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Abstract

A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect matchings
M and N of G, there is an automorphism f : V(G) — V/(G) such that f.(M) = N, where
fe(uv) = f(u)f(v). In this paper, the author proposed the definition of PM-transitive, verified
PM-transitivity of some symmetric graphs, constructed several families of PM-transitive graphs
which are neither vertex-transitive nor edge-transitive, and discussed PM-transitivity of generalized
Petersen graphs.
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1. Introduction

An automorphism of a graph is a form of symmetry in which the graph is mapped onto it-
self while preserving the edge-vertex connectivity. Formally, an automorphism of a graph G =
(V(G), E(G)) is a permutation f of the vertex set V' (&), such that the pair of vertices uv is an edge
of G if and only if f(u)f(v) is also an edge of G. That is, it is a graph isomorphism from G to itself.
Every graph automorphism f induces a map f. : E(G) — E(G) such that f.(uv) = f(u)f(v).
For any vertex set X C V(G) and edge set M C E(G), denote f(X) = {f(v) : v € X} and
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Je(M) = {fe(uv) = f(u)f(v) : wv € M}. In this paper, we also use f to denote the map induced
by the automorphism f.

A graph G is vertex-transitive [11] if for any two given vertices v; and v, of G, there is an
automorphism f : V(G) — V/(G) such that f(v;) = wvy. In other words, a graph is vertex-
transitive if its automorphism group acts transitively upon its vertices. A graph is vertex-transitive
if and only if its graph complement is vertex-transitive (since the group actions are identical). For
example, the finite Cayley graphs, Petersen graph, and C,, x K, with n > 3, are vertex-transitive.

A graph G is edge-transitive if for any two given edges e; and e, of GG, there is an automorphism
of G that maps e; to e,. In other words, a graph is edge-transitive if its automorphism group acts
transitively upon its edges. The complete bipartite graph kK, ,,, Petersen graph, and the cubical
graph C,, x K5 with n = 4, are edge-transitive.

A graph G is symmetric or arc-transitive if for any two pairs of adjacent vertices u;|v; and
us|vq of G, there is an automorphism f : V(G) — V(G) such that f(u;) = uy and f(v1) = ve. In
other words, a graph is symmetric if its automorphism group acts transitively upon ordered pairs of
adjacent vertices, that is, upon edges considered as having a direction. The cubical graph C,, x K,
with n = 4, and Petersen graph are symmetric graphs.

Every connected symmetric graph must be both vertex-transitive and edge-transitive, and the
converse is true for graphs of odd degree [2]. However, for even degree, there exist connected
graphs which are vertex-transitive and edge-transitive, but not symmetric [3]. Every symmetric
graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular.
However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated
tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and
Tietze’s graph).

A lot of work has been done about the relationship between vertex-transitive graphs and edge-
transitive graphs. Some of the related results can be found in [3]-[17]. In general, edge-transitive
graphs need not be vertex-transitive. The Gray graph is an example of a graph which is edge-
transitive but not vertex-transitive. Conversely, vertex-transitive graphs need not be edge-transitive.
The graph C,, x K5, where n > 5 is vertex-transitive but not edge-transitive.

A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect match-
ings M and N of G, there is an automorphism f : V(G) — V(G) such that f.(M) = N, where
fe is the map induced by f.

Are there any PM-transitive graphs? What kind of properties do PM-transitive graphs have?
What is the relationship between PM-transitive and edge-transitive? What is the relationship be-
tween PM-transitive and vertex-transitive? What is the relationship between PM-transitive and
symmetric?

In section 2, the author verified that some well known symmetric graphs such as Cs,,, Ks,,, K, ,,
and Petersen graph are PM-transitive, and constructed several families of PM-transitive graphs
which are neither vertex-transitive nor edge-transitive. In section 3, the author discussed some
methods to generate new PM-transitive graphs. In section 4, the author proved that all the generated
Petersen graphs except the Petersen graph are non-perfect matching transitive. In section 5, the
author provided some examples which have one or more properties of vertex-transitive, edge-
transitive, or PM-transitive.
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2. PM-Transitive Graphs
In this section, we characterize some PM-transitive graphs.
Theorem 2.1. Every even cycle G = Cs, with n > 2 is PM-transitive.

