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Abstract

A k-geodetic digraph G is a digraph in which, for every pair of vertices v and v (not necessarily
distinct), there is at most one walk of length < k from w to v. If the diameter of G is k, we say
that G is strongly geodetic. Let N (d, k) be the smallest possible order for a k-geodetic digraph of
minimum out-degree d, then N(d, k) > 1 +d+ d* + ...+ d" = M(d, k), where M (d, k) is the
Moore bound obtained if and only if G is strongly geodetic. Thus, strongly geodetic digraphs only
exist for d = 1 or k = 1, hence for d, k > 2 we wish to determine if N(d, k) = M(d, k) + 1is
possible. A k-geodetic digraph with minimum out-degree d and order M (d, k) + 1 is denoted as
a (d, k,1)-digraph or said to have excess 1. In this paper, we will prove that a (d, k, 1)-digraph is
always out-regular and that if it is not in-regular, then it must have 2 vertices of in-degree less than
d, d vertices of in-degree d + 1 and the remaining vertices will have in-degree d. Furthermore, we
will prove there exist no (2, 2, 1)-digraphs and no diregular (2, k, 1)-digraphs for £ > 3.
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1. Introduction

A digraph which satisfies that for any two vertices u, v in GG, there is at most one walk of length
at most k£ from wu to v, is called a k-geodetic digraph. If the diameter of a k-geodetic digraph G is
k, we say that G is strongly geodetic.

Let GG be a k-geodetic digraph with minimum out-degree d. What is then the smallest possible
order, N(d, k), of such a G? Letting n; be the number of vertices in distance ¢ from a vertex v for
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i =0,1,2,..., and realizing that n; > d’, we see that a lower bound is given as
k k
N(d k)= ni =y d = M(dk). (M
i=0 i=0

The right hand side of (1) is the so called Moore bound for digraphs. The Moore bound is
an upper theoretical bound for the so called degree/diameter problem, which is the problem of
finding the largest possible order of a digraph with maximum out-degree d and diameter k. A
digraph with order M (d, k), maximum out-degree d and diameter k is called a Moore digraph. If a
k-geodetic digraph has M (d, k) vertices, then it must be strongly geodetic, and therefore a Moore
digraph. However, the only Moore digraphs are (k + 1)-cycles (d = 1) and complete digraphs,
Kg1 (k=1),see[1]or[2], thus for d > 2 and k > 2 we are interested in knowing if the order for
a k-geodetic digraph with minimum out-degree d could be M (d, k) + 1. We say that a k-geodetic
digraph G of minimum out-degree d and order M (d, k) + 1 is a (d, k, 1)-digraph or that it has
excess one.

Notice that (kK + 2)-cycles and (k + 1)-cycles with a vertex having an arc to a vertex on the
(k + 1)-cycle are (1, k, 1)-digraphs and that complete digraphs K, o with at most one arc from
each vertex deleted are (d, 1, 1)-digraphs. In the remaining part of this paper, we will thus assume
d>2and k > 2.

In this paper, we will specify some further properties of the (d, k, 1)-digraphs, especially we
will show that they have diameter k£ + 1, and that if a (d, k, 1)-digraph is not diregular, then it is
out-regular and there will be exactly d vertices of in-degree d + 1, two vertices of in-degree less
than d and the remaining vertices will have in-degree d. In the last section, we will show that there
exist no (2, 2, 1)-digraphs and no diregular (2, k, 1)-digraphs.

2. Results

Let an ¢-walk denote a walk of length 7 and a < 7-walk denote a walk of length at most 7.
Furthermore, let N;"(u) denote the multiset of all vertices which are end vertices in an i-walk
starting at the vertex u, notice that Ny"(u) = {u} and N, (u) = NT(u). Also let T;" (u) =
U;'-:ON ;“(u), thus it is the multiset of all vertices which are end vertices in a < ¢-walk starting at
the vertex u. Notice that for k-geodetic digraphs N;"(u) and T." (u) are sets when ¢ < k. Looking
at (d, k, 1)-digraphs, we will often depict all the < (k + 1)-paths from some arbitrary vertex u,
thus the vertices in the multiset 7}, (u).

