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Abstract

A graph G is trivially perfect if for every induced subgraph the cardinality of the largest set of
pairwise nonadjacent vertices (the stability number) α(G) equals the number of (maximal) cliques
m(G). We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some
definitions to infinite graphs.
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1. Introduction

Let G be a finite graph. A coloring (vertex-coloring) of G with k colors is a surjective function
that assigns to each vertex ofG a number from the set {1, . . . , k}. A coloring ofG is called pseudo-
Grundy if each vertex is adjacent to some vertex of each smaller color. The pseudo-Grundy number
γ(G) is the maximum k for which a pseudo-Grundy coloring of G exists (see [5, 6]).

A coloring of G is called proper if any two adjacent vertices have different color. A proper
pseudo-Grundy coloring of G is called Grundy. The Grundy number Γ(G) (also known as the
first-fit chromatic number) is the maximum k for which a Grundy coloring ofG exists (see [6, 11]).

Since there must be α(G) distinct cliques containing the members of a maximum stable set,
clearly,

α(G) ≤ θ(G) ≤ m(G) and ω(G) ≤ χ(G) ≤ Γ(G) ≤ γ(G) (1)
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where θ denotes the clique cover (the least number of cliques of G whose union covers V (G)), ω
denotes the clique number and χ denotes the chromatic number. Let a, b ∈ {α, θ,m, ω, χ,Γ, γ}
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Figure 1. Left; a Grundy coloring of P4 with 3 colors. Right; a pseudo-Grundy coloring of C4 with 3 colors.

such that a 6= b. A graph G is called ab-perfect if for every induced subgraph H of G, a(H) =
b(H). This definition extends the usual notion of perfect graph introduced by Berge [3], with
this notation a perfect graph is denoted by ωχ-perfect. The concept of the ab-perfect graphs was
introduced earlier by Christen and Selkow in [7] and extended in [17] and [1, 2]. A graphGwithout
an induced subgraph H is called H-free. A graph H1-free and H2-free is called (H1, H2)-free.

Some important known results are the following: Lóvasz proved in [13] that a graph G is
ωχ-perfect if and only its complement is ωχ-perfect. Consequently, a graph G is ωχ-perfect if
and only if G is αθ-perfect, see also [4, 5, 12]. By Equation (1), a graph αm-perfect is “trivially”
perfect (see [9, 10]). Chudnovsky, Robertson, Seymour and Thomas proved in [8] that a graphG is
ωχ-perfect if and only if G and its complement are C2k+1-free for all k ≥ 2. Christen and Selkow
proved in [7] that for any graph G the following are equivalent: G is ωΓ-perfect, G is χΓ-perfect,
and G is P4-free.

The remainder of this paper is organized as follows: In Section 2: Characterizations are given
of the families of finite graphs: (i) θm-perfect graphs, (ii) αm-perfect graphs (trivially perfect
graphs), (iii) ωγ-perfect graphs and (iv) χγ-perfect graphs. In Section 3: We further extend some
definitions to locally finite graphs and denumerable graphs.

2. Characterizations for finite graphs

There exist several trivially perfect graph characterizations, e.g. [2, 9, 14, 15, 16]. We will use
the following equivalence to prove Theorem 2.2:

Theorem 2.1 (Golumbic [9]). A graph G is trivially perfect if and only if G is (C4, P4)-free.

A consequence of Theorem 2.1 is the following characterization of θm-perfect and trivially
perfect graphs.

Corollary 2.1. A graph G is θm-perfect graph if and only if G is αm-perfect.

Proof. Since θ(C4) = θ(P4) = 2, m(C4) = 4 and m(P4) = 3 then G is (C4, P4)-free, so the
implication follows. For the converse, the implication is immediate from Equation (1).
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We now characterize the ωγ-perfect and χγ-perfect graphs. In the following result, one should
note that the finiteness of G is not necessary for the proof, the finiteness of ω(G) is sufficient.

Theorem 2.2. For any graph G the following are equivalent: 〈1〉 G is (C4, P4)-free, 〈2〉 G is
ωγ-perfect, and 〈3〉 G is χγ-perfect.

