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Abstract

A sequence S of restricted-growth strings unifies the presentation of middle-levels graphs Mk as
follows, for 0 < k ∈ Z. Recall Mk is the subgraph in the Hasse diagram of the Boolean lattice
2[2k+1] induced by the k- and (k+ 1)-levels. The dihedral group D4k+2 acts on Mk via translations
mod 2k + 1 and complemented reversals. The first (2k)!

k!(k+1)!
terms of S stand for the orbits of

V (Mk) under such D4k+2-action, via the lexical matching colors 0, 1, . . . , k on the k + 1 edges at
each vertex. So, S is proposed here as a convenient numeral system for the graphs Mk. Color 0
allows to reorder S via an integer sequence that behaves as an idempotent permutation on its first

(2k)!
k!(k+1)!

terms, for each 0 < k ∈ Z. Related properties hold for the remaining colors 1, . . . , k.

Keywords: numeral system, middle-levels graph, Boolean lattice, Hasse diagram, complemented reversal
Mathematics Subject Classification: 05C62, 05C75, 06A05, 05C69, 05C45
DOI: 10.5614/ejgta.2021.9.1.13

1. Introduction

This paper complements previous work [5] on reinterpreting the middle-levels theorem [6, 8]
via a numeral system that enumerates all ordered trees. Let 0 < k ∈ Z and let n = 2k + 1. The
middle-levels graph Mk [2, 7] is the subgraph of the Hasse diagram [12] of the Boolean lattice [3],
denoted 2[n] and induced by its k- and (k + 1)-th levels (i.e. formed by the k- and (k + 1)-subsets
of [n] = {0, . . . , 2k}). The dihedral group D2n acts on Mk via translations mod n (see Section 4)
and complemented reversals (see Section 5).
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Let Ck = (2k)!
k!(k+1)!

be the k-th Catalan number [13] A000108. Let S be the sequence [13]
A239903 of restricted-growth strings or RGS’s ([1] page 325). We will show that the first Ck
terms of S stand for the orbits of V (Mk) under the natural D2n-action on (V (Mk), E(Mk)) in two
ways: as Stanley’s k-RGS’s (see below) and as k-germs, proposed in this work.

In Section 6, the mentioned D2n-action will allow to project Mk onto a quotient pseudograph
Rk whose vertices stand for the first Ck terms of S via the Kierstead-Trotter lexical-matching [7]
color (or lexical color) set [k + 1] = {0, 1, . . . , k} on the k + 1 edges incident to each vertex
(Sections 7, 8 and 11).

In preparation, RGS’s are first tailored in Section 2 into numerical (k − 1)-strings α that are
our k-germs. These yield n-strings F (α) (Section 3), each composed by the k + 1 lexical colors,
as well as by k asterisks ∗. The F (α)’s represent the k-edge ordered trees (Proposition 3.1) and
are obtained via a nested substring-swapping, here called castling (Theorem 3.2), that sorts them
linearly via pruning and regrafting. These trees (encoded as F (α)) represent the vertices of Rk via
a corresponding uncastling procedure (Section 8).

The mentioned linear sorting arises from an ordered tree Tk (Theorem 3.1) with |V (Tk)| =
|V (Rk)| = Ck. This Tk controls V (Rk) and allows to lexically visualize V (Mk). On the other
hand, an all-RGS’s binary tree is given in Section 9, representing the vertices (i.e. the ordered
trees) of all Rk’s. This is a unifying pattern for the presentation of all the V (Mk)’s.

It is known that the k-edge ordered trees (that is, the vertices of Rk) denoted by R. Stanley in
[14] page 221 item (e) as “plane trees with k + 1 vertices”, are equivalent to k-strings with initial
entry 0, that we shall call k-RGS’s, tailored from RGS’s in a different way ([14] page 224 item (u))
from that of our k-germs. An equivalence of k-germs and k-RGS’s is presented in Section 10 via
their distinct relation to the k-edge ordered trees.