The first important result is that a (d, k, 1)-digraph G is in fact out-regular, as if we assume the
contrary, that there is a vertex u € V(G) with d*(u) > d + 1, we get that

V(G| = T, (u)]
=1+ (d+1)+(d+1)d+(d+1)d®+...+ (d+1)d""
= M(d, k) + M(d, k — 1),

a contradiction as M (d, k — 1) > 1 for k > 2.
An immediate consequence of a (d, k, 1)-digraph being out-regular, is that it has diameter & + 1
which follows in the following lemma.
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Lemma 2.1. Let G be a (d, k, 1)-digraph, then

e for each vertex u € V(G) there exists exactly one vertex o(u) € V(G) such that
dist(u,o(u)) =k +1,

e for any two vertices, u,v # o(u) there is exactly one < k-path from u to v.

Proof. As we know G is out-regular and the order is M (d, k) + 1, the second statement follows.
Let u € V(G) be any vertex and let o(u) be the unique vertex not reachable with a < k-path
from u, then we just need to prove d(o(u)) > 0. Assume the contrary, that d~(o(u)) = 0, then
o(u) = o(v) for all v € V(G)\{o(u)}. But then G\{o(u)} will be a Moore digraph of degree
d > 2 and diameter k£ > 2, a contradiction. Hence d™ (o(u)) > 0 for all u € V(G) and thus
dist(u,o(u)) =k + 1. O

The unique vertex o(u) with dist(u, o(u)) = k+ 1 will be called the outlier of u. Soa (d, k, 1)-
digraph is out-regular of out-degree d and has diameter k& + 1. Showing that a (d, k, 1)-digraph G
is also in-regular is not as straightforward. We will prove that if it is not in-regular, then there
are exactly two vertices of in-degree less than d, d vertices of in-degree d + 1 and the remaining
vertices are of in-degree d. Let S' = {v € V(G)|d (v) > d} and S = {v € V(G)|d" (v) < d},
then we get the following lemmas and theorem.

Lemma 2.2. Let G be a (d, k, 1)-digraph, then
o |5 <dandd (v)=d+ 1forallv e s,
e " C N*(o(u)) forallu € V(QG).

Proof. Assume u € V(G) and v ¢ N7T(o(u)), then as u must reach all in-neighbors of v in
< k-paths, we must have d*(u) > d~(v). If not, then there will exist an out-neighbor v’ of u
which has two < k-paths to v, a contradiction. Now, if v € N¥(o(u)), then u must reach all
in-neighbors of v, except o(u), in a < k-path. Thus with the same arguments as before, we must
have d*(u) > d~(v) — 1. Thus all vertices in S’ must have in-degree d + 1 and both statements
follows, as [N (o(u))| = d. O

Lemma 2.3. If S’ # (), then |S'| = d.

Proof. As a (d, k, 1)-digraph is out-regular, its average in-degree must be d and thus

YA —d) =) (d—d () =15

ves’ vES

Now let v € ', then we know | N~ (v)| = |N; (v)| = d + 1 and |N; (v)| > d|N,_;(v)| — € for
1 <t <k, wheree; + €3+ ...+ ¢ <|S'|. As all vertices in T}, (v) are distinct, it implies that

V(&) = Z [N; (0]l 2
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Estimating the above sum, we get a safe lower bound by letting e, = |S’| and ¢, = 0 for all
3 <t <k, thus

V(G = 1+ [N~ (v)| + [Ny (v)| + [Ng (v)| + ... + [N (v)]
>1+(d+ 1)+ ((d+1)d— SN +d+...+d?
=24d+d*+... +d"+(d—|9)A+d+...d7?)
=M(d,k)+ 1+ (d—|S'|)M(d, k —2).

But as G is a (d, k, 1)-digraph, we have |V (G)| = M(d, k) + 1, which together with the
preceding inequality and Lemma 2.2 gives |S’| = d. N

As a consequence of the above proof, we have that S C N~ (v) forallv € S'.

Theorem 2.1. Let G be a (d, k, 1)-digraph. If G is not diregular, then we have S = {z, z'} where
o(u) € S forallu € V(G).

Proof. Assume G is not diregular, thus we can assume S’ = {u, ua, ..., uq} wWhere d—(u;) =
d+1and o(u) € N~ (u;) forall w € V(G) and j = 1,2,...,d according to Lemmas 2.2
and 2.3. Moreover, from the proof of Lemma 2.3 we see that dist(v,u;) < k forallv € G
and:=1,2,...,d.

