| and |E(F )|, respectively. The
notation F → (G,H) means that in any red-blue coloring of the edges of F there exists a red
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copy of G or a blue copy of H in F . We denote F 9 (G,H) to mean that there is some red-blue
coloring of the edges of F such that F contains neither a red G nor a blue H. This coloring is
called a (G,H)-coloring of F.

The size Ramsey number for a pair of graphs G and H, denoted by r̂(G,H), is the smallest
integer k such that there is a graph F with k edges satisfying F −→ (G,H). The concept of size
Ramsey number of a graph was introduced by Erdős et al. in [2]. A survey of results about the size
Ramsey number for a pair of graphs can be seen in [4]. There are only a few results concerning the
size Ramsey number for a pair of graphs, namely the size Ramsey numbers involving a complete
graph, a star, a cycle or a path. Further results have also been obtained, for instance the size Ramsey
number for some regular graphs [5] and the size Ramsey of a directed path [6].

A matching, denoted by nK2, n ≥ 2, is the graph consisting of 2n vertices and n independent
edges. In 1978, Burr et.al [1] determined the size Ramsey number for a pair of graphs involving
matching, r̂(nK1,s,mK1,t) = (n+m−1)(s+t−1), for positive integers s, t,m, and n. The smallest
graphs F satisfying this size Ramsey number are (m+n−1)K1,(s+t−1) and lK3∪(m+n−l−1)K1,3

for s = t = 2, 1 ≤ l ≤ m + n − 1, namely (m + n − 1)K1,(s+t−1) → (nK1,s,mK1,t) or
lK3∪(m+n− l−1)K1,3 → (nK1,2,mK1,2). These two graphs are disconnected. The other result
on the size Ramsey number involving matching was obtained by Erdős and Faudree [3]. They
showed that r̂(2K2, Pm) = m+ 1, where the smallest graph satisfying the size Ramsey number is
a Cm+1, namely Cm+1 → (2K2, Pm). Note that in this case, we have a connected smallest graph
F satisfying F → (G,H).

Therefore, in general we have either connected or disconnected graph F with smallest size and
satisfying F → (G,H), for given G and H. In this paper, we are interested in finding a connected
graph F with minimum size and satisfying F → (G,H). The smallest size of a connected graph
F so that F → (G,H) is called the connected size Ramsey number and denoted by r̂c(G,H).

Some results on the connected size Ramsey number for a pairs of graphs were established.
Rahadjeng et al. [8] determined the connected size Ramsey number for the pairs (2K2, K1,m) and
(3K2, K1,m). Then, in [7], they showed that r̂c(nK2, K1,3) = 4n− 1, for n ≥ 2.

In this paper, we will determine an upper bound of r̂c(nK2, H), n ≥ 2 where H is isomorphic
to 2Pm or 2K1,t. We also determine the exact values of r̂c(nK2, H) for some fixed n.

2. Main Results

In this section, we present the following results.

Theorem 2.1. For m ≥ 2, r̂c(2K2, 2Pm) = 2m+ 1.

Proof. First, we will show that r̂c(2K2, 2Pm) ≤ 2m + 1. To do this, we will define the connected
graph F having 2m+ 1 edges satisfying F → (2K2, 2Pm). Consider the graph F = C2m+1. Let µ
be any red-blue coloring of F such that there is no red 2K2. Then, there is no red edge in F or a
red subgraph in F is isomorphic to either P2 or P3. Let us consider a subgraph F ′ = F − E(Pi)
with i = 2 or 3. Certainly, F ′ is isomorphic to either a path P2m+1 or P2m. Since the necessary
condition of the path containing 2Pm is having at least 2m vertices, then obviously F ′ contains
2Pm. Hence, F → (2K2, 2Pm).
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Now, we will show that r̂c(2K2, 2Pm) ≥ 2m + 1. Let G be a connected graph with |E(G)| ≤
2m. We will show that G9 (2K2, 2Pm). We are going to prove it by using the number of vertices
of G.

