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Abstract

We present a necessary and sufficient condition for the existence of edge-disjoint contractible
Hamiltonian cycles in the edge graph of polyhedral maps.
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1. Introduction and Definitions

Recall the following definitions (see Maity and Upadhyay [7]) that agraph G := (V, E) is a
simple graph with vertex setV and edge setE. A surface S is a connected, compact, 2-dimensional
manifold without boundary. Amap on a surfaceS is an embedding of a finite graphG such that
the closure of components ofS \ G is p-gonal 2-disc forp ≥ 3. The components are also called
facets. The mapM is called apolyhedral map if nonempty intersection of any two facets of the
map is either a vertex or an edge. We callG theedge graph of the map and denote it byEG(M).
The vertices and edges ofG are also called vertices and edges of the map, respectively.A path
P in a graphG is a subgraphP : [v1v2 . . . vn] of G, such that the vertex set ofP is V (P ) =
{v1, v2, . . . , vn} ⊆ V (G) andvivi+1 are edges inP for 1 ≤ i ≤ n − 1. A pathP : [v1, v2, . . . , vn]
in G is said to be acycle if vnv1 is also an edge inP . A graph without any cycle is called atree.
Let G1(V1, E1) andG2(V2, E2) be two graphs. ThenG1

⋃
G2 is defined to be a graphG(V, E) for
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which V = V1

⋃
V2 andE = E1

⋃
E2. In this caseG is calledunion of the graphsG1 andG2.

Similarly,G1

⋂
G2 is the graphG(V, E) for whichV = V1

⋂
V2 andE = E1

⋂
E2. In this caseG

is calledintersection of G1 andG2. These definitions remain valid for a finite number of graphs as
well. See Mohar and Thomassen [8] for details about graphs onsurfaces and Bondy and Murthy
[1] for terminology related to graph theory.

In this note we are interested in finding out whether edge-disjoint Hamiltonian cycles exist in
the edge graph of a polyhedral map. Such cycles in graphs havebeen studied previously. For
example, Nash-Williams [10] generalised a result of Dirac [4] about existence of Hamiltonian
cycles and showed that every graph onn vertices of minimum degree at leastn

2
contains at least

b 5n
224

c edge-disjoint Hamiltonian cycles. Christofides, Kühn andOsthus [2] improved the bound of
Nash-Williams and showed there is a positive integern0 such that every graph onn ≥ n0 vertices
with minimum degree(1

2
+ α)n (for everyα > 0) contains at leastn

8
edge-disjoint Hamiltonian

cycles. They also showed that if such a graph is almost regular, then it can almost be decomposed
into edge-disjoint Hamiltonian cycles. In this note we present a necessary and sufficient condition
for the existence of edge-disjoint contractible Hamiltonian cycles in the edge graph of a polyhedral
map. To show this result we define a subgraph in the edge graph of dual of a polyhedral mapK
asadmissible graph (see Definition 1.2). We use this admissible graph and enumerate the edge-
disjoint contractible Hamiltonian cycles in the polyhedral mapK. To show this result we use the
concept of proper tree and the Proposition 1.1.

We begin with some terminology defined in Maity and Upadhyay [7] which will be needed in
the course of the proof of the main Theorem 1.1. We call a cyclein the edge graph of a map to
becontractible if it bounds a2-disk (2-cell) (see Upadhyay [9] and Hachimori [5]). For example,
the boundary cycle of a facet is contractible. Ifv is a vertex of a mapK, then the number of
edges incident withv is called thedegree of v and it is denoted bydeg(v). If the number of
vertices, edges and facets ofK are denoted byf0(K), f1(K) and f2(K) respectively, then the
integerχ(K) = f0(K)− f1(K) + f2(K) is called theEuler characteristic of K. Thedual map M

of K is defined to be the map on the same surface asK, which has for its vertices the set of facets
of K and two verticesu1 andu2 of M are ends of an edge ofM if the corresponding facets inK
have an edge in common. The well-known maps of type{3, 6} and{6, 3} on the surface of torus
are examples of mutually dual maps.

Consider a polyhedral mapK on a surfaceS that hasn vertices.

