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Abstract

A domatic partition P of a graph G = (V, E) is a partition of V' into classes that are pairwise
disjoint dominating sets. Such a partition P is called b-maximal if no larger domatic partition P’
can be obtained by gathering subsets of some classes of P to form a new class. The b-domatic
number bd(() is the minimum cardinality of a b-maximal domatic partition of G. In this paper, we
characterize the graphs G of order n with bd(G) € {n — 1,n — 2,n — 3}. Then we prove that for
any graph G on n vertices, bd(G) + bd(G) < n + 1, where G is the complement of G. Moreover,

we provide a characterization of the graphs G of order n with bd(G) + bd(G) € {n+1,n} as well

as those graphs for which bd(G) = bd(G) = n/2.
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1. Introduction

Throughout this paper, G' denotes a simple graph with vertex set V' = V() and edge set
E = E(G). The order |V| of G is denoted by n = n(G). For every vertex v € V, the open
neighborhood N¢(v) = N(v) is the set {u € V(G) | uv € E(G)} and the closed neighborhood
of v is the set N[v] = N(v) U {v}. The private neighborhood of a vertex v € S with respect to .S
istheset pn[v,S] ={u e V(G) | NulNS = {v}}.Forany S C V, we denote the subgraph of
G induced by S with (S) . The degree of a vertex v, denoted by dg(v), is the number of vertices

Received: 28 March 2018, Revised: 15 June 2020, Accepted: 6 October 2020.

53



Some new results on the b-domatic number of graphs | M. Benatallah et al.

adjacent to v. We denote by A(G) = A and §(G) = § the maximum degree and the minimum
degree in V (G), respectively. A universal vertex is a vertex that is adjacent to all other vertices of
the graph, that is a vertex whose degree is exactly n — 1.

The complement G of G is the graph with vertex set V(G and with exactly the edges that do
not belong to GG. The complete graph of order n is denoted by K,,, and K, is called the trivial
graph. The complete bipartite graph with partition sets X, Y such that | X| = p and |Y| = ¢ is
denoted by K, ,. We write P, for the path of order n and C,, for the cycle of length n. If G is any
graph, the prism graph of G is the the graph obtained by taking two copies of GG, say GG; and G,
with the same vertex labelings and joining each vertex of GG; to the vertex of G having the same
label by an edge; in other words, the prism graph of G is the Cartesain product G K. The join
of two simple graphs G and H, written G VV H is the graph obtained by taking the disjoint union
of G and H and adding all edges {xy |z € V(G),y € V(H)}.

A dominating set of a graph G is a set D of vertices such that every vertex in 1\ D is adjacent
to some vertex in D. The domination number of GG, denoted by v(G), is the minimum cardinality
of a dominating set of G.

In 1977, Cockayne and Hedetniemi [3] introduced the concept of domatic partition as a parti-
tion of V' into dominating sets. They defined the domatic number d(G) as the largest number of
sets in a domatic partition of GG. For related works in this area see, for instance, [1, 2, 8, 9]. In 2013,
Favaron [4] introduced the b-domatic number as follows. A domatic partition P = {C, Cs, ..., C, }
is b-maximal if there do not exist p subsets C! C C; (among them p — 1 are possibly empty) such
that the partition P'= {C1\C7, Coa\Cy, ..., C,\C,, C1UC,U...UC] } is domatic. The b-domatic
number of G, denoted bd(G), is the minimum cardinality of a b-maximal domatic partition of G. A
bd(G)-domatic partition of a graph G is a b-maximal domatic partition of G of cardinality bd(G).
On the basis of these definitions, bd(G) < d(G) for every graph G.

In this paper, we first characterize the graphs G of order n with bd(G) € {n — 1,n — 2,n —

3}. Then we prove that for any graph G on n vertices, bd(G) + bd(G) < n + 1. Moreover,

we characterize all graphs G with bd(G) = bd(G) = n/2 as well as those graphs for which

bd(G) + bd(G) € {n+ 1,n}.

2. Known results
In this section, we list some known results that will be useful in our investigations.
Proposition 2.1 ([3]). For any graph G of order n, d(G) < min{d(G) + 1,n/v(G)}.