Proof. To prove 〈1〉 ⇒ 〈2〉 assume that G is (C4, P4)-free. Let ς be a pseudo-Grundy coloring of
G with γ(G) colors. We will prove by induction on n that for n ≤ γ(G), G contains a complete
subgraph of n vertices with the n highest colors of ς . This proves (for n = γ(G)) that G is
ωγ-perfect since every induced subgraph of G is (C4, P4)-free.

For n = 1, there exists a vertex with color γ(G), then the assertion is trivial. Let us now
suppose that we have n− 1 vertices v1, . . . , vn−1 in the n− 1 highest colors such that they are the
vertices of a complete subgraph, and define Vi as the set of vertices colored γ(G) − (n − 1) by ς
adjacent to vi (1 ≤ i < n). Since ς is a pseudo-Grundy coloring, none Vi is empty. Any two such
sets are comparable with respect to inclusion, otherwise there must be vertices p in Vi \Vj and q in
Vj \ Vi and the subgraph induced by {p, vi, vj, q} would be isomorphic to C4 or P4. Therefore the
n− 1 sets Vi are linearly ordered with respect to inclusion, and there is a k (1 ≤ k < n) with

Vk =
⋂

1≤i<n

Vi.

Thus there is a vertex vn in Vk which is colored with γ(G)− n+ 1 by ς and is adjacent to each of
the vi (1 ≤ i < n).

The proof of 〈2〉 ⇒ 〈3〉 is immediate from Equation (1).
To prove 〈3〉 ⇒ 〈1〉 note that if H ∈ {C4, P4} then χ(H) = 2 and γ(H) = 3 hence the

implication is true (see Fig 1).

Corollary 2.2. Every χγ-perfect graph is ωχ-perfect.

3. Extensions for infinite graphs

We presuppose here the axiom of choice. The definitions of pseudo-Grundy coloring with
n colors and of proper coloring with n colors of a finite graph are generalizable to any cardinal
number. It is defined the chromatic number χ of a graph as the smallest cardinal κ such that the
graph has a proper coloring with κ colors. The clique number ω of a graph as the supremum of the
cardinalities of the complete subgraphs of the graph (see [7]). Similarly, for any ordinal number β
(such that |β| = κ), a pseudo-Grundy coloring of a graph with κ colors is a coloring of the vertices
of the graph with the elements of β such that for any β′′ < β′ and any vertex v colored β′ there is a
vertex colored β′′ adjacent to v. The pseudo-Grundy number γ of a graph is the supremum of the
cardinalities κ for which there is a pseudo-Grundy coloring of the graph with β such that |β| = κ.

Next we prove a generalization of Theorem 2.2 for some classes of infinite graphs. Afterwards
we show that there exists a graph, not belonging to these classes, for which the theorem does not
hold.

Theorem 3.1. The statements 〈1〉, 〈2〉 and 〈3〉 of Theorem 2.2 are equivalent for each locally finite
graph and for each denumerable graph.
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Proof. To prove 〈1〉 ⇒ 〈2〉, let H be an induced subgraph of G. If ω(H) is finite, we can use the
proof of Theorem 2.2 to show that γ(H) = ω(H). In otherwise ω(H) is infinite, then γ(H) =
ω(H), because γ(H) is at most the supremum of the degrees of the vertices of H , which is at most
ℵ0, if G is locally finite or denumerable.

The implications 〈2〉 ⇒ 〈3〉 and 〈3〉 ⇒ 〈1〉 hold for any graph, finite or not.

The following example can be found in [7]. Let G be a non-denumerable, locally denumerable
graph formed by the disjoint union of |β1| = ℵ1 complete denumerable subgraphs of |β| = ℵ0
vertices. Clearly ω(G) = χ(G) = |β| = ℵ0, and G is (C4, P4)-free. But let f : β1 × β → β1
be such that for each β′ ∈ β1 the function λx · f(β′, x) is a bijection of β onto β′. Index the
components of G with the denumerable ordinals, and their vertices with natural numbers. Color
the n-th vertex of the β′-th component with f(β′, n). Each β′ < β1 is used as a color in the (β′+1)-
th component. Since for each β′ < β1, λx · f(β′, x) is injective, this function defines a coloring
with β1 colors. Since λx · f(β′, x) is surjective for each β′ < β1, this function is a pseudo-Grundy
coloring with ℵ1 colors.
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