Our approach yields a stepwise-reversing presentation (i.e., via complemented-reversal adja-
cency) of the Hamilton cycles of Mk [8, 9, 10, 11] in P. Gregor, T. Mütze and J. Nummenpalo [6],
that allows an explicit view of all Kierstead-Trotter lexical colors in ordered trees F (α). The 2-
factorW k

01 ofRk determined by the colors 0 and 1 is reanalyzed from this viewpoint in [5], Section
9, and W k

01 is seen in [5], Section 10, to morph into such Hamilton cycles.
Moreover, an integer sequence S0 is shown to exist such that, for each k > 0, the neighbors

of the vertices of Rk via color-k edges have their RGS’s ordered as in S corresponding to an
idempotent permutation on the first Ck terms of S0. This and related properties hold for lexical
colors 0, 1, . . . , k (Theorem 11.1 and Remark 11.2) reflecting properties of plane trees (i.e., classes
of ordered trees under root rotation).

Incidentally, a sufficient condition [4] (to be compared with [12]), that a path in Rk lifts to a
dihedrally invariant Hamilton cycle in Mk, narrows the conjecture on the existence of Hamilton
cycles in Mk, solved in [8], to an unsolved unrestricted version; see Remark 11.3.

2. From restricted-growth strings to k-germs

Let 0 < k ∈ Z. We can express the mentioned sequence S as: S = (β(0), . . . , β(17), . . .) =

(0, 1, 10, 11, 12, 100, 101, 110, 111, 112, 120, 121, 122, 123, 1000, 1001, 1010, 1011, . . .) (1)
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and note that S has the lengths of its contiguous pairs (β(i − 1), β(i)) constant unless i = Ck for
0 < k ∈ Z, in which case β(i− 1) = β(Ck − 1) = 12 · · · k and β(i) = β(Ck) = 10k = 10 · · · 0.

To view the continuation of S, each RGS β = β(m) is transformed, for every k ∈ Z with
k ≥ length(β), into a (k − 1)-string α = ak−1ak−2 · · · a2a1 by prefixing k− length(β) zeros to β.
As hinted in Section 1, we say that such an α is a k-germ. In fact, a k-germ α (1 < k ∈ Z) is a
(k − 1)-string α = ak−1ak−2 · · · a2a1 such that:

(1) the leftmost position (called position k − 1) of α contains entry ak−1 ∈ {0, 1};
(2) given 1 < i < k, the entry ai−1 (at position i− 1) satisfies 0 ≤ ai−1 ≤ ai + 1.

Every k-germ ak−1ak−2 · · · a2a1 yields the (k + 1)-germ 0ak−1ak−2 · · · a2a1. A non-null RGS is
obtained by stripping a k-germ α = ak−1ak−2 · · · a1 6= 00 · · · 0 off all the null entries to the left of
its leftmost position containing a 1. We denote such an RGS again by α, convene that the null RGS
α = 0 is stripped from all null k-germs α (0 < k ∈ Z), and use notation α = α(m) (or β = β(m),
as in (1)) both for a k-germ and for its corresponding RGS.

The k-germs are ordered as follows. Given two k-germs, say α = ak−1 · · · a2a1 and β =
bk−1 · · · b2b1, where α 6= β, we say that α precedes β, written α < β, whenever either:

(i) ak−1 < bk−1 or
(ii) aj = bj , for k − 1 ≤ j ≤ i+ 1, and ai < bi, for some k − 1 > i ≥ 1.

The resulting order on k-germs α(m), (m ≤ Ck), corresponding biunivocally (via the assignment
m→ α(m)) with the natural order on m, yields a listing that we call the natural (k-germ) listing.
Note that there are exactly Ck k-germs α = α(m) < 10k, ∀k > 0. Subsection 2.1, deals with the
determination of these RGS’s and k-germs.

2.1. Catalan’s triangle
Given 0 ≤∈ Z, to determine β(m) or α(m), we use Catalan’s triangle 4, i.e. a triangular

arrangement of integers starting with the following successive rows4j , for j = 0, . . . , 8:

1
1 1
1
1

2
3

2
5 5

1
1

4
5

9
14

14
28

14
42 42

1
1

6
7

20
27

48
75

90
165

132
297

132
429 429

1
..