Proof. Let Cy, = uqus - - - us,uy with n > 2. Note that C5,, has exactly two perfect matchings,
denoted by M = {ujug, usuyg, -+ , Uy 1us,t and N = {ugug, ugus, - - - , us,u, }, respectively.
Define f : V(G) — V/(G) such that f(u;) = wu;41. Since for any edge u;u;; € E(Coyy,),
fuiwisr) = f(w) f(wit1) = wis1uive € E(Cyy), fis an automorphism of Cs,,. By the definition
of M, N and f, f.(M) = N follows and G is PM-transitive. N

Theorem 2.2. Every even complete graph G = K, with n > 2 is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Let M AN denote the symmetric difference
of M and N, and also the graph induced by M AN. Since every vertex of GG is incident with
exactly one edge in M and exactly one edge in N, M AN is a disjoint union of even cycles.
Define f : V(G) — V(G) such that f(u) = uvifu € V(M NN) and f(u;) = wipq if u; € V(Coy),
where Cos = wujus - - - ugsuy is an even cycle in MAN. Since GG is a complete graph, f is an
automorphism of G. Let wv € M. If uwv € M N N, then f.(uv) = f(u)f(v) = wv € N.
If v € M\ N, then wv is an edge of some even cycle of MAN. Let uv = w;u;+1. Then
fe(uv) = fe(ujuirr) = f(ui) f(wip1) = wip1ui49 € N. Therefore, f.(M) = N follows and G is
PM-transitive. L

Theorem 2.3. Every complete bipartite graph G = K, ,, is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Then M AN is a disjoint union of even
cycles. Define f such that f(u) = uifu € V(M N N), and f(u;) = uy and f(u;) = ugsyo_; for
2 <1 < 2s, where Cys = ujug - - - ugsuy is an even cycle in MAN. Let (X, Y) be the bipartition
of G. By the definition of f, f(X) = X and f(Y) = Y. Since G is a complete bipartite graph,
f is an automorphism of G. Let uv € M. If uv € M N N, then f.(uv) = f(u)f(v) = uv € N.
If uw € M \ N, then wv is an edge of some even cycle of MAN. Without loss of generality,
suppose that uv = u;u;1. Then fo(uv) = fe(uuipr) = f(us) f(Wig1) = Uoaspo—ilasio—(iy1) € N.
Therefore, f.(M) = N follows and G is PM-transitive. O

Theorem 2.4. The Petersen graph is PM-transitive.

Proof. Let GG be the graph obtained from the union of two cycles ujususususu; and v1v3v5v204v1
by connecting w;v;, where ¢ = 1,2,--- 5. Then G is a Petersen graph. Let M be a perfect
matching of G and let N = {ujv1, ugvg, u3vs, usvy, usvs }-

Claim: If M # N, then |[M N N| = 1. Suppose that M # N. Then G — V(M N N) is an
even cycle or unions of even cycles. Since the Petersen graph does not have 2-cycles, 4-cycles, or
6-cycles, |[M N N| # 4,3, 2.

Without loss of generality, we assume that N = {wujvy, ugus, usus, vovy, v3vs}. Define f :
V(GQ) — V(G) such that f(v) = vif v € {uy,ug, us,v1}, flug) = ve, f(ug) = vs, f(va) = ug,
f(vs) = vy, f(vg) = v3 and f(vs) = v4. Then f is an automorphism of G such that f.(M) =
N. O
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Theorem 2.5. Let G be the graph obtained from Coy,. 0 = UguiUs - - - UpUgVUpUp_1 -+ V1Ug With
n > 2 by connecting u;v;+, and v;u;1, where i =1,2,--- . n — 1. Then G is PM-transitive.

Proof. We prove this result by induction. When n=2, GG has four different perfect matchings.
Denote them by M1 = {U(ﬂ)l,ulvg, u2v0}, M2 = {U()U,l,l)lvg7 UQU()}, M3 = {Uo’Ul, U1U2,’U(ﬂ)2},
and My = {upu,ugvy, vova}, respectively. To prove that G is perfect matching transitive, it
suffices to prove that for M € {M,, M3, M4}, there is an automorphism f of G such that f.(M) =
M. Furthermore, we can restrict that vy and u are fixed under f.