Now let N~ (uy) = {21, 22, ..., za+1} Where z; = o(uy). Then S'"NT),_,(z1) = 0, as otherwise
(z1,u;,...,21) will be a < k-cycle for some j = 1,2,...,d. Also, no two vertices u; and u; can
belong to the same 7, _,(z;) for 1 <[ < d+ 1, as if they did, (21, u;, ..., %) and (z1,uj, ..., 2)
would be two distinct < k-paths. Thus we can assume S’ N7, ,(2) = {w} for 2 < < d and

dist(u;, z;) = k — 1, as otherwise there will be two < k-walks (21, uy, ..., 2, u1) and (21, uq).
As (o(u),w;) is an arc for all w € V(G) and i = 1,2,...,d none of the vertices 29, 23, ..., 2q
can be the outlier of any vertex in G, as otherwise (o(u) = 2, uy, ..., z) will be a k-cycle. Thus

o(u) € {z1, za41} forall u € V(G).
Finally we wish to show that S = {2z, z4,1}. Assume the contrary, thus for some 2 < [ < d
we have d(z;) < dand o(u) # z forallu € V(G), as S C N~ (uy). But then

V@ <1+ d-1)(1+d+d+ ... +d" ) +1
= M(d,k) — M(d,k—1)+1
<M(d,k)+1
as dist(u;,z) = k — 1 and dist(uj,z) > k forall j # [. Thus S C {2,241} and as

Yoveg(d(v) =d) =d =3 s(d—d (v)) and d”(u) > 0 for all w € V(G) the result fol-
lows. [l

If G is diregular, we get the following useful lemma.

Lemma 2.4. Let G be a diregular (d, k, 1)-digraph, then the mapping o : V(G) — V(G) is an
automorphism.
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Proof. Let A be the adjacency matrix of (G, then due to the properties of G we get
I+A+A+ . +AF=J-P 3)

where J is the matrix with all entries equal to 1 and P is a permutation matrix with entry F;; = 1
if o(i) = j and P;; = 0 otherwise.

Now, as we know G is diregular, we know that AJ = J A, and as the left hand side of (3) is a
polynomial in A, we must also have PA = AP, thus o is an automorphism. O]

Notice that if GG is diregular there will be exactly d paths of length £ + 1 from a given vertex u
to o(u), as all u’s out-neighbors must reach o(u) in k-paths and if there were more than d paths of
length k£ + 1, one of u’s out-neighbors would have more than one < k-path to o(u), a violation of
the definition of (d, k, 1)-digraphs.

3. (2, k,1)-digraphs

In this section we will assume d = 2 and prove the non-existence of (2,2, 1)-digraphs and
diregular (2, k, 1)-digraphs.

Theorem 3.1. There are no (2,2, 1)-digraphs.

Proof. Assume G is a (2,2, 1)-digraph, then it has 8 vertices and we can depict the relationship
between the vertices in T3 (1) as in Fig. 1, where we can see o(1) = 8.

8

Figure 1. 75 (1).

Assume G is not diregular, then we know from Theorem 2.1 that d~(8) = 1 and there exist
another vertex z € V(G) with d~(z) = 1 and 0(3) = 0(6) = z. Furthermore we know N*(8) =
N*(z) = {uy,ug} with d~(u;) = 3 for i = 1,2. Notice that 6 ¢ {uy,us}, as otherwise G would
contain a 2-cycle, (6,8, 6). As the diameter of G is 3, we must have dist(2,6) = 2 for 2 to reach
8 and thus o(2) = 8. Assume without loss of generality that 6 € N (4). Then for 5 to reach 8 we
must have 3 € N*(5),as N~ (6) = {3,4} and 4 ¢ NT(5), as otherwise (2,4) and (2, 5,4) will be
two distinct < 2-paths. The only vertices which 2 cannot reach are 1 and 7. If 7 € N (5) we have
(5,7) and (5, 3,7) as < 2-paths, which is a contradiction. If instead 1 € N*(5) then we have the
< 2-paths (5, 1, 3) and (5, 3) another contradiction.

Now assume that G is diregular and recall that then o is an automorphism, thus we can assume
8 € NT(5) as o(2) # 8. Then, we see that o(2) # 6, as otherwise there would be a 2-cycle (6, 8, 6)
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as o is an automorphism, a contradiction. So there will be a < 2-path from 2 to 6, but 6 ¢ N (5)
as otherwise there are two < 2-paths from 5 to 8, namely (5, 8) and (5,6,8). Thus 6 € N*(4),
and in the same manner we see that 5 € N7 (7). Let u and v be the other out-neighbor of 4 and 5
respectively, and w and z the other out-neighbor of 6 and 7 respectively.