8
..

35
..

110
..

275
..

572
..

1001
..

1430
..

1430
..

where reading is linear, as in [13] A009766. The numbers τ ji in 4j (0 ≤ j ∈ Z), given by
τ ji = (j + i)!(j − i+ 1)/(i!(j + 1)!), are characterized by the following properties:

1. τ j0 = 1, for every j ≥ 0;
2. τ j1 = j and τ jj = τ jj−1, for every j ≥ 1;
3. τ ji = τ j−1

i + τ ji−1, for every j ≥ 2 and i = 1, . . . , j − 2;
4.

∑j
i=0 τ

j
i = τ j+1

j = τ j+1
j+1 = Cj , for every j ≥ 1.

The determination of k-germ β(m) proceeds as follows. Let x0 = m and let y0 = τ k+1
k be the

largest member of the second diagonal of 4 with y0 ≤ x0. Let x1 = x0 − y0. If x1 > 0,
then let Y1 = {τ jk−1}

k+b1
j=k be the largest set of successive terms in the (k − 1)-column of 4 with
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y1 =
∑
Y1 ≤ x1. Either Y1 = ∅, in which case we take b1 = −1, or not, in which case we take

b1 = |Y1|−1. Let x2 = x1−y1. If x2 > 0, then let Y2 = {τ jk−2}
k+b2
j=k be the largest set of successive

terms in the (k − 2)-column of 4 with y2 =
∑
Y2 ≤ x2. Either Y2 = ∅, in which case we take

b2 = −1, or not, in which case we take b2 = |Y3| − 1. Iteratively, we arrive at a null xk. Then
α(x0) = ak−1ak−2 · · · a1, where ak−1 = 1, ak−2 = 1 + b1, . . ., and a1 = 1 + bk.

We note that β(m) is recovered from α(m) = α(x0) by removing the zeros to the left of the
leftmost 1 in α(x0). Given an RGS β or associated k-germ α, the considerations above can easily
be played backwards to recover the corresponding integer x0.

For example, if x0 = 38, then y0 = τ 4
3 = 14, x1 = x0 − y0 = 38 − 14 = 24, y1 =

τ 3
2 + τ 4

2 = 5 + 9 = 14, x2 = x1 − y1 = 24 − 14 = 10, y2 = τ 2
1 + τ 3

1 + τ 4
1 = 2 + 3 + 4 = 9,

x3 = x2−y2 = 10−9 = 1, y3 = τ 1
0 = 1 and x4 = x3−y3 = 1−1 = 0, so that b1 = 1, b2 = 2, and

b3 = 0, taking to a4 = 1, a3 = 1 + b1 = 2, a2 = 1 + b2 = 3 and a1 = 1 + b3 = 1, determining the
5-germ α(38) = a4a3a2a1 = 1231. If x0 = 20, then y0 = τ 4

3 = 14, x1 = x0 − y0 = 20− 14 = 6,
y1 = τ 3

2 = 5, x2 = x1−y1 = 1, y2 = 0 is an empty sum (since its possible summand τ 2
1 > 1 = x2),

x3 = x2 − y2 = 1, y3 = τ 1
0 = 1 and x4 = x3 − x3 = 1 − 1 = 0, determining the 5-germ

α(20) = a4a3a2a1 = 1101. Moreover, if x0 = 19, then y0 = τ 4
3 = 14, x1 = x0−y0 = 19−14 = 5,

y1 = τ 3
2 = 5, x2 = x1 − y1 = 5− 5 = 0, determining the 5-germ β(19) = a4a3a2a1 = 1100.

3. Nested substring-swaps in n-strings

An ordered (rooted) tree [6] is a tree T with: (a) a node v0 as its root; (b) an embedding of T
into the plane with v0 on top; (c) the edges between the nodes at distances j and j + 1 from v0

(0 ≤ j < height(T )) having parent nodes at the j-level above their children at the (j + 1)-level;
(d) the children in (c) ordered from left to right.