If M = M, then define f5 : V(G) — V(G) such that fo(uy) = vy, fa(v1) = uy, and fo(v) = v
forv € V(G)\{u1,v1}. Then fy is an automorphism such that fo(My) = My, and vy and ug are
fixed under f,.

If M = Mj, then define f;5 : V(G) — V(G) such that f3(us) = v, f3(v2) = ug and f5(v) = v
for v € V(G)\{uz,v2}. Then f3 is an automorphism such that f3(M3) = M, and vy and v are
fixed under f3.

If M = M,, then define f4 : V(G) — V(G) such that f4(u1) =11, f4(U1) = U1, f4(U2) = V2,
fa(ve) = ug and fy(v) = v for v € V(G)\{uy,v1,us,v2}. Then f; is an automorphism such that
fa(My) = M, and vy and ug are fixed under f;.

Now assume the result is true for n = m > 2. That is, for any two different perfect matchings
M and N of G, there is an automorphism f of G such that f.(M) = N, and vy and g are fixed
under f.

We want to prove the result is true for n = m + 1. Let M and NN be two perfect matchings of
G. Without loss of generality, assume that uqu; € M.

Case 1. uou; € N. In this case, M; = M — {upu;} and Ny = N — {ugu;} are two perfect
matchings of G; = G — {ug, u; }. By the induction hypothesis, there is an automorphism f; of Gy
such that f(M;) = Ny, and vy and v are fixed under f;. Define f : V(G) — V(G) such that
f(ug) = wo, f(u1) = wy and f(v) = fi(v) if v € V(Gy). Then f is an automorphism of G such
that f.(M) = N.

Case 2. upu; ¢ N. In this case, upv; € N. Define f; : V(G) — V(G) such that f(u1) = vy,
fi(v1) = uy and fi(v) = v forv € V(G) \ {u1,v1}. Let Ny = f1(N). Then ugu; € N;. By Case
1, there is an automorphism f; of GG such that fo(M) = Nj, and vy and u are fixed under f>. Then
f = fi' fo is an automorphism of G such that f.(M) = N. ]

Theorem 2.6. Let G be the graph obtained from Cs,. 0 = UgUiUs - - - UpUgVUpUp_1 -+ - V1Ug With
n > 2 by connecting u;v;11 and viu; 1 fori =1,2,--- . n—1, and wv; fori =1,2,--- . n. Then
G is PM-transitive.

Proof. Since u;v; is not contained in any perfect matching of G, where i = 1,2, --- | n, following
exactly the same argument to the proof of Theorem 4, we can prove that GG is PM-transitive. [

Theorem 2.7. Let G be the graph obtained from K, 1 ,,+1 by removing one edge uyvy. Then G is
PM-transitive.
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Proof. We prove this result by induction. Let (.X,Y") be the bipartition of /1,41 and let X =
{ugp, ut,u, -+ ,u,and Y = {vg, vy, ve, -+ , v, }. When n=2, by Theorem 2.5, GG is PM-transitive
and furthermore, for any two different perfect matchings M and N of G, there is an automorphism
f of G such that f.(M) = N, and vy and u, are fixed under f. Now assume the result is true
for n = m > 2. That is, for any two different perfect matchings M and N of G, there is an
automorphism f of G such that f.(M) = N, and vy and v are fixed under f.

We want to prove the result is true for n = m + 1. Let M and N be two perfect matchings of
(. Without loss of generality, assume that uguy, vov; € M.

Case 1: ugvi,vou; € N. Then, My = M — {ugvy,vous} and Ny = N — {ugvy,vou, } are
two perfect matchings of G; = G — {ug, u1,v9,v1} = K,_1,-1. By Theorem 2.3, there is
an automorphism f; of Gy such that f;(M;) = Ny, fi(X \ {wo,u1}) = X \ {uo,u1} and
filY \{vo,v1}) =Y \ {vo,v1}. Define f : V(G) — V(G) such that f(v) = fi(v) ifv € V(Gy)
and f(v) = vifuv € {ug,us,vp,v1}. Then f is an automorphism of G such that f(M) = N and,
v and wug are fixed under f.