As 2 has to reach vertex 1,3 and 7 and at most one of them can be the outlier of 2, we must
have v € {1,7} and v € {1,3}, as if u = 3 there will exist two < 2-paths from 4 to 6, namely
(4,6) and (4,3,6) and if v = 7 we will get a 2-cycle, (7,5,7). Similar we see z € {1,4} and
w e {1,2}.

Now assume o(2) = 1, hence 0(3) # 1 and (0(1),0(2)) = (8,1) is an arc. Then u = 7
and v = 3, and as o is an automorphism, we must have z = 1, as if w = 1 we will have the
two < 2-paths, (6,1) and (6,8, 1). But then (7, 1,3) and (7, 5, 3) are both 2-paths from 7 to 3, a
contradiction.

Instead assume 0(2) = 3, thus w = 7and v = 1 and (o(1),0(2)) = (8,3) is an arc. But then
(5,1,3) and (5, 8, 3) are both 2-paths from 5 to 1. So we can safely assume o(2) = 7, thus u = 1
and v = 3, but then (5, 3,7) and (5, 8, 7) are both 2-paths from 5 to 7, another contradiction.

0

Theorem 3.2. No diregular (2, k, 1)-digraph exists for k > 2.

Proof. Due to Theorem 3.1 we can assume & > 2 and we label the vertices in T}, | (1) as in Fig. 2.
First of all, notice that for all u € V(G) we obviously have o(u) ¢ T, (u), so we must have
0(2) € T;F ,(3) U{1}. We also see that o(2) ¢ T, ,(6), as otherwise there will be two < k-paths
from 6 to o(2), the one in T} ,(6) and (6,12, ...,3 - 2""1 281 = (1), 0(2)), a contradiction.

2,16/\\ 3.216—1 _’1/\\ /\3\.21@—1 //\2<+1_1
|o/ N A B o/l

ok+1 9k+1

Figure 2. T/, (1).

Now, let A = N,/ [(4) and B = N,* (5)\{2*"}, so |A| = 2*"! and |B| = 2¥~! — 1. Then
we will look at how ({1} U T, (3))\o(2) is distributed on A and B. For any arc (u,v) in G, we
must have that v and v will not both be in A and not both in B, as otherwise there would be two
< k-paths from either 4 or 5 to v. We observe that 3 - k=1 ¢ B, as otherwise there would be two
< k-paths from 5 to 2**%, namely (5,11,...3 -2t —1,281) and (5,...,3 - 2k=1 2k+1) So we
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must have 3-2F71 € A,3.2%2 ¢ B, 3-2"3 € A, and so on, until we reach vertex 6. This implies
that N, ,(6) € A, N} ,(6) € B, N, ,(6) € A and so on, until we get either 6 € A if k is even or
6 € B if k is odd.

Leta=|ANT, ,(6)|and b= |BNT}; ,(6)|,s0a+b=2""1—1. Now, if k is even we let

Ay = a = 2% — + ok—1
=0
and
k2
be — b — 22i+1 — + 2k—1
1=0
Similarly, if & is odd we let
k=3
2
G, =a = Z 92+l _ i k-1
i=0
and
k—3
2
bp=b=Y 2% = _— 4 _ .okl _ _g4
=0

We start by assuming that o(2) = 1, then if & is even we see that vertex 3 must be in B, so
7€ A, {14,15} C B,..., N, ,(7) C A. Thus

1 2
A:2- 8:2 —_— _2k_1 >2k_1
Al =20 =2 (-3 +32)
as k > 2, a contradiction. If k is odd, we see that vertex 3 mustbein A,s07 € B, {14,15} C A,.. .,
N, ,(7) C A, thus
2 2

|A|:2a0+1:2<—§+§~2’“1>+1>2’“1

as k > 2, yet a contradiction. So, we know due to symmetry that 1 ¢ {0(2),0(3)}.

Now, assume that 0(2) # 3. Then, we know the distribution of all the vertices in 7} | (3) U {1}
except for those in T;"(0(2)), where i is given by dist(3,0(2)) = k — 1 — i. Assume i = 0,
thus o(2) € N, ,(7), or that N*(0(2)) is in the same set (A or B) as N, , .(6), then we see
that |A| > 2a > 2F~1, a contradiction. So, we can assume there exist vertices u and v, such that
N7*(0(2)) = {u,v} C T, ,(7) and that not both v and v are in the same set (A or B) as N," | ,(6).

