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Abstract

Let D = (V, A) be a digraph of order n = |V|. A Roman dominating function of a digraph
D is a function f : V' — {0,1,2} such that every vertex u for which f(u) = 0 has an in-
neighbor v for which f(v) = 2. The weight of a Roman dominating function is the value f(V') =
> wey J(w). The minimum weight of a Roman dominating function of a digraph D is called the
Roman domination number of D, denoted by vg (D). In this paper, we characterize oriented trees
T satisfying yg(T) + AT (T) =n + 1.
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1. Introduction

The digraph D = (V, A) of order n = |V| considered here has no loops and no multiple arcs
(but pairs of opposite arcs are allowed). If (u, v) € A, then we write u — v and we say that v is an
out-neighbor (successor) of u, (or u dominates v) and w is an in-neighbor (predecessor) of v, and
if (u,v) ¢ A, we write u - v. If u — v and v — u, we say that (u, v) is a symmetrical arc and
we write v «— u. If u — v and v - u, we say that (u,v) is an asymmetrical arc and we write
u —> v. Also, if u and v are non adjacent (u - v and v - u), then we write u <» v. Let S C V
be a non-empty set and u a vertex in V' — S. If u is in-neighbor of each vertex of .S, then we use
the notation u = S.

A digraph H = (U, B) is the subdigraph of D whenever U C V (D) and B C A (D), the
subdigraph induced by U is denoted by (U). If U = V (D), the subdigraph is said to be spanning.
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An oriented graph is a digraph D = (V, A) containing no symmetric pair of arcs. That can be
obtained from a graph G by assigning a direction to each edge of . The resulting digraph D is
called an orientation of G. Thus, if D is an oriented graph, then for every pair v and v of distinct
vertices of D, either (u,v) or (v, u) is an arc of D, but not both.

A tree is a connected graph without cycles. Also, an oriented tree is a connected oriented graph
without oriented cycle. Note that an oriented tree with n vertices has n — 1 arcs.

Define the out-neighborhood of a vertex v € V as Njj(v) = {u € V : v — u}, the in-
neighborhood of v as N, (v) = {w € V : w — v}. We define Nj[v] = Nj(v) U {v} and
Np[v] = Np(v)U{v}. Also, forasubset S C V, N} (S) = U,es N (v) and NS [S] = N (S)US.
The definition of N, (S), N[S] are similar. The out-degree of a vertex v in D is defined as
d},(v) = |N(v)|. The maximum (respectively, minimum) out-degree of D is given by AT (D) =
max {d},(v) : v € V'} (respectively, 6" (D) = min {d},(v) : v € V}). Similarly, the in-degree
of v is dp(v) = |Np(v)| and maximum (respectively, minimum) in-degree of D, A~ (D) =
max {dj,(v) : v € V} (respectively, 6~ (D) = min {d,(v) : v € V'}). For a vertex v in the set
S, the out-private neighbors of v with respect to S is the set opn[v, S] = Nj[v] — NA[S — {v}].
For the terminology and notations not defined here, we refer the reader to the book by Haynes et
al. [6].

A Roman dominating function (RDF) on a digraph D = (V, A) is a function f : V —
{0,1, 2} such that every vertex u for which f(u) = 0 is a successor of some vertex v for which
f(v) = 2. The weight of a Roman dominating function is the value f(V) = > _, f(u). The
minimum weight of a Roman dominating function on a digraph D is called the Roman domination
number of D, denoted by vz(D). Let (V4, V1, V4) be the ordered partition of V' induced by f, where
Vi={veV: f(v) =i} fori =0,1,2. Note that there exists a 1-1 correspondence between
the RDF f and the ordered partition (V;, V3, V3) of V. Thus, we will write f = (Vp, V4, V2).
So, a function f = (Vg, Vi, V3) is a Roman dominating function (RDF) if Vy C NT[V,]. The
weight of fis f(V) = 3 . f(v) = |Vi] + 2|V%|, and we say that a RDF f is a yg-function if
f(V) = yg(D). The Roman dominating function for graphs has been introduced by Cockayne et
al. [1] and was motivated by an article in Scientific American by Ian Stewart entitled “Defend the
Roman Empire” [11]. For more details on Roman domination and its variants, the reader can be
referred to [2, 3, 8,9, 12, 13].