Case 2: ugv; € N or vou; ¢ N. Without loss of generality, we can assume that vou; € N
and uov; € N. Define f; : V(G) — V(G) such that fi(u1) = w;, fi(w) = w, fi(vi) = vj,
fi(v;)) = v and fi(v) = vif v &€ {uy,u;,v1,v;}. Let Ny = fi(N). Then ugvq, vou; € Ny. By
Case 1, there is an automorphism f; of G such that fo(M) = Ny, and vy and vy are fixed under f.
Then f = f; ! f, is an automorphism of G such that f, (M) = N. 0

Theorem 2.8. Let G be the graph obtained from K, 5 by removing one edge ugvg. Then G is
PM-transitive.

Proof. Let M and N be two perfect matchings of G. Without loss of generality, assume that
UoU1, Vol1 € M.

Case 1: uguy,vov; € N. Then, M; = M — {uguy,vov1} and Ny = N — {ugu; } are two perfect
matchings of G; = G — {ug, u1, v, v1} = Ks, 5. By Theorem 2.2, there is an automorphism f;
of G such that f;(M;) = N;. Define f : V(G) — V(G) such that f(v) = fi(v) if v € V(Gy)
and f(v) = vifv € {ug, u1, vy, v1}. Then f is an automorphism of G such that f(M) = N.

Case 2: ugu; ¢ N or vov; € N. Without loss of generality, we can assume that ugu; € N
and vov; € N. Define f; : V(G) — V(G) such that fi(u1) = w;, fi(w) = w, fi(vi) = vj,
fi(v;) = vy and fi(v) = vifv & {uy,u;,v1,v;}. Let Ny = f1(N). Then uguy, vovy € Ny.
By Case 1, there is an automorphism f, of G such that fo(M) = N;. Then f = f;'f, is an
automorphism of G such that f.(M) = N. O

A wheel W, is the graph obtained from a n-cycle by adding a new vertex and joining the new
vertex to every vertex of the cycle.

Theorem 2.9. Let G = Wy, 1. Then G is PM-transitive.
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Proof. Without loss of generality, let G' be the graph obtained from Cy,, 11 = v1vs - - - Vo101 bY
adding a new vertex v and joining v to every vertex of the cycle. Suppose that M and N are two
perfect matchings of G. Without loss of generality, suppose that vv; € M and vv; € N. Define
f:V(G)— V(G) such that f(v) = v, f(v;) = v;, and f(vi4x) = vj+k, Where the subscripts are
taken modular 2n + 1. Then f is an automorphism of G such that f.(M) = N. [

Theorem 2.10. Let k be a positive even integer, Woy,,, Way,,, - - - Wa,,, be k wheels and vy, vy, - - -, vy,
be the centers of the wheels, respectively. If G = Way, UWoyp,U- - -UWoy,, +{v102, vov3, - - -, Vp_10k },
then GG is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Then vyve, v3vy, -+ ,vp_10x € M N N.
Furthermore, M; = M\{v1ve, U304, - -+ , V10 } and Ny = N\{v1vq, U304, -+ , V51U } are two
perfect matchings of disjoint union of even cycles generated by G — {vy,vs, -+, v; }. Then there
is an automorphism f of G such that f.(M) = N. O

3. Properties of PM-Transitive Graphs

In this section, we generate new PM-transitive graphs from existing PM-transitive graphs.

Theorem 3.1. If G| and G5 are two perfect matching transitive graphs and V (G1) NV (Gs) = 0,

then G = G, U Gy is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Fori = 1,2, let M; = M N E(G,;) and
N; = N N E(G;). Then M; and N; are two perfect matchings of GG;. Since G; is PM-transitive,
there is an automorphism f; of G; such that f;(M;) = N;. Define f : V(G) — V(G) such that
f(v) = fi(v)ifv € V(Gy), and f(v) = fo(v) if v € V(G2). Then f is an automorphism of G
such that f.(M) = N. O

Theorem 3.2. Let G| and G5 be two PM-transitive graphs and H be a path of odd length. Suppose
that G is the graph obtained from GG1, G5 and H by connecting one end vertex of H with every
vertex of G and the other end vertex of H with every vertex of Go. Then G is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Then M N E(H) = NN E(H) and M, =
M\ MNE(H)and Ny = M\ NN E(H) are two perfect matchings of G’ = G U G2. By
Theorem 4.2, there is an graph automorphism f’ of G’ such that f'(M;) = N;. We can easily
extend the graph automorphism f’ of G’ to a graph automorphism f of G such that f(M) = N. [

Corollary 3.1. Let Gy be a perfect matching transitive graph and H be a path of odd length.
Suppose that G is the graph obtained from G| and H by connecting an end vertex of H with every
vertex of G. Then G is PM-transitive.