Theorem 2.1 ([4]). Let G+, . .., Gy, be the components of a disconnected graph G without isolated
vertices. Then bd(G) = min{bd(G;) | 1 <i < k}.

Since the vertex set of a graph G is the unique domatic partition if and only if 6(G) = 0, the
following lower bound is immediate.

Proposition 2.2 ([4]). If G is a graph of minimum degree §(G) > 1, then bd(G) > 2.
Proposition 2.3 ([4]). bd(K,) = n, bd(C,) =2 forn > 4,and bd(K,,) =2 (p > q>1).
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In [5], the authors gave some sufficient conditions for graphs to attain equality in the bound of
Proposition 2.2. Recall that a set S C V is independent if no two vertices in .S are adjacent.

Theorem 2.2 ([5]). If G has a vertex whose neighbors form an independent set, then bd(G) = 2.
Proposition 2.4 ([5]). If G is a prism graph, then bd(G) = 2.

Theorem 2.3 ([5]). Let P be a domatic partition of a graph G = (V, E). If there exists a vertex
v € V such that each vertex of N [v] is either isolated in its class or has a private neighbor with
respect to its class, then P is b-maximal.

It has been shown in [5] that if G has a universal vertex v, then bd(G\v) = bd(G) — 1. This
result can be generalized as follows.

Proposition 2.5. Let A be the set of universal vertices in a graph G. Then bd(G) = bd(G\A) +
|Al.

We note that if G is a graph without universal vertices, then 7(G) > 2. So, the next result
follows immediately from Proposition 2.1 and the fact bd(G) < d(G).

Corollary 2.1. If G is a graph of order n without universal vertices, then bd(G) < 3.

3. Graphs with large b-domatic number

In this section, we give a characterization of graphs G of order n > 3 for which bd(G) €
{n—1,n—2,n— 3}. We recall that graphs G of order n with bd(G) = n have been characterized
in [4].

Proposition 3.1 ([4]). Let G be a graph of order n. Then bd(G) = n if and only if G is isomorphic
to K,

Proposition 3.2. Let G be a graph of order n. Then bd(G) = n — 1 if and only if G is isomorphic
to graph K, — e, where e is an arbitrary edge of the complete graph K.

Proof. Let P = {U;,Us,,...,U,_1} be an (n—1)-domatic partition of G. Without loss of generality,
we may assume that U; = {a, b} and U; = {u;} foreachi € {2,...,n—1}. Clearly dg(u;) = n—1,
since each u; dominates V (G). Now, if ab € E, then G = K, and by Proposition 3.1, bd(G) = n,
a contradiction. Hence ab ¢ E, and thus G = K,, — e.

The converse is obvious. U

Proposition 3.3. Let G be a graph of order n > 3. Then bd(G) = n — 2 if and only if G €
{K3, KUK, Py, Cy, 2K} or G is isomorphic to G1VK,,_3 or GoVK,,_4, where Gy € {K3, KsU
Kl} and G4 € {P4, Cy, 2K2}
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Proof. If n = 3, then bd(G) = 1 and thus G has an isolated vertex. Therefore G € { K3, KoUK, }.
Assume now that n > 4 and let P = {Uy, Us, ..., U,_2} be an (n — 2)-domatic partition of G such
that |Uy| > |Us| > ... > |U,_2|. Clearly, either |U;| = 3 and |Us| = 1 or |Uy| = |Us| = 2.
Moreover, if n > 5, then |U;| = 1 for each i ¢ {1, 2}.

Suppose first that |U;| = 3 and |U;| = 1 foreach i # 1. Let U; = {u;} foreachi € {2,....n —
2}. Since each w; dominates V(G), G = G V K,,_3, where G; = (U;). By Propositions 3.1 and
3.2, Gl ¢ {Kg, Pg} Hence G1 = K2 U K1 OI'Fg.

Now suppose that |U; | = |Us| = 2, and let Gy = (U; U Us) . Assume first that n = 4. Since U;
dominates U,, each vertex of U; has a neighbor in U,, and likewise each vertex of U, has a neighbor
in U;. Now using the fact that G5 ¢ {K,, Ky — e} (by Propositions 3.1 and 3.2) we deduce that
Gy € {Py,Cy,2K,}. Assume now that n > 5 and let U; = {u;} foreachi € {3,...,n — 2}. As
previously, every u; dominates V' (G), and thus G = G, V K,,_4.