The concept of Roman dominating function for digraphs was introduced by Kamaraj and
Jakkammal in [4], in their paper the authors gave the following upper bound for the parameter
~vr(D) and some others results.

vr(D) <n— A*T(D)+ 1. (1)

Later, in [4, 10] the authors gave some bounds and characterization of digraphs for small values
of yg(D). In [7], the authors gave extremal oriented k-out-regular graphs with 1 < k < n — 1,
and tournaments attaining the upper bound in (1), also they showed that the problem of deciding
whether an oriented graph D has yz(D) =n — AT (D) + 1is CO — N'P-complete. In this paper,
we characterize all oriented trees 7 satisfying vg(7') =n — AT (T) + 1.
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2. Characterization of Oriented Trees T" with vg(T) = n — AT(T) + 1

In this section, we give a characterization of oriented trees 7" with vz(T) = n — AT(T) + 1.
Recall that the known upper bound in (1) is given by Kamaraj and Jakkammal in [5].

Proposition 2.1. [5] If D is a digraph of order n, with maximum out-degree A (D). Then
yr(D) <n—A*T(D)+ 1.
Proposition 2.2. [10] If D is any digraph of order n, then yr(D) < n if and only if A* (D) > 2.

Proposition 2.3. If T is any oriented tree of order n > 2, then yr(T) = n if and only if AT(T) =
1.

For the next result, let X be the set of vertices of an oriented tree 7" with out-degree 2, i.e.,
X={zeV:d(x)=2}.

Proposition 2.4. Let T be an oriented tree of order n > 2 with maximum out-degree A*(T) and
X be a set of vertices of out-degree 2. Then yg(T) = n — 1 if and only if AT (T) = 2, in addition
if | X| > 2 then X has an unique vertex, say z satisfies N; [x] N N} [y] = {z}, for every pair of
vertices x, y in X and x or y may be z (see Figure 1).

Proof. Let T be an oriented tree of order n > 2 . Assume that yg(7) = n — 1, and suppose to
the contrary that A* (T") # 2. By Observation 2.3, A* (T') > 3 and by Proposition 2.1, yg(T) <
n — A*(T) + 1, a contradiction. Thus A™ (T') = 2 and | X| > 1. Now, assume to the contrary that
| X| > 2 and there exists at least two vertices, say = and y in X5 such that | N}t [z] N N [y]| # 1.
Since T is an oriented tree, N [x] N N; [y] = (. The function f = (Vp, V4, Vs), where V; =
V — (Nf [z] UN{ [y]) and V5 = {z,y}, is an RDF of T', so yr(T) < |[Vi| + 2|Vo| =n — 2, a
contradiction.

Conversely. Let x € X (in case z € X, z may be z). Clearly by construction of 7' that the
function f = (N (z),V — N/ [z],{z}) is a vg (T)-function with yg (T) = |Vi| + 2|Vs| =
(n—3)+2=n-1 O

Figure 1. (a) T with z ¢ X. (b) T with z € X.
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In [7], Ouldrabah et al. gave necessary conditions for digraphs D such that yz(D) = n —
AT (D) + 1. Since we are interested in oriented trees, we state their results only for the class of
oriented trees. From now, 7" will be an oriented tree of order n with vz(T) =n — AT(T) + 1,z
will be a vertex of maximum out-degree A*(7") > 3 and N' (2] =V(T) — Nt [z].

The next three Lemmas contain main structure properties on oriented tree 7" with vg(T) =
n — AT(T) + 1, which we will need in order to prove the main results.

Lemma 2.1. [7] Let T' be an oriented tree of order n and let x be a vertex with maximum out-
degree AT (T) > 3. If yr(T) =n — AT(T) + 1 then

1. every vertexin N [x] has at most one out-neighbor in <N+ [a:]> and

2. every vertex in N' (x) has at most two out-neighbors in T.

Lemma 2.2. Let T' be an oriented tree of order n and maximum out-degree A*(T) > 3. If
Yr(T) =n — AY(T) + 1 then T has a unique vertex with out-degree at least three.

Proof. Let T be an oriented tree of order n and maximum out-degree A*(7T') > 3. Suppose there
are two vertices x and y in T with out-degree at least 3. Without loss of generality, we can assume
that d* (z) = AT (T). If y € N [z] since T is an oriented tree, then y has at least two out-

neighbors that are in N [z], that is ‘N T(y)n N' [z] ‘ > 2 a contradiction with Lemma 2.1. Thus
y must be is in Nt (z). But in this case, since T is an oriented tree, y has at least three out-
neighbors vertices in N [z], that is ’N Ty)n N© [x]‘ > 3, again a contradiction with Lemma
2.1. [

Define the following subsets:
(6)

It is clear that U, Y and Z form a partition of the set X. Also we define the two following subsets:

W= (N*(z) - V)N N*(U),

R=N*(z)— (YUW). 7

For illustration, see the oriented tree 7" in Figure 2.