Proposition 3.1. Each k-edge ordered tree T is represented biunivocally by an n-string F (T ).

Proof. We perform a depth first search (→DFS) on T with its vertices from v0 downward denoted
vi (i = 0, 1, . . . , k) in a right-to-left breadth-first search (←BFS) way. Such DFS yields the claimed
F (α) by writing successively from left to right:

(i) the subindex i of each vi in the→DFS downward appearance and
(ii) an asterisk for each edge ei with child vi in the→DFS upward appearance.

Theorem 3.1. Each k-germ α = ak−1 · · · a1 6= 0k−1 with rightmost nonzero entry ai (1 ≤ i =
i(α) < k) corresponds to a k-germ β(α) = bk−1 · · · b1 < α having bi = ai − 1 and aj = bj
for j 6= i. Moreover, k-germs are the vertices of an ordered tree Tk rooted at 0k−1, each k-germ
α 6= 0k−1 having β(α) as its parent so that the edge β(α)α of Tk between β(α) and α admits a
label i = i(α). Furthermore, the existence of Tk allows to sort all k-germs linearly.

Proof. The statement, illustrated for k = 2, 3, 4 in the first three columns of Table I, is straightfor-
ward. Table I also serves as illustration for the proof of Theorem 3.2, below.

By representing Tk with each node β having its children α enclosed between parentheses fol-
lowing β and separating siblings with commas, we can write:

T4 = 000(001, 010(011(012)), 100(101, 110(111(121)), 120(121(122(123))))).
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Theorem 3.2. To each k-germ α = ak−1 · · · a1 corresponds biunivocally an n-string F (α) =
F (T ) = f0f1 · · · f2k whose entries are 0, 1, . . . , k (once each) and k asterisks ∗ such that:

(A) T is a k-edge ordered tree; (B) F (0k−1) = 012 · · · (k − 1)k ∗ · · · ∗;
(C) if α 6= 0k−1, then F (α) is obtained from F (β) = F (β(α)) = h0h1 · · ·h2k as in Theo-

rem 3.1 via the following Nested String Swapping (Castling) Procedure, where i = i(α):
1. let W i = h0h1 · · ·hi−1 = f0f1 · · · fi−1 and Zi = h2k−i+1 · · ·h2k−1h2k = f2k−i+1 · · · f2k−1f2k

be respectively the initial and terminal substrings of length i = i(α) in F (β);
2. let Ω > 0 be the leftmost entry of the substring U = F (β) \ (W i ∪ Zi) and consider the

concatenation U = X|Y , with Y starting at entry Ω + 1; then, F (β) = W i|X|Y |Zi;
3. set F (α) = W i|Y |X|Zi, (the result of swapping the nested substring X|Y , yielding Y |X).
In particular: (a) the leftmost entry, f0, of each F (α) is 0; (b) k∗ is a substring of F (α);

(c) each fj ∈ [0, k] with fj+1 ∈ [0, k) satisfies fj < fj+1, where j ∈ [0, 2k);
(d) each substring fj ∗ · · · ∗ fj′ of F (α) (j′′ ∈ (j, j′) ⊂ [0, 2k)⇒ fj′′ = ∗) has fj′ < fj;
(e) W i is an i-substring with no asterisks; (f) Zi is formed exactly by i asterisks.

TABLE I

m α β F (β) i W i |X |Y |Zi W i |Y |X |Zi F (α) α

0 0 − − − − − 012∗∗ 0
1 1 0 012∗∗ 1 0 | 1 | 2∗ |∗ 0 | 2∗ | 1 |∗ 02∗1∗ 1

0 00 − − − − − 012 3 ∗ ∗ ∗ 00
1 01 00 0123 ∗ ∗∗ 1 0|1|23 ∗ ∗|∗ 0|23 ∗ ∗|1|∗ 023 ∗ ∗ 1 ∗ 01
2 10 00 0123 ∗ ∗∗ 2 01|2| 3 ∗ | ∗ ∗ 01|3 ∗ |2| ∗ ∗ 013 ∗ 2 ∗ ∗ 10
3 11 10 013 ∗ 2 ∗ ∗ 1 0|13 ∗ |2 ∗ |∗ 0|2 ∗ |13 ∗ |∗ 02 ∗ 13 ∗ ∗ 11
4 12 11 02 ∗ 13 ∗ ∗ 1 0|2 ∗ 1|3 ∗ |∗ 0|3 ∗ |2 ∗ 3|∗ 03 ∗ 2 ∗ 1∗ 12