For the converse, if G € {K3, Ko U K1, P, Cy, 2K}, then one can easily check that bd(G) =
n—2 NowletG = GV K, _30or G = G5V K,,_4. If A is the set of universal vertices of &,
then according to Proposition 2.5, bd(G) = bd(H) + |A|, where H € {G;,G>}. If H = G4, then
bd(G1) = 1 and |A| = n — 3, implying that bd(G) = n — 2. If H = Go, then bd(G3) = 2 and
|A| = n — 4, implying that bd(G) = n — 2. O

Let H be the family of graphs G of order 6 with 6(G) > 2 and 3 < A(G) < 4, where each
vertex is contained in a triangle. We note that H contains exactly 14 graphs that can be found in
[7] (see pages 218 — 224).

In the sequel, we shall show that all graphs of #, except those depicted in Figure 1, have a
b-domatic number equal to 3.

A B b B

H, H, 3 4

Figure 1. Four graphs of order 6 with b-domatic number 2

Recall that it was shown in [5] that bd(H;) = bd(H,) = 2.
Proposition 3.4. The only graphs of H with b-domatic number 2 are H,, Hy, H3 and H,.

Proof. Let G € H, and assume that bd(G) = 2. Let P = {U, Uy} be a 2-domatic partition of G
such that |U;| < |Us|. As G has order 6 and maximum degree at most 4, 3 < |U;| < 4 and so
2 < |U;] < 3. Consider the following two cases.

Case 1. |U;| =2 and |Uy| = 4. Let Uy = {a,b} and Uy = {z,y, z,t}. We distinguish between
two subcases, depending on whether the edge ab exists or not.
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Case 1.1. ab ¢ E. Since every vertex of GG belongs to a triangle, every vertex in Uj is not
isolated in (Us). If (Us) does not have two independent edges, then clearly (Us) is a star K 3,
centered, without loss of generality, at z. Note that (Us) has no triangle. Using the fact that every
vertex of G is contained in a triangle and y, z, ¢ form an independent set in (Us) , we deduce that
every triangle containing one of ¥, z and ¢ also contains x. This implies that = is adjacent to both
a and b, implying that de(z) = 5, a contradiction. Hence, we can assume that (U;) has two
independent edges.

Now, let 7}, and T} be two triangles containing a and b, respectively. Since ab ¢ E(G), T,
and 7} has at most two common vertices. Suppose first that there is no common vertex between
T, and T,. Without loss of generality, let V(T},) = {a,z,y} and V(T},) = {b, z,t}. In this case,
{{a,b},{x, 2z},{y,t}} is a domatic partition of GG, a contradiction. Suppose now that y is the
unique common vertex between 7, and 7;,. Without loss of generality, let V' (7,) = {a,x,y} and
V(T,) = {b,y, z}. Since t is dominated by Uy, let tb € E. If tz € F, then {a,x,y} and {b, z,t}
induces two independent triangles and as above we can get a domatic partition of order 3. So
tz ¢ E. Since t belongs to a triangle, we must have yt € F but then dg(y) = 5, a contradiction.
Finally, we may assume that all triangles containing a and b have two common neighbors. Hence
let V(T,) = {a,z,y} and V(T}) = {b,x,y}. Note that since A < 4, each of = and y has at most
one neighbor in {z,t}. Also, since U; dominates U,, we may assume that zb € E. Suppose that
zt € E. Then bt ¢ E, for otherwise there are two independent triangles. Therefore at € E and
so az ¢ F (else there are two independent triangles). Since each of z and ¢ belongs to a triangle,
we have zz,ty € E. But then {a,y,t} and {b, z, z} are two triangles with no common vertex, a
contradiction. Hence zt ¢ E. Since (Us) has two independent edges, we can assume that ty € E.
Then at ¢ FE for otherwise {a,y,t} and {b, z,y} are two triangles with one common vertex, a
contradiction. Thus bt € F but then {a,z,y} and {b,y,t} are two triangles with one common
neighbor, a contradiction.