Corollary 3.2. Let Wy, 11, Wanyta, - - - Way, 41 be k wheels and vy, vs, - - -, vy, be the centers of
the wheels, respectively. Let G be the graph obtained from Wy, 11 U Wop,q U -+ - U Way,, 44 +
{v1v9, Vov3, -+, Vk_1Uk, VU1 } DY replacing v;v; 1 with an odd path, wherei = 1,2, --- | k and the

addition is modular k. Then G is PM-transitive.
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4. Non PM-Transitive Graphs

In this section, we characterize some non-perfect matching transitive graphs. The generalized
Petersen graph GP(n,k) forn > 3 and 1 < k < (n — 1)/2is a graph consisting of an inner
star polygon {n, k} (or circular graph) and an outer regular polygon {n} (or cycle graph C,,) with
corresponding vertices in the inner and outer polygons connected with edges.

Theorem 4.1. ([4] and [10]) The generalized Petersen graph GP(n,k) is vertex-transitive if
and only if k* = +1 (mod n) or (n,k) = (10,2), and symmetric only for the cases (n,k) =
(4,1), (5,2), (8,3), (10,2), (10,3), (12,5), and (24,5).

Theorem 4.2. ([1] and [14]) The generalized Petersen graph G P(n, k) is non-hamiltonian if and
onlyifk =2 andn =5 (mod 6).

Theorem 4.3. The generalized Petersen graph G P(n, k) is PM-transitive if and only if it is the
Petersen graph.

Proof. Let GG be a generalized graph G P(n, k), where k # 2 or n # 5 (mod 6). By Theorem 4.2,
(G is Hamiltonian. Let C' be a hamiltonian cycle of G and M = G — C. Since G is a 3-regular
graph, M is a perfect matching of G. Let N denote the perfect matching consisting of all the
edges between the inner star polygon and the outer regular graph of GP(n, k). Note that G — M
is a Hamiltonian cycle and G' — N is the disjoint union of cycles. Therefore, there is no graph
automorphism f of G such that f(M) = N.

Let GG be a generalized graph GP(n, k), where k = 2 and n = 5 (mod 6) and n # 5. In this
case, the inner star polygon is an n-cycle. Denote the inner cycle by vyv3vs - - - VU204 - - - V101
and the outer cycle by ujugus - - - upui. Let M = {ujv} U {ugug, ugus, - -+, up_qu, } U {vsvs,
V7Ug, * ** , Up, Vg, * * + , Up_3Un_1} and N = {uqvq, ugvs, -+ ,u,v,}. Then M and N are two
perfect matchings of G. Note that G — N is the disjoint union of two n-cycles. If n = 3(mod
4), then G — N has a 14-cycle 1) usvo04Ug U303V Uy 1Up—1 Uy —2Up 2V, U, uy and some 8-cycles. If
n = 1(mod 4), then G — N has a 5-cycle ujusvev,u,uy and a (2n — 5)-cycle. Therefore, there is
no graph automorphism of G such that f(M) = N.

Coming the above discussion and Theorem 2.4 , the result follows. L]

5. Further Discussion

In this section, we give some examples which are PM-transitive, vertex-transitive, or edge-
transitive.

Theorem 5.1. The generalized Petersen graph PG(n,1) = C,, X K,, where n = 3 orn > 5, is
vertex-transitive, but not edge-transitive or PM-transitive.

Theorem 5.2. The cubical graph Cy x Ky = PG(4,1) is vertex-transitive and edge-transitive, but
not PM-transitive.

Theorem 5.3. The graphs discussed in Theorem 2.1, Theorem 2.2, Theorem 2.3, and Theorem 2.4
are vertex-transitive, edge-transitive, and also PM-transitive.

Theorem 5.4. The graphs constructed in Theorem 2.5, Theorem 2.6, Theorem 2.7, Theorem 2.8,
Theorem 2.9, and Theorem 2.10 are PM-transitive, but neither vertex-transitive nor edge-transitive.
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