0 000 − − − − − 01234 ∗ ∗ ∗ ∗ 000
1 001 000 01234 ∗ ∗ ∗ ∗ 1 0|1|234 ∗ ∗ ∗ | ∗ 0|234 ∗ ∗ ∗ |1|∗ 0234 ∗ ∗ ∗ 1 ∗ 001
2 010 000 01234 ∗ ∗ ∗ ∗ 2 01|2|34 ∗ ∗| ∗ ∗ 01|34 ∗ ∗|2| ∗ ∗ 0134 ∗ ∗ 2 ∗ ∗ 010
3 011 010 0134 ∗ ∗2 ∗ ∗ 1 0|134 ∗ ∗|2 ∗ | ∗ 0|2 ∗ |134 ∗ ∗| ∗ 02 ∗ 134 ∗ ∗ ∗ 011
4 012 011 02 ∗ 134 ∗ ∗∗ 1 0|2 ∗ 1|34 ∗ ∗| ∗ 0|34 ∗ ∗|2 ∗ 1| ∗ 034 ∗ ∗2 ∗ 1 ∗ 012
5 100 000 01234 ∗ ∗ ∗ ∗ 3 012|3|4 ∗ | ∗ ∗ ∗ 012|4 ∗ |3| ∗ ∗ ∗ 0124 ∗ 3 ∗ ∗ ∗ 100
6 101 100 0124 ∗ 3 ∗ ∗∗ 1 0|1|24 ∗ 3 ∗ ∗| ∗ 0|24 ∗ 3 ∗ ∗|1 | ∗ 024 ∗ 3 ∗ ∗ 1 ∗ 101
7 110 100 0124 ∗ 3 ∗ ∗∗ 2 01|24 ∗ |3 ∗ | ∗ ∗ 01|3 ∗ |24 ∗ | ∗ ∗ 013 ∗ 24 ∗ ∗ ∗ 110
8 111 110 013 ∗ 24 ∗ ∗∗ 1 0 |13 ∗ |24 ∗ ∗| ∗ 0|24 ∗ ∗| 13 ∗ | ∗ 024 ∗ ∗ 13 ∗ ∗ 111
9 112 111 024 ∗ ∗13 ∗ ∗ 1 0 |24 ∗ ∗1|3 ∗ | ∗ 0|3 ∗ |24 ∗ ∗ 1| ∗ 03 ∗ 24 ∗ ∗ 1 ∗ 112

10 120 110 013 ∗ 24 ∗ ∗∗ 2 01|3 ∗ 2|4 ∗ | ∗ ∗ 01|4 ∗ |3 ∗ 2| ∗ ∗ 014 ∗ 3 ∗ 2 ∗ ∗ 120
11 121 120 014 ∗ 3 ∗ 2∗∗ 1 0|14 ∗ 3 ∗ |2 ∗ |∗ 0|2 ∗ |14 ∗ 3 ∗ |∗ 02 ∗ 14 ∗ 3 ∗ ∗ 121
12 122 121 02 ∗ 14 ∗ 3∗∗ 1 0|2 ∗ 34 ∗ |3 ∗ |∗ 0|3 ∗ |2 ∗ 14 ∗ |∗ 03 ∗ 2 ∗ 14 ∗ ∗ 122
13 123 122 03 ∗ 2 ∗ 14∗∗ 1 0|3 ∗ 2 ∗ 1|4 ∗ |∗ 0|4 ∗ |3 ∗ 2 ∗ 1|∗ 04 ∗ 3 ∗ 2 ∗ 1∗ 123