First, we assume that |V (G)| = 2m + 1. In this case, G is a tree. Let P = v1, v2, ..., vk be the
longest path in G, with k ≤ 2m+ 1. Choose one vertex of V (P ), say vi, so that G − vi contains
no 2Pm. Color all edges incident with vi by red and all edges in G− vi by blue. By this coloring,
there is a (2K2, 2Pm)-coloring on F. Thus, G9 (2K2, 2Pm).

Next, suppose that |V (G)| ≤ 2m. Let us consider a complete graph K2m. For every v ∈
V (K2m), K2m−v + 2Pm. Since all graphs of order 2m and size 2m are proper subgraphs of K2m,
then we can color all edges of G with red-blue so that there exists a (2K2, 2Pm)-coloring in G.
Thus, G9 (2K2, 2Pm).

Theorem 2.2. r̂c(nK2, 2P3) ≤


3n+ 1, for n = 3, 4, 5, 6, 7,
5(n

2
) + 4, for even n, n ≥ 8,

5
(
n+1
2

)
+ 2, for odd n, n ≥ 9.

Proof. We will find a connected graph F such that F → (nK2, 2P3). First, we will prove for the
case of n ∈ [3, 7]. Let us consider the graph F = C3n+1.

Let µ be any red-blue coloring of F that maximizes the number of red edges and contains no
red nK2. The red subgraph of F contains at most 2(n − 1) edges. The remaining edges, which
are blue, are at least 3n + 1 − 2(n − 1) = n + 3. This blue subgraph consists of at most n − 1
disjoint paths. By the pigeon-hole principle, there are at least two disjoint paths of length 2. Thus
F contains blue 2P3. Hence F → (nK2, 2P3).

For the case of even n and n ≥ 8, we consider the graph in Figure 1. The graph G contains
(n
2

+ 1) disjoint cycles of length 4 and n
2

disjoint edges. Thus, the number of edges of G is
4(n

2
+ 1) + n

2
= 5(n

2
) + 4. Let µ be any red-blue coloring of G such that there is no red nK2.

Figure 1. The graph G→ (nK2, 2P3), for even n.

Observe that for each 4-cycle in G, we find at most two red K2. Since G contains no red nK2,
we have at most (n

2
− 1) 4-cycles containing two red K2 and one 4-cycle containing at most one

red K2. As a consequence, we have at least one 4-cycle whose all edges are blue and one 4-cycle
which at least 2 consecutive edges are blue. Since those two 4-cycles are separated by at least an
edge, G contains a blue 2P3. Thus, G→ (nK2, 2P3).

For the case of odd n, n ≥ 9, let consider the graph in Figure 2. The graph F contains
(
n+1
2

)
disjoint cycles of length 4, (

(
n+1
2

)
−1) disjoint edges and one starK1,3. Thus, the number of edges

of F is 4
(
n+1
2

)
+ (
(
n+1
2

)
− 1) + 3 = 5

(
n+1
2

)
+ 2.
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Figure 2. The graph F → (nK2, 2P3), for odd n.

Let µ be any red-blue coloring of F such that there is no red nK2. By a similar argument as in the
case for even n, there are at most (n+1

2
− 1) 4-cycles containing red 2K2. As a consequence, we

have at least one 4-cycle which all edges are blue and a blue starK1,3. Thus, G→ (nK2, 2P3).

Theorem 2.3. r̂c(3K2, 2P3) = 10.

Proof. According Theorem 2.2, r̂c(3K2, 2P3) ≤ 10. Now, we will prove that r̂c(3K2, 2P3) ≥ 10.
Suppose that F is a connected graph with |E(F )| ≤ 9. We will show that F 9 (3K2, 2P3).
Decompose F into two connected subgraph F1 and F2 with |E(F1)| ≤ 3 and |E(F2)| ≤ 6. Con-
sider that the subgraph F1 is isomorphic to a star K1,3 or a cycle C3 or a path P4. If F1 is a star
K1,3 or a cycle C3, then color all edges in F1 with red. According Theorem 2.1 r̂c(2K2, 2P3) = 7,
then there is a (2K2, 2P3)− coloring in F2. Therefore, F contains at most two red K2 and no blue
2P3. So, F 9 (3K2, 2P3).