Case 1.2. ab € E(G). Clearly since A(G) < 4, neither a nor b is adjacent to all U,. Moreover,
since {Uy, Uy} is a 2-domatic partition of GG, we assume without loss of generality, that at ¢ E
and so bt € E. Likewise bx ¢ E and so ax € E. Note that = and ¢ are not isolated in U since
d(G) > 2. However, at most one of y, z is isolated in U,, for otherwise = and ¢ do not belong to
any triangle.

Firstly, suppose, without loss of generality, that z is isolated in Us. Then z must be adjacent to
both a and b. As each of = and ¢ lies on a triangle, xy and ty € E. Clearly, y has a neighbor in
U;. Assume that y is adjacent to both a, b. If zt ¢ F, then G = H;, otherwise G = H,. Note that
bd(H,) = 2 as proved in [5]. Likewise bd(H>) = 2 by Theorem 2.3 since z is isolated in U, and
each of a, b has a private neighbor with respect to U;. Assume now that y is adjacent either to a or
to b, but not to both of them. In this case, tx € E since t belongs to a triangle, whence, G = Hs.
The above argument applied to z shows that bd(H3) = 2.

Suppose now that U, contains no isolated vertex. Since x belongs to a triangle, x must be
adjacent to at least one of y, z, say y. By the same argument, ¢ has a neighbor in {y, z}. Observe
that each of a and b has a neighbor in {y, z} because each of them belongs to a triangle. Clearly,
U, dominates y and z. If zt or zz € E, then {{a, b}, {z,t},{y, z}} is a domatic partition of G,
a contradiction. Hence zt¢, zz ¢ E implying that zy € F since z is not isolated in U,. Therefore
ty € E because t belongs to a triangle. As y has a neighbor in U; and A < 4, y is adjacent to
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exactly one of a,b. Up to symmetry, let yb € E. Then ay ¢ E, and thus az and 2b € F since a
belongs to a triangle. Since z lies on a triangle, xt € E. In this case, {{a, b}, {z,y},{z,t}} isa
domatic partition of (G, a contradiction.

Case 2. |Uy| = |Uy| = 3. Let U; = {a,b,c} and Uy = {xz,y, z}. Here again, we distinguish
between four subcases.

Case 2.1. U, is an independent set. Clearly every vertex of U; is adjacent to at least two vertices
of U,. Suppose that a vertex of Uy, say a is adjacent to all U,. Since every triangle containing a
vertex of U; must contain two vertices of U,, there is a vertex in U, adjacent to every vertex of
GG, which leads to a contradiction since A < 4. Therefore, every vertex of U; has exactly two
neighbors in U;. Now, it is easy to see that Us; induces a K3 and so G = H;.

Case 2.2. (U;) contains exactly one edge. Thus assume that bc € E, and a is isolated in (U;) .
Then « is adjacent at least two adjacent vertices of Us, say x and y. Suppose that zb and zc ¢ F.
Then za € E and each of b and ¢ has a neighbor in {z,y}. Since each of b and ¢ belongs to a
triangle, we have by or cx, say by € E. Also one of x and vy, say y, is adjacent to both b and c.
Since z belongs to a triangle, vz € F (yz ¢ E since A < 4). But then {{a,c},{y, z}, {b,z}}
is a domatic partition of GG, a contradiction. Hence N(z) N {b, c} # (). Without loss of generality,
let zb € E. Clearly N(c) N Us # 0. If cz € E, then {{a, b}, {y, 2}, {c, z}} is a domatic partition
of GG, a contradiction. Then cz ¢ FE and thus ¢ must be adjacent to one of x,y. Up to symmetry,
let cy € E.If zz € E, then {{a,b},{y, 2z}, {c,x}} is a domatic partition of G, a contradiction.
Hence zx ¢ E and therefore zy € F since z belongs to a triangle. Then by ¢ E since A <
4, which means that za,bz,cx € E since each of z,b belongs to a triangle. But then again,
{{a,b},{x, 2},{c,y}} is domatic partition, a contradiction.

Case 2.3. (U;) contains exactly two edges. Without loss of generality, let ba, bc € E. Seeing
the above situations, (Us) = P; or K.