For even i, let c. denote the number of vertices in every second layer of 7" (0(2)) such that
N;"(0(2)) is not one of those layers, then

-1

ol

2

INS(o@) =2(1+2"+. .. +27%) =2 2' - 2.
J=0

Ce
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Let d. denote the number of vertices in the remaining layers, thus

i1

d—Z| 2]+2 2))| = 2c..

For odd i, let ¢, denote the number of vertices in every second layer, where N, (0(2)) is not one of
those layers, thus

1 i+1 1 i+1
Z’ 2J+2 5(2 _1)_1:§'2 Y

and the number of vertices in the remaining layers is then

i—1
2

d, = \N;j+1(0(2))| = 2¢, + 2.

<
|
o

We will now count the number of vertices in A depending on whether £ and ¢ are even or odd,
and which set (A or B) u and v are in, a total of 8 different scenarios. Notice that exactly one of 1
and 3 will be in A. We will obtain contradictions in some of the scenarios and in the remaining we
will obtain that o(2) = 7. Thus, we have proved that o(2) € {3, 7}.

If £ is even, we get following scenarios:

e 7 even:
- u,v € A: Then,

Al =2a.+14+ce—d.— 1

1 2
=92 = __2k—1 — ¢,
(5e52) -

2 2
= .2 2.9
3 3

Now, as we already know |A| = 287!, we must have i = k — 2, and thus o(2) = 7.

— u € A, v € B: Then, half of the vertices in 7" (0(2))\{0(2)}, namely 2 — 1 vertices,
will be in A and the other in B, hence

Al =2a,+1—d.— 142" —1

1 2 4 . ,
=2 —= 4.2 ) - 22— 1)+ 20— 1
( 3+3 ) 3( )+

1 2 1 .
—_ _ __2k___21

3+3 3

a contradiction with |A| = 2k-1,
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— u,v € B: Similar to the above argument, we see that

Al =2a.+ 1+ ¢, —d,

( 2
=2(—=+2

3

1

3-2k_1)+1+co—200—2

_2k—l_ 1.2i+1_% -1
3 3
. 2k:—1 _ l . 2i+1
3 3

again a contradiction to the fact that |A| = 2%,

- u € A,v € B: We see

Al =2a,+1+2"—1—d,

1 2 4 2 .
=2(—c+=- 2" ) 14201 -2 -1
( 3 * 3 ) T 3( )
2 |
=-.2F__.9%
3 3
As |A| = 271, this implies i« = k — 1, but then 0(2) = 3, a contradiction to our
assumption.
If £ 1s odd we have:
e i, even:
— u,v € A: Then,

Al =2a,+1+ce—d.— 1

yet a contradiction to |A| = 2F1,

- u€ A,v € B: We see

2 2
2( -2 _.2]6—1 — ¢,
(5e52) -
2,2 5 2
3 3 3 ’

Al =2a, +1—d, —1+2"—1

2 2 4 .
=2 4+Z.2F) (2 —1)+20—1
<3+3 ) 3( )+
= 1+2 oh Ly
B 3 3 77

a contradiction to |A| = 287! and i # 0.
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e ; odd:

— u,v € B: Similarly, we see that
|Al = 2a,+ 1+ ¢, —d,

2 2
= (——+—-2’“)+1+co—2c0—2

3 3
:_é_i_é.zk—l_ 1.2i+1_é -1
3 3 3 3
4 1
= 14— .21 _ _ .9l
T3 3 ’

yet another contradiction to the fact that |A| = 281,

- u€ A,v e B: We see
|Al = 2a,+1+2"—1—d,
2 2 2
—9(_Z _.2]671 27,__27,+1_1
< 3+3 >+ 3< )
2

2
— 4 2.9k _
+3

20
3

1
3
Then, we must have £k = 3 and i = 1, thus o(2) = 7.

To summarize the above, we have o(2) € {3,7} and 0(3) € {2,4}. Using similar arguments
we observe o(4) € {5,10}, as (11,...,25 = 0(1),0(2),0(4)) is a k-path. Now, if 0(2) = 3 we
geto(4) € Nt (0(2)) = {6, 7}, but this is a contradiction to our observation. On the other hand, if
0(2) = 7 we must have o(4) € {14, 15} again a contradiction.

]
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