Now, suppose that F1 is a path P4. We claim there are at most 2 common vertices of F1 and
F2. Suppose there are 3 common vertices of F2 and F1. Consider the following graph. Let v1i and
v2j be vertices of F1 and F2, respectively. Since F2 is connected, there is a vertex v2k of F2 adjacent

to v2j , j = 5 or 6 or 7. Therefore, if we remove the vertex v = v12, the graph F − v is connected.
Hence, this is the same as the previous case, namely when F1 is a star K1,3. So, there are at most
two common vertices of F1 and F2, as claimed.

By Theorem 2.1, there is a (2K2, 2P3)− coloring in F2. Observe that, if there are at least two
blue paths in F2, the longest one is P4. Therefore, we color two consecutive edges in F1 with red
and the other edge with blue so that the blue edge of F1 is adjacent to the longest blue path in F2 (if
any). Otherwise, the blue edge of F1 is adjacent to the red edges of F2. In this coloring, F contains
at most two red K2 and no blue 2P3. So, F 9 (3K2, 2P3). Thus, r̂c(3K2, 2P3) ≥ 10. Combining
the two inequalities, we have r̂c(3K2, 2P3) = 10.
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Theorem 2.4. r̂c(nK2, 2P3) = 3n+ 1, for n = 3, 4, 5, 6, 7.

Proof. By Theorem 2.2, we obtain r̂c(nK2, 2P3) ≤ 3n + 1. Now, we will prove r̂c(nK2, 2P3) ≥
3n + 1. Suppose that F is a connected graph with |E(F )| ≤ 3n. We will show that F 9
(nK2, 2P3). We proceed by induction on n. The assertion is true for n = 3. Furthermore, we
may assume that r̂c(kK2, 2P3) ≥ 3k + 1, for all n ≤ k ≤ 6.

Let F ′ be a connected graph with |E(F ′)| ≤ 3(k + 1). Decompose F ′ into two connected
subgraphs F1 and F2 with |E(F1)| ≤ 3 and |E(F2)| ≤ 3k. Consider that the subgraph F1 iso-
morphic to a star K1,3 or a cycle C3 or a path P4. If F1 is a star K1,3 or a cycle C3, then color all
edges in F1 with red. Next, by the induction hypothesis, there is a (kK2, 2P3)− coloring in F2.
By combining the coloring in F1 and F2, there exists at most k red K2 and no blue 2P3 in F ′. So,
F 9 ((k + 1)K2, 2P3).

Now, assume that F1 is a path P4. There are at most two common vertices of F1 and F2, as in
the previous theorem, namely x and y. Consider (kK2, 2P3)− coloring in F2, that maximizes the
number of red edges and minimizes the length of blue paths. If at most one of x and y is adjacent
with a blue edge in F2, then we color two consecutive edges in F1 with red and the other edge with
blue so that the blue edge in F2 is adjacent with red edges in F1. If both x and y are adjacent with
blue edges in F2, we claim that the longest blue path in F2 is P4. Suppose the longest blue path
in F2 is P5. Let F ′2 = F2 − P5. Observe that |F ′2| ≤ 3k − 4. We can view the coloring in F ′2 as a
chain of alternating blue and red subgraphs, starting with a blue subgraph and ending with a red
subgraph. As the number of red edges is maximized, there are at least 2(k − 1) red edges in F ′2.
Thus, the number of edges in F ′2 is at least (k − 1) + 2(k − 1) = 3k − 3, a contradiction. So, the
longest blue path in F2 is P4, as claimed. Color two consecutive edges in F1 with red and the other
edge with blue so that the blue edge in F1 is adjacent with the longest blue path of F2 (if any). In
this coloring, F ′ contains at most k red K2 and no blue 2P3. So, F ′ 9 ((k + 1)K2, 2P3). Thus,
r̂c((k + 1)K2, 2P3) ≥ 3(k + 1) + 1.

Combining the two inequalities, we conclude that r̂c(nK2, 2P3) = 3n+ 1, for 3 ≤ n ≤ 7.

Theorem 2.5. r̂c(8K2, 2P3) = 24.