Suppose first that (Us) is a path P; centered at y. Assume that by € E. Since A < 4, one
of bx and bz ¢ FE, say bz ¢ E. Likewise, one of ya and yc ¢ E. Up to symmetry let yc ¢ E.
Since each of ¢ and z belongs to a triangle, we have cx,br € F and az,ay € E. In this case,
m={{a,c},{z, 2}, {b,y}} is a domatic partition of GG, a contradiction. Hence by ¢ E. Since each
U; is a dominating set of G, we assume, up to isomorphism, that bx and ya € E. If ax ¢ E, then
using the fact that each of a and x belongs to a triangle, we have az,zc € E. But 7 is a domatic
partition of (G, a contradiction. Hence ax € E. If cz € F, then 7 is a domatic partition of G.
Hence cz ¢ E. Therefore az € E and cz € E since each of z and ¢ belong to a triangle. Again 7
is a domatic partition of (&, a contradiction.

Now suppose that (Us) is a K3. Since b is adjacent to at least one vertex of U, and not to all Uy
because of A < 4, we may assume, without loss of generality, that by € E and bz ¢ E. Likewise,
vertex y must be non-adjacent to at least one vertex in U;. Up to isomorphism, let ya ¢ E. Now
since a lies on a triangle, we must have az € E and either ax or bz € E. Assume first that ax € E.
If cz € F, then d(z) = 4, whence, bz ¢ E and therefore cy € E (so that b lies on a triangle).
But then {{a,c},{z,y},{b, 2}} is a domatic partition of GG, a contradiction. Then cz ¢ E and
so cy € E since c belongs to a triangle. As above, we have a domatic partition of order 3, a
contradiction. Hence ax ¢ E, implying that cx € E since = has at least one neighbor in Uj.
Assume now that bz € E. Then d(z) = 4, which means that cz ¢ E. Therefore cy € E since c lies
on a triangle. But then {{a, c}, {x, z}, {b, y} } would be a domatic partition of GG, a contradiction.
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Case 2.4. (U;) contains exactly three edges, that is (U;) = Kj3. Seeing the above situations,
(Uy) = Kj. Since {U;,U,} is a 2-domatic partition of G and A < 4, each vertex of U; has
either one or two neighbors in Us. Suppose that N(a) = {z,y}. Then za ¢ E since A < 4 and
therefore N (z) N{b,c} # (). Without loss of generality, assume that zc € E. Suppose that bz € E.
Then {{a,c},{z,z},{b,y}} is a domatic partition of GG, a contradiction. Hence bz ¢ E and so
N()N{z,y} # 0. By symmetry, assume that by € E. Then {{qa,c},{y, z},{b,z}} is a domatic
partition of G, a contradiction. Thus |N(¢) N Us| = 1 for every t € {a, b, c}. Therefore G = H,.
As proved in [5], bd(H4) = 2. O

Corollary 3.1. If G € HN\{H., Hs, H3, H,}, then bd(G) = 3.

Proof. Let G € H\{H, Hs, H3, H,}. By Propositions 2.2 and 3.4, bd(G) > 3. Since G has no
universal vertex, the equality follows from Corollary 2.1. [

Proposition 3.5. Let G be a graph of order n > 4. Then bd(G) = n — 3 if and only if G is
isomorphic to one of the following graphs.

i) Hor HV K, _4,where H € {K,, Ko UKy, P3UK;, K3 UK},

ii) Hor HV K,_s5, where H or H € {Cs, Ps, K3, PsU Ky, Fy, Fy, Fs}. (Fy, Fy, Fs are given
in Figure 2).

iii) Hor HV K,,_¢, where H = 2K3 or H € H\{H1, Hy, H3, Hy}.

N DA AN

F1 F2 F3

Figure 2. Three graphs of order 5 with b-domatic number 2

Proof. If n = 4, then bd(G) = 1 and thus G has at least one isolated vertex. Therefore G €
{K,, Ky UK,, P;U K, K3U K, }. Hence we can assume that n > 5. Then bd(G) > 2 and thus
G has no isolated vertices. Let P = {U;, Us, ..., U,_3} be an (n — 3)-domatic partition of G such
that |U;| > |Us| > ... > |U,_3|. We distinguish between three cases.