Proof. Let α = ak−1 · · · a1 6= 0k−1 be a k-germ. In the sequence of (nested substring-swap)
applications of steps 1-3 along the path from root 0k−1 to α in Tk, unit augmentation of ai for
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larger values of i (0 < i < k) must occur earlier, and then in strictly descending order of the
entries i of the intermediate k-germs. As a result, the length of the inner substring X|Y is kept
non-decreasing after each application. This is illustrated in Table I, where the order of presentation
of X and Y is reversed in successively decreasing steps. In the process, items (a)-(e) are seen to
be fulfilled.

The three successive subtables in Table I have Ck rows each, where C2 = 2, C3 = 5 and
C4 = 14; in the subtables, the k-germs α are shown both on the second and last columns via natural
enumeration in the first column; the images F (α) of those α are shown on the penultimate column;
the remaining columns in the table are filled, from the second row on, as follows: (i) β = β(α),
arising in Theorem 3.1; (ii) F (β), taken from the penultimate column in the previous row; (iii) the
length i of W i and Zi (1 ≤ i ≤ k− 1); (iv) the decomposition W i|Y |X|Zi of F (β); (v) the nested
swapping W i|X|Y |Zi of W i|Y |X|Zi, re-concatenated in the following, penultimate, column as
F (α), with α = F−1(F (α)) in the last column.

In the context of the results above, let T = Tα, so F (Tα) = F (α). For each k-germ α 6= 0k−1,
Theorem 3.2 carries a tree-surgery transformation from Tβ onto Tα by pruning-and-regrafting of
an adequate subtree of Tβ via the vertices vi and the edges ei, with parent vertices reattached in
a substring swapping way. Proposition 3.1 was used in Sections 9-10 [5] in giving a stepwise-
reversing view of Hamilton cycles [6] in the Mk’s.

TABLE II

m α θ(α) θ̂(α) ℵ̂(θ(α)) = ℵ(θ̂(α)) ℵ(θ(α))

0 0 00011 0001021∗1∗ 0∗0∗121110 00111
1 1 00101 00021∗011∗ 0∗110∗1210 01011

0 00 0000111 000102031∗1∗1∗ 0∗0∗0∗13121110 0001111
1 01 0001101 0002031∗1∗011∗ 0∗110∗0∗131210 0100111
2 10 0001011 0001032∗011∗1∗ 0∗0∗120∗131110 0010111
3 11 0010011 00021∗01031∗1∗ 0∗0∗13110∗1210 0011011
4 12 0010101 00031∗021∗011∗ 0∗110∗120∗1310 0101011

Each F (α) corresponds to a binary n-string θ(α) of weight k obtained by replacing each num-
ber in [k + 1] by 0 and each asterisk ∗ by 1. By attaching the entries of F (α) as subscripts to the
corresponding entries of θ(α), a subscripted binary n-string θ̂(α) is obtained, as shown for k = 2, 3
in the fourth column of Table II. Let ℵ(θ(α)) be given by the complemented reversal of θ(α), that
is:

if θ(α) = a0a1 · · · a2k, then ℵ(θ(α)) = ā2k · · · ā1ā0, (2)

where 0̄ = 1 and 1̄ = 0. A subscripted version ℵ̂ of ℵ is obtained for θ̂(α), as shown in the fifth
column of Table II, with the subscripts of ℵ̂ reversed with respect to those of ℵ. Each image of a
k-germ α under ℵ is an n-string of weight k + 1 and has the 1’s indexed with subscripts in [k + 1]
and the 0’s indexed with asterisk subscript. The subscripts in [k + 1] reappear from Section 7 on
as lexical colors for the graphs Mk.
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4. Translations mod n in Mk

The n-cube graph Hn is the Hasse diagram of the Boolean lattice 2[n] on the set [n]. We will
express each vertex v of Hn in three equivalent ways, namely, as:

(a) ordered set A = {a0, a1, . . . , aj−1} = a0a1 · · · aj−1 ⊆ [n] that v represents, (0 < j ≤ n);
(b) characteristic binary n-vector BA = (b0, b1, . . . , bn−1) of ordered set A in (a) above, where

bi = 1 if and only if i ∈ A, (i ∈ [n]);
(c) polynomial εA(x) = b0 + b1x+ · · ·+ bn−1x

n−1 associated to BA in (b) above.