Proof. By Theorem 2.2, we obtain r̂c(8K2, 2P3) ≤ 24. Now, we will prove r̂c(8K2, 2P3) ≥ 24.
Suppose that F is a connected graph with |E(F )| ≤ 23. We will show that F 9 (8K2, 2P3).
Decompose F into two connected subgraphs F1 and F2 with |E(F1)| ≤ 2 and |E(F2)| ≤ 21.
Color all edges in F1 with red. According to Theorem 2.4, r̂c(7K2, 2P3) = 22. Thus there is a
(7K2, 2P3)− coloring in F2. By combining the coloring in F1 and F2, there are at most 7 red K2

and no blue 2P3 in F. So, F 9 (8K2, 2P3). Hence, r̂c(8K2, 2P3) ≥ 24.
Combining the two inequalities, we may conclude that r̂c(8K2, 2P3) = 24.

Theorem 2.6. For m ≥ 3, n ≥ 3, r̂c(nK2, 2K1,m) = mn+m+ n.

Proof. First, we will show that r̂c(nK2, 2K1,m) ≤ mn+m+n. LetG be a graph obtained from one
cycleC2n+1 and (n+1) starsK1,m−1 by identifying the vertex of degreem−1 ofK1,m−1 to the ver-
tices of C2n+1, where two vertices of C2n+1 are adjacent and the other n− 1 vertices have distance
two from the other, as depicted in Figure 3. The graphG has 2n+1+(m−1)(n+1) = mn+m+n
edges.
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Figure 3. The graph G satisfy G→ (nK2, 2K1,m).

Let µ be any red-blue coloring of G such that there is no red nK2. Then, all edges of G are
colored by blue or the red subgraph G∗ of G forms a path of length at most 2(n− 1) or a subgraph
containing at most (n − 1) stars K1,i, i ≤ m + 1. Let G′ be a subgraph of G without edges of the
red subgraph G∗. This subgraph G′ forms a path of length at least 3 having at least two vertices of
degree ≥ m or a disconnected graph containing 2 disjoint K1,m. Hence, G contains a blue 2K1,m.
So, G→ (nK2, 2K1,m). Thus, r̂c(nK2, 2K1,m) ≤ mn+m+ n.

Now, we will show that r̂c(nK2, 2K1,m) ≥ mn + m + n. Let G be a connected graph with
|E(G)| ≤ mn+m+ n− 1. We will show that G9 (nK2, 2K1,m). Consider the following cases.

Case 1. ∆(G) < m.
Color all edges in G with blue. By this coloring, there is a (nK2, 2K1,m)− coloring in G.

Case 2. ∆(G) ≥ m.
Let A be the set of vertices of degree at least m in G. If |A| ≤ n− 1, then color all edges incident
with all vertices inA by red and the other edges by blue. By this coloring, there is a (nK2, 2K1,m)−
coloring in G.
Next, we assume that |A| ≥ n. Since |E(G)| ≤ mn+m+n− 1, there are at most n disjoint K1,m

in G, otherwise G has at least mn+m+ n edges, a contradiction.

Suppose G contains at most n disjoint stars K1,m.
LetC be the set of centers of n disjointK1,m.Observe that, the remaining edges ofG are at leastm.
We consider these remaining edges. If these edges induce no K1,m, then we choose n− 1 vertices
of C and then color all edges incident with these vertices by red. Next, we color the remaining
edges of G with blue. By this coloring, we obtain a (nK2, 2K1,m)-coloring in G.
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Now, suppose these edges induce a K1,m with center u. Since G is connected, then at least one
vertex of the K1,m is adjacent to a vertex of C, say vi0 . Therefore, u and vi0 have distance at most
2. If u is adjacent to vi0 , we color all edges incident with u by red. Next, choose at most (n − 2)
vertices of C that are different with vi0 (if any) and color all edges incident with these vertices by
red. By coloring all the remaining edges of G by blue, we obtain a (nK2, 2K1,m)-coloring in G.
Suppose u is not adjacent to vi0 . In this case, we choose a path P3 connecting u and vi0 and color
the P3 with red. Furthermore, similar as in the previous case, choose at most (n− 2) vertices of C
that are different with vi0 (if any) and color all edges incident with these vertices by red. By giving
the blue color to the remaining edges of G, we obtain a (nK2, 2K1,m)− coloring in G. Hence, in
all cases, we have that G9 (nK2, 2K1,m).
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