Case 1. |U;| =4 and |U;| = 1 foreachi # 1. Itis clear that G = H V K,,_4, where H = (U;) .
If H has a universal vertex, say x, then {U;\{xz}, Us, ..., U,_3,{z}} is a domatic partition of G of
cardinality n — 2, a contradiction. Hence H has no universal vertices. If H € {P;, Cy,2K5}, then
according to Proposition 3.3, one can easily see that bd(G) = n—2, a contradiction. Consequently,
He{Ky KyUK, PsUK, K3UK,}.

Case 2. |U;| = 3,|Us| = 2. Let H = (U; U Uy) . Observe that if n = 5, then P = {Uy, Us}
and thus G = H, while if n > 6, then |U;| = 1 for each i ¢ {1,2} and thus G = H V K,,_;.
Since U; dominates Us, each vertex of U; has a neighbor in Us, and likewise each vertex of U,
has a neighbor in U;. Hence 6(H) > 1. Now, assume that A(H) = 4, and let = be a vertex of H

59



Some new results on the b-domatic number of graphs | M. Benatallah et al.

with dy(xz) = 4. Then P’ = {U,, U}, Us, ...,U,_3} is an (n — 3)-domatic partition of GG, where
Ul = (U UUy)\{z} and U} = {x}. But such a case has been already considered (see Case 1).
Hence A(H) < 3. By examining all graphs H of order five with 1 < §(H) < A(H) < 3 listed in
[7] (see pages 216-217), we have H or H € {Cs, P5, Ko 3, Ps U Ky, Fy, Fy, F3}.

Case 3. |Uy| = |Us| = |Us| = 2. Let H = (U UU, U Us) . Clearly, if n = 6, then G = H,
while if n > 7, then |U;| = 1 foreach i ¢ {1,2,3}, and thus G = H V K,,_¢. Note that by Propo-
sition 2.5, bd(H) = 3, and thus every vertex of H is contained in a triangle (by Theorem 2.3).
Therefore 6(H) > 2. By a similar argument to that used in Case 2, we shall have A(H) < 4. Ob-
serve that if A(H) = 2, then either H = 2K; or H = (. However, the case H = Cj is excluded
since bd(Cs) = 2. For the next, we may assume that H is a graph of order 6 satisfying §(H) > 2
and 3 < A(H) < 4 and every vertex is contained in a triangle. Thus H € . Using Propositions
2.5 and 3.4, one can see that H ¢ {Hy, Hy, H3, H,}. Consequently, H € H\{H, Ho, H3, H,}.

Conversely, if G is isomorphic to one of the graphs H given in the statement, then bd(G) =
n — 3. Assume now that (G is isomorphic to one of the join graphs described in items (i), (ii) or (iii).
Let A be the set of universal vertices of G. According to Proposition 2.5, bd(G) = bd(H) + |A].
If G fulfills (i), then bd(H) = 1 and |A| = n — 4, implying that bd(G) = n — 3. If G fulfills (ii),
then bd(H) = 2 (by Theorem 2.1, Proposition 2.3 and Theorem 2.2) and |A| = n — 5, implying
that bd(G) = n — 3. Finally, if G fulfills (iii), then bd(H) = 3 (by Corollary 3.1) and |A| = n — 6,
implying that bd(G) = n — 3. N

4. Graphs G of order n with bd(G) = bd(G) = 2

(N =n

Our aim in this section is to characterize the graphs G of order n such that bd(G) = bd(G) = 3.
To do this, we will use a result by Dunbar et al. [6] who characterized the graphs G of order n
such that d(G)d(G) = n?/4. Let us first define the family Gy, of graphs given in [6] as follows. For
each integer k > 2,let I = {1,2,...k}. If G € Gy, then the vertices of the graph G can be labelled
Uy, Us, ..., Uk, V1, Vo, ...V SO that each ¢ € [ satisfies one of the following conditions:

(Cy) :Foralll € I — {i}, B
either u;u, vivy € E(G) and u;v;, viuy € E(G) or

wiug, viv; € E(G) and u;vy, vy € E(G);
(Cy) : There existsa j € I — {i}, such that

(a) Foralll € I —{i,j}, either
ugug, viv; € B(G) and ugvy, viuy € E(G) or
uguy, viv; € E(G) and ugvy, vy € E(G);
(b) wguj, uv;, vuy € E(G) and wv;, uv;, viv; € E(G);
(c) in the graph G,
Ne(ui)\Vij = No(u;)\Vij and Ne(vi)\Vi; = Ne(v;)\Vyj,
where V;; = {u;, uj, v;, v} .