The ordered setA and the vectorBA in (a) and (b) respectively are written for short as a0a1 · · · aj−1

and b0b1 · · · bn−1. A is said to be the support of BA.
For each j ∈ [n], let Lj = {A ⊆ [n]; |A| = j} be the j-level of Hn. Then, Mk is the subgraph

of Hn induced by Lk ∪ Lk+1, for 1 ≤ k ∈ Z. By viewing the elements of V (Mk) = Lk ∪ Lk+1 as
polynomials, as in (c) above, a regular (i.e., free and transitive) translation mod n action Υ′ of Zn
on V (Mk) is seen to exist, given by:

Υ′ : Zn × V (Mk)→ V (Mk), with Υ′(i, v) = v(x)xi (mod 1 + xn), (3)

where v ∈ V (Mk) and i ∈ Zn. Now, Υ′ yields a quotient graph Mk/π of Mk, where π stands for
the equivalence relation on V (Mk) given by:

εA(x)πεA′(x)⇐⇒ ∃ i ∈ Z with εA′(x) ≡ xiεA(x) (mod 1 + xn),

with A,A′ ∈ V (Mk). This is used in the proof of Theorem 6.1. Clearly, Mk/π is the graph whose
vertices are the equivalence classes of V (Mk) under π. Notice that π induces a partition of E(Mk)
into equivalence classes that are the edges of Mk/π.

5. Complemented reversals in MK

Let (b0b1 · · · bn−1) denote the class of b0b1 · · · bn−1 ∈ Li in Li/π. Let ρi : Li → Li/π be the
canonical projection given by ρ(b0b1 · · · bn−1) = (b0b1 · · · bn−1), for i ∈ {k, k + 1}. The definition
of the complemented reversal ℵ in display (2) is easily extended to a bijection, again denoted ℵ,
from Lk onto Lk+1. Let ℵπ : Lk/π → Lk+1/π be given by ℵπ((b0b1 · · · bn−1)) = (b̄n−1 · · · b̄1b̄0).
Note ℵπ is a bijection and the identities ρk+1ℵ = ℵπρk and ρkℵ−1 = ℵ−1

π ρk+1.
The following geometric representations are handy. List vertically the vertex parts Lk and Lk+1

of Mk (resp. Lk/π and Lk+1/π of Mk/π) so as to display a splitting of V (Mk) = Lk ∪Lk+1 (resp.
V (Mk)/π = Lk/π∪Lk+1/π) into pairs, each pair contained in a horizontal line, the two composing
vertices of such pair equidistant from a vertical line φ (resp. φ/π, depicted through M2/π on the
left of Figure 1, Section 6 below). In addition, we impose that each resulting horizontal vertex pair
in Mk (resp. Mk/π) be of the form (BA,ℵ(BA)) (resp. ((BA), (ℵ(BA)) = ℵπ((BA)))), disposed
from left to right at both sides of φ. In this context, a non-horizontal edge of Mk/π is said to be a
skew edge.
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Theorem 5.1. Each skew edge e = (BA)(BA′) of Mk/π corresponds to another skew edge
ℵπ((BA))ℵ−1

π ((BA′)) obtained from e by reflection on the line φ/π. Moreover:
(i) the skew edges of Mk/π appear in pairs, with the endpoints of the edges in each pair

forming two horizontal pairs of vertices equidistant from φ/π;
(ii) each horizontal edge of Mk/π has multiplicity equal either to 1 or to 2.