Lemma 2.3. Let T be an oriented tree of order n and maximum out-degree A*(T) > 3. If
Yr(T) =n— AT (T) + 1 then |R| > 1, and in addition if |R| = 1 then Z = ().
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Proof. Let T be an oriented tree of order n > 2 with v (T') = n— A (T)+1, and x a vertex of T’
satisfying d* (x) = AT (T). From Lemma 2.1, we have d* (v) < 2 for every vertex v in 7' — x. If
X =0, then AT((T — z)) < 1, and the condition is done. Assume now that X = ZUY UU # .
Since Y UW C N7 (z) and T is an oriented tree we have

AYT) = |N* ()] = [Y] + W]+ |R],
and so

INFUUY]| = |NT[U]| + |[NT[Y]| = [INT(U)nY]
=2|U| + |[W|+3Y]
=2|Y|+2|U|+ AY(T) - |R|.

First, we show that | R| > 1. Assume to the contrary that R = (), then
AT(T) = |NT (2)| = Y]+ |W].
The function f = (Vp, V4, V3), where
Vi=V(T)— (NT[UUY]) andV, =UUY
is an RDF of T'. Hence,

Yr(T) < V1| +2|Va|
— [V ()| = (2]Y] +2[U] + A*(T)) + 2 (|U] +|Y])
=n—AT(T),
a contradiction.

Now we must show that if |R| = 1 then Z = (). Suppose to the contrary that |R| = 1 and
Z # (. Thus A™(T) = |Y| + |W| + 1. The function f = (Vp, V4, V), where

Vi=V(T)— (NT[UUYU{z}]) and Vo =U UY U{z}
is an RDF of T" where z € Z. Hence,

r(T) < Vi +2[V3]
=|V(T)— (NT[UUY U{z}])|+2|UUY U{z}|
= V(D) = Y| +2[U] + AN(T) = [R| + [N*[]]) + 2 ([U] + [Y] + [{z}])
=n—AT(T),

a contradiction. O]

In the sequel, we provide a characterization of trees 7' of order n > 2 for which vz (T') =
n — AT (T) 4+ 1. For this purpose, we define the following families of trees. Recall that X =
{r eV . d"(x)=2}
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e F; the family of all oriented trees 7' with A*(T) = 1.

e F; be the family of all oriented trees 7' with A*(T') = 2, and T has an unique vertex, say z
satisfies X C N~ [z].

e 3 be the family of all oriented trees 7" with A™(T") > 3 satisfying the following conditions:
(a) T has a unique vertex = with out-degree at least three.

(b) A+(<N+ [m]>) < 1, and every vertex in N\ (z) has at most two out-neighbors in 7".

(¢) |R| > 1 and in addition if |R| = 1 then Z = ().

We begin by giving a known result on digraph that will be useful to prove the main result.
Proposition 2.5. [5] Let f = (Vi, V1, V3) be any vr(D)-function of a digraph D. Then
(a) Ifv € Vi, then N~ (v) NV = 0;

(b) Let H = D [Vh U Vs]. Then each vertex v € V3 with N~ (v) NV, # (), has at least two
private neighbors with respect to V5 in the subdigraph H.

Figure 2. An example of oriented tree 7" which belongs to 3. Note that R is not empty, and the set Z must be empty
whenever |[R| = 1.

We now are ready to give our main result.

Theorem 2.1. Let T' be an oriented tree of order n > 2 with maximum out-degree A*(T). Then

Yr(T)=n— AT (T)+ lifand only if T € F\UFo U Fs.
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Proof. Let T be an oriented tree of order n > 2 with maximum out-degree A* (7). If AT(T) =1
or 2, then by Observation 2.3 and Proposition 2.4 v (T') = n — A* (T') + 1 if and only if T € F;
or T' € Fs, respectively. Hence let A*(7T) > 3. Then from Lemmas 2.1, 2.2, and 2.3, T' € F3.

Conversely. Suppose T € F3, by Condition (a) of the family F3, T has a unique vertex, say «
with df (z) = A*(T) and A([N" [s] UR]) < 1.