Dunbar et al. [6] showed that for any graph G of order n > 4, d(G)d(G) < n?/4, and
characterized all graphs achieving this bound as follows.
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Theorem 4.1 ([6]). For every graph G with order n > 4, d(G)d(G) = %2 if and only if G = K4
or G € Gy, for some integer k > 2.

The proof of Theorem 4.1 was based on some facts which are summarized in the following
result.

Proposition 4.1 ([6]). Let G be a graph of order n > 4 satisfying d(G)d(G) = %2. Letk = 5 and
P = {U, Uy, ...,U} be a domatic partition of G of cardinality k such that Y_¢_ |E((U;))| is a
maximum. Then,

(i) k—1<6(G) <A(G)<kandk—1<(G) <AG) <k
(ii) If U; is a dominating set of G, then i satisfies Condition (C1).
(iii) If U; is not a dominating set of G, then i satisfies Condition (Cs).

According to Proposition 4.1, every graph G € G, is either regular or semi-regular of minimum
degree either n/2 — 1 or n/2.

Theorem 4.2. For every graph G with order n > 4,

bd(G) = bd(G) = g

ifand only if G € {2K,, Cy, P, }.
Proof. Tt is easy to show that if G € {2K,,Cy, P}, then bd(G) = bd(G) = n/2. To prove

the necessity, let G be a graph of order n > 4 with k = bd(G) = bd(G) = % and let P =
{U1,Us,...,U k_} be a b-maximal partition of G of cardinality k. Note that G has no universal vertex
for otherwise GG has an isolated vertex and so bd(G) = 1 < n/2, a contradiction. Likewise G has

no universal vertex. Hence 7(G) > 2 and v(G) > 2. It follows that |U;| = 2 for all i since k = 7.

Moreover, d(G) < % and d(G) < % by Proposition 2.1. Let I = {1,...,k} and U; = {w;, v;}

for each i € I. Since bd(G) < d(G) and bd(G) < d(G), we obtain d(G) = d(G) = 5 and
thus d(G)d(G) = "72. Clearly G # K, which means, by Theorem 4.1, that G € Gj. Since
d(G) = bd(G), each d(G)-domatic partiton of G is a bd(G)-domatic partition of G. Therefore,
we can assume that P is chosen among all d(G)-domatic partitons of G so that Zle |E((U;))] is
a maximum. Now, by Proposition 4.1-(i), we have § — 1 < §(G) < A(G) < 3. Itis a routine
matter to check that if n = 4, then G € {2K>, Cy, P,}. Hence we can assume that n > 5, and thus
k= g > 3. We distinguish between two cases.

Case 1. U; is a dominating set of G for all i € 1.

By Proposition 4.1-(ii), Condition (C}) is satisfied for all i € I. As U; is a dominating set of
both G and G, each vertex of any U,, with j # i, is adjacent to exactly one vertex of U; in G.
Therefore,

Ve e Uy, |pnlx,U]| =k — 1. (1

Moreover, we claim that

foralli € I, Ng(u;)\ {v;} induces a complete graph.
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Indeed, suppose to the contrary that for a some p € I, there is a vertex u, € U, such that
Ne(up)\ {v,} contains two non-adjacent vertices. Without loss of generality, let v, and u, be
the two non-adjacent vertices in N¢(u,)\ {v,} . By Condition (C}), vertices v, and v, are not ad-
jacent in Ng (vp)\ {ug} . Let Uy = {ug, ur, vy}, U = {vg, vy, up} and P' = (PN {U,, U,, U, }) U
{U!,U/} . Observe that

U, and U] are independent sets in G. 2)

Hence by (1) and (2), P’ satisfies the following: each vertex of G is either isolated in its class or has
a private neighbor with respect to its class. Therefore, by Theorem 2.3, P’ is a b-maximal domatic
partition of GG of cardinality g — 1, a contradiction, which completes the proof of the claim.