Definition 1.1. (See Maity and Upadhyay [7]) Let M denote the dual map of K. Let T := (V, E)
denote a tree in the edge graph EG(M) of M . We say that T is a proper tree if the following
conditions hold :

1.
k∑

i=1

deg(vi) = n + 2(k − 1), where V = {v1, v2, ..., vk} and deg(v) denotes degree of v in

EG(M),
2. whenever two vertices u1 and u2 of T lie on a face F in M , a path P [u1, u2] joining u1 and

u2 in the boundary ∂F of F is a subtree of T , and
3. any path P in T which lies in a face F of M is of length at most q − 2, where q is the length

of ∂F .
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Definition 1.2. Let M denote the dual map of a polyhedral map K on n vertices. Let H := (V, E)
denote a subgraph in the edge graph EG(M) of M . We say that H is an admissible graph if the
following conditions hold :

1. H has a decomposition into proper trees T1, T2, . . . , Tr such that H = T1

⋃
T2

⋃
. . .

⋃
Tr

and Ti 6= Tj for i 6= j, i, j ∈ {1, . . . , r},
2. Ti

⋂
Tj is a set of paths and for v ∈ V (Ti

⋂
Tj) we have deg(v) in EG(M) is equal to

deg(v) in Ti

⋃
Tj , for i 6= j and i, j ∈ {1, . . . , r}, and

3. the graph Ti

⋃
Tj does not contain a pair of vertices ui, uj with ui ∈ V (Ti) and uj ∈ V (Tj)

such that uiuj ∈ E(EG(M)) and uiuj 6∈ E(Ti

⋃
Tj) for i 6= j and i, j ∈ {1, . . . , r}.

Remark 1.1. : Let v ∈ V (Ti1), . . . , V (Tit), i1, . . . , it ∈ {1, . . . , r}, then
∑

v∈V (H)

t deg(v) = rn +

2
r∑

i=1

(ki − 1), whereH = T1

⋃
T2

⋃
· · ·

⋃
Tr, n = |V (EG(K))| andki = |V (Ti)|.

By the Definition 1.1 we have
ki∑

j=1

deg(vj) = n+2(ki−1) for the proper treeTi and1 ≤ i ≤ r,

whereki = |V (Ti)|. Hence
r∑

i=1

ki∑

j=1

deg(vj) =

r∑

i=1

(n + 2(ki − 1)) = rn + 2

r∑

i=1

(ki − 1).

Proposition 1.1. [Maity, Upadhyay] [7] The edge graph EG(K) of a map K on a surface has a
contractible Hamiltonian cycle if and only if the edge graph of the corresponding dual map of K

has a proper tree.

The main result of this note is :

Theorem 1.1.Let K be a map on the surface S with n vertices. Then, K contains r edge-disjoint
contractible Hamiltonian cycles, if and only if the dual map M of K contains an admissible graph
H that has a decomposition into r proper trees.

In particular, we prove :

Corollary 1.1. Let K be a map on the surface S with n vertices. Then, K contains r face-disjoint
contractible Hamiltonian cycles, if and only if the dual map M of K contains an admissible graph
H that has a decomposition into r disjoint proper trees.

In the next section, we give examples of an admissible graph and the existence of edge- and
face-disjoint contractible Hamiltonian cycles in polyhedral maps. Then, in the following section
we present the proofs of Theorem 1.1 and Corollary 1.1.
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2. Examples

Example 2.1.Figure 1 depicts a triangulation of a surfaceM1 of χ = 0 on7 vertices (see Datta and
Upadhyay [3]).K depicts the dual ofM1 in Figure 2. GraphH := (V, E) whereV := {w1, w2,

w4, w6, w9, w10, w13, w14} andE := {w1w2, w1w6, w1w14, w13w14, w4w13, w9w14, w9w10} is an
admissible graph inK. LetT1 := (V1, E1) whereV1 := {w1, w2, w9, w10, w14} andE1 := {w1w2,

w1w14, w9w14, w9w10}, andT2 := (V2, E2) whereV2 := {w1, w4, w6, w13, w14} andE1 := {w1w6,

w1w14, w13w14, w4w13}. Then, graphH has a decomposition intoT1 andT2.
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Figure 1 : M1

w1 w3 w5 w7 w9 w11 w13 w1

w2 w4 w6 w8 w10 w12 w14

w6 w8 w10 w12 w14 w2 w4 w6

w7 w9 w11 w13 w1 w3 w5

Figure 2 : K

Example 2.2.Figure 3 depicts a triangulation of a surfaceM2 of χ = −3 on9 vertices taken from
Lutz [6]. ∂D1 = C(1, 6, 4, 2, 3, 5, 7, 9, 8) in Figure 4 and∂D2 = C(5, 2, 7, 1, 3, 8, 6, 9, 4) in
Figure 5 depict edge-disjoint contractible Hamiltonian cycles inM2.
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Example 2.3.Figure 6 Lutz [6] depicts a triangulation of a surfaceM3 of χ = −10 on12 vertices.
This triangulation contains two face disjoint cycles∂D′