First we will show that there exists a vz (7')-function f with f(z) = 2. Suppose to the contrary
that every v (D)-function 7, m(x) # 2. Let f = (Vi, V4, V2) be a yg(T)-function, if there exists
a vertex v in R such that f (v) = 0, then there exists a vertex w € N' [z] such that w — v with
f (w) = 2, and the function

g:(VO—{v},Vlu{w,v},Vg—{w})

is a yg (T')-function with ¢g (v) = 1. And if there exists a vertex v in R such that f (v) = 2, then
there exists a vertex w € N [z] such that v — w with f (w) = 0 and the function

h=Vo—{w}, Vi U{w,v},Vs—{v})

is a yg (T)-function with & (v) = 1. So, we can suppose without loss of generality that f (v) = 1
for every vertex v in R. Since T' € F, we deduce from the Condition (c) that |[R| > 1. Since
f (z) # 2, we distinguish tow cases:

Case 1. f (z) = 1. If |R| = 1, then the function

f'= MV UR Vi = (RU{z}),VaU{z})

is yg-function with f’ (x) = 2, a contradiction with the fact that every v (D)-function 7, 7(x) #
2. If |R| > 2, then f’is an RDF with f' (V') < f (V), a contradiction.
Case 2. f (x) = 0, then there exists a vertex u € N (x), such that u — z with f (u) = 2, and

since x — v with f (v) = 1, for every vertex v in £. We have three possibility:
Subcase 2.1. |R| = 1. Then

f'=WUR—{z}, (Vi = R)U{u}, (Va = {u}) U{z})

is a yr(T')-function with f’ (z) = 2, a contradiction.
Subcase 2.2. |R| > 2 and Z = (). Then

f'=MVUR—{z}, (Vi = R)U{u}, (Vo —{u}) U{z})

is a RDF with f' (V') < f (V), a contradiction.
Subcase 2.3. |R| > 2 and Z # (). For the case u ¢ Z, like Subcase 2.2, we obtain a
contradiction. Suppose now that u € Z. If |R| = 2, then

fr=((Vo—{z}) UR, Vi = RV, U{x})

is a yg(7T')-function with f'(z) = 2, a contradiction. And if |R| > 2, then f’ is a RDF with
f (V) < f(V), a contradiction. Hence, there exists a yz(7")-function f (V') = (Vp, V1, V2) such
V5 contains x.
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Now, we show that vg (T') = n — AT (T) + 1. Suppose to the contrary
Yr(T) <n—AT(T)+1.

We have,
Vil + 2V <n— AT(T) + 1 = [Vo| + [Vi] + [Va| = AT(T) + 1.
This implies that,
Vol > |Va| + AT (T). )

It follows from Proposition 2.5 item (a), N}, (z) NV} = (). We define the two following subsets:
P =N} (z)NnVyand Q = N} (z) N V.

Let |P| =pand |Q| = ¢,sop+q = AT (T). Since Vo C NT[V3], clearly that [V3| > 2. Moreover,
every vertex in V5, has at least an out-private neighbor in V;, with respect to V.

First, assume that P = (). Since |V3| > 2 we can deduce from (2) that there exists at least
two vertices, say u,v in Vy dominated by another vertex say z’ in V5 other than x. i.e., z —-» u,

x - v and ' = {u, v} which give A+(<N * [a:]>) > 1, a contradiction with the Condition (b)

of the family F3, so P # (). On the one hand, by Proposition 2.5 item (b), each vertex in P has
at least two out-private neighbors in Vj with respect to V5, and on the other hand, by Condition
(b) of the family F each vertex in N (x) has at most two out-neighbors in U, which implies that
|IN* (P) N V| = 2p, since T is an oriented tree.

Now, we define the following subsets:

F=V,—(PU{z}) and E =V, — (QU (NT(P)NVp)). (3)
So,
B = Vol = Q] = |N* (P) N V| = [Vo| — ¢ — 2p, )
It follows from (2), (3) and (4) that
|F|=Val = (p+1) < [Vo| = AT (T) = (p+1)
<|El+q+2p—AT(T)—(p+1)
— |E|—1<|E|.

We have thus shown that |F| < |E|. But, since Vo C N*[V3], thus F' # 0 and E C NT[F],
which implies that there exists at least a vertex w in F' such that |NZ§ (w)NE ’ > 2, implying

A*(<N+ [x]>) > 2, a contradiction with the Condition (b) of the family F3. Hence, vg (D) =
n—AT+1. O
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