Thus for every ¢ € I, the vertices of Ng(u;)\ {v;} are pairwise adjacent. Then G is a graph
consisting of two disjoint complete graphs each of order 7 to which s (0 < s < %) independent
edges may be added such that each edge joins a vertex of one Kz to a one vertex of the other K'xz.

But then by Theorem 2.2, bd(G) = 2 < bd(G), a contradiction.

Case 2. U; is not a dominating set of G for some i € 1.

By Proposition 4.1-(iii), 7 satisfies Condition (Cy) . Let j € I — {i} such that items (a), (b)
and (c) of Condition (C) are fulfilled. Observe that u;, v;, u;, v; induce a path Py : v;-u-u;-v;
(by item (b)). Also by item (c), each of the pair u;, u; and v;, v; have the same neighborhood in
V(G)\Auwi, uj,v;,v;}. Since k > 3, letl € I —{3,j} and P’ = P\{U,, U;, U;}. Now, by item
(¢), either (u;u;, uju; € £ and vyv, vjv; € E) or (u;vy, uju; € E and v;uy, vju; € E). In the former,
let P, = P' U {{us,uj, v}, {vi,vj,%}} and in the later let Py = P" U {{w;, u;,w }, {vi,v;, v} }.
Whatever, the partition we shall have, P, and P, are domatic partitions of G. For the next, we
may assume, without loss of generality, that P; occurs. To show that P; is b-maximal, it suffices to
consider Theorem 2.3 on vertex v; and using the fact that GG is regular or semi-regular of (minimum)
degree either n/2 — 1 or n/2. Indeed, v, is isolated in its class {u;, u;, v;} and for any x € Ng(v;),
vertex xis either isolated in its class (when dg(x) = n/2 — 1) or has a private neighbor with
respect to its class (when dg(z) = n/2). Therefore P; is a b-maximal domatic partition of G of
order [P'| +2 = (§ — 3) + 2 < 3, a contradiction. O

5. Nordhaus-Gaddum results

In this section, we present a Nordhaus-Gaddum bound for bd(G) + bd(G) in terms of the order
of the graph (7, and we characterize extremal graphs attaining this bound.

Theorem 5.1. For any graph G of order n, bd(G) + bd(G) < n + 1, with equality if and only if
G2K,orK,.

Proof. By Proposition 2.1, we have
bd(G) + bd(G) < 6(G) +6(G) + 2. 3)
Moreover, since 6(G) = n — A(G) — 1, we obtain that

bd(G) + bd(G) < n+1+6(G) — A(G), 4)
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and the bound follows since §(G) — A(G) < 0.

Now assume that bd(G) + bd(G) = n + 1. Then by (4), we have §(G) = A(G), thatis G is a
regular graph. Observe that if neither G nor G has universal vertices, then v(G) > 2 and v(G) > 2.
Therefore by Corollary 2.1, bd(G) < n/2 and bd(G) < n/2, implying that bd(G) + bd(G) < n
which leads to a contradiction. Hence at least one of G and G has a universal vertex. Now, if G
has a universal vertex, then bd(G) = 1 and bd(G) = n, implying that G = K,,. While if G has a

universal vertex, then bd(G) = 1 and bd(G) = n implying that G = K,,.
The converse is obvious. [

Theorem 5.2. Let G be a graph of order n. If neither G nor G is a complete graph, then

bd(G) + bd(G) < n,
with equality if and only if G € {K,, — e,2K5,Cy, P,}.

Proof. The bound follows from Theorem 5.1 since neither G nor G is a complete graph.

Assume that bd(G) + bd(G) = n. If G has a universal vertex, then bd(G) = 1 and bd(G) =
n — 1. By Proposition 3.2, G = K,, — e, where ¢ is an arbitrary edge of K,,. By symmetry if G has
a universal vertex, then G = K,, — e, where ¢ is an arbitrary edge of K,,. Hence we can assume
that neither G nor G has a universal vertex. It follows that y(G) > 2 and v(G) > 2, and son > 4.
Now since bd(G) + bd(G) = n, Corollary 2.1 implies that bd(G) = bd(G) = 2, and by Theorem
42, G € {2K,, Cy, Py}

The converse is obvious. ]
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