1 = C(1, 7, 8, c, 4, 5, 3, 9, 6, a, b, 2) in
Figure 7 and∂D′

2 = C(1, 8, 2, 5, c, 6, 7, b, 3, a, 9, 4) in Figure 8 as shown below.
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3. Proof of the Theorem 1.1

PROOF OF THEOREM 1.1 : Let M be as in the statement of Theorem 1.1 and containing an
admissible graphH. By Definition 1.2, it has a decompositionH = T1

⋃
T2

⋃
· · ·

⋃
Tr. Then

by the Proposition 1.1 see Maity and Upadhyay [7], the mapK contains contractible Hamiltonian
cyclesCi corresponding toTi for 1 ≤ i ≤ r. Hence the mapK containsr contractible Hamiltonian
cycles. We now show that these cycles are pairwise edge-disjoint.

Suppose, on the contrary,E(Ci)
⋂

E(Cj) contains an edgeuv. Thenuv belongs to two faces,
say,F1 andF2. Let D(Ci) denote the 2-disk which is bounded by the cycleCi andvF1

denote the
vertex corresponding toF1 in the dual. Two situations may arise. In the first, ifF1 ∈ DCi and
F2 ∈ DCj, then edgevF1

vF2
does not belong to the graphTi

⋃
Tj. That is,vF1

vF2
6∈ E(Ti

⋃
Tj)

and vF1
vF2

∈ E(EG(M)). This contradicts the condition3 of Definition 1.2. Further, in the
second situation if one of the two facesF1 andF2, sayF1, belongs to both disksDCi andDCj

thenF1 lies in both disks. Hence the degree ofvF1
in Ti

⋃
Tj is less than the degree ofvF1

in
EG(M). This contradicts the condition 2 in Definition 1.2. Therefore E(Ci)

⋂
E(Cj) = ∅ for

i 6= j andi, j ∈ {1, . . . , r}. Hence the mapK containsr edge-disjoint contractible Hamiltonian
cycles.

Suppose the mapM hasr edge-disjoint Hamiltonian cyclesC1, C2, . . . , Cr and let the dual of
the diskDCi be the treeTi. We defineH := T1

⋃
T2

⋃
· · ·

⋃
Tr. Since all theTis are distinct

proper trees, it is easy to check thatH satisfies the condition 1 in Definition 1.2. Suppose there
are two treesTi andTj such that the graphTi

⋂
Tj contains a vertexv with deg(v) in the graph

EG(M) that is greater than its degree inTi

⋃
Tj . Thus there exists an edgevw that does not be-

long to the graphTi

⋃
Tj . Consider the dual faceFv corresponding to vertexv. FaceFv belongs
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to both disksDCi andDCj asv belongs toV (Ti

⋂
Tj). So the dual edge corresponding tovw

shall lie in the boundary of the2-disksDCi andDCj. HenceCi andCj are not edge-disjoint. This
is a contradiction. Hencedeg(v) in EG(M) is greater thandeg(v) in Ti

⋃
Tj for all the vertices

of Ti

⋂
Tj . This gives the condition 2 in the Definition 1.2. Letui ∈ V (Ti) anduj ∈ V (Tj) be

such thatuiuj ∈ E(EG(M)) anduiuj 6∈ E(Ti

⋃
Tj). Then faceFui

belongs to the diskDCi and
faceFuj

belongs to the diskDCj. Moreover, the dual edge corresponding touiuj will lie in both
facesFui

andFuj
. Hence edgeuiuj will be on the boundary of both the2-disksDCi andDCj.

Therefore both the cyclesCi andCj contain the dual edge corresponding touiuj. SoCi andCj are
not edge-disjoint. This is a contradiction. So we see that the condition3 in Definition 1.2 is also
satisfied. ThusH is the required admissible graph. 2

PROOF OFCOROLLARY 1.1 : To prove the corollary we proceed exactly same as in the previous
proof of Theorem 1.1 and we use disjoint proper trees insteadof proper trees. 2
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