Proof. The skew edges BABA′ and ℵ−1(BA′)ℵ(BA) of Mk are reflection of each other about φ.
Their endopoints form two horizontal pairs (BA,ℵ(BA′)) and (ℵ−1(BA), BA′) of vertices. Now,
ρk and ρk+1 extend together to a covering graph map ρ : Mk →Mk/π, since the edges accompany
the projections correspondingly, exemplified for k = 2 as follows:

ℵ((BA))= ℵ((00011))= ℵ({00011,10001,11000,01100,00110})={00111,01110,11100,11001,10011}=(00111),

ℵ−1((B′A))=ℵ−1((01011))=ℵ−1({01011,10110,10110,11010,10101})={00101,10010,01001,10100,01010}=(00101).

Here, the order of the elements in the image of class (00011) (resp. (01011)) mod π under ℵ
(resp. ℵ−1) are shown reversed, from right to left (cyclically between braces, continuing on the
right once one reaches the leftmost brace). Such reversal holds for every k > 2:

ℵ((BA))= ℵ((b0···b2k))= ℵ({b0···b2k, b2k...b2k−1, ..., b1···b0})={b̄2k···b̄0, b̄2k−1···b̄2k, ..., b̄1···b̄0}=(b̄2k···b̄0),

ℵ−1((B′A))=ℵ−1((b̄′2k···b̄
′
0))=ℵ−1({b̄′2k···b̄

′
0, b̄
′
2k−1···b̄

′
2k, ..., b̄

′
1···b̄′0})={b′0···b′2k, b

′
2k···b

′
2k−1, ..., b

′
1···b′0}=(b′0···b′2k),

where (b0 · · · b2k) ∈ Lk/π and (b′0 · · · b′2k) ∈ Lk+1/π. This establishes (i).
Every horizontal edge vℵπ(v) of Mk/π has v ∈ Lk/π represented by b̄k · · · b̄10b1 · · · bk in

Lk, (so v = (b̄k · · · b̄10b1 · · · bk)). There are 2k such vertices in Lk and at most 2k corresponding
vertices in Lk/π. For example, (0k+11k) and (0(01)k) are endpoints in Lk/π of two horizontal
edges of Mk/π, each. To prove that this implies (ii), we have to see that there cannot be more
than two representatives b̄k · · · b̄1b0b1 · · · bk and c̄k · · · c̄1c0c1 · · · ck of a vertex v ∈ Lk/π, with
b0 = 0 = c0. Such a v is expressible as v = (d0 · · · b0di+1 · · · dj−1c0 · · · d2k), with b0 = di, c0 = dj
and 0 < j − i ≤ k. Let the substring σ = di+1 · · · dj−1 be said (j − i)-feasible. Let us see that
every (j − i)-feasible substring σ forces in Lk/π only vertices ω leading to two different (parallel)
horizontal edges in Mk/π incident to v. In fact, periodic continuation mod n of d0 · · · d2k both to
the right of dj = c0 with minimal cyclic substring d̄j−1 · · · d̄i+11di+1 · · · dj−10 = Pr and to the left
of di = b0 with minimal cyclic substring 0di+1 · · · dj−11d̄j−1 · · · d̄i+1 = Pφ yields a 2-way infinite
string that winds up onto a class (d0 · · · d2k) containing such an ω. For example, some pairs of
feasible substrings σ and resulting vertices ω are:

(σ,ω) = (∅,(oo1)), (0,(o0o11)), (1,(o1o)), (02,(o00o111)), (01,(o01o011)), (12, o11o0)),

(03,o000o1111)), (010,(o010o101101)), (012,(o011o)), (101,(o101o)), (13,(o111o00)),

with ‘o’ replacing b0 = 0 and c0 = 0, and where k = bn
2
c has successive values k = 1, 2, 1, 3, 3,

2, 4, 5, 2, 2, 3. If σ is a feasible substring and σ̄ = ℵ(σ), then the possible symmetric substrings
PφσPr about oσo = 0σ0 in a vertex v of Lk/π are in order of ascending length:

0σ0,
σ̄0σ0σ̄,

1σ̄0σ0σ̄1,
σ1σ̄0σ0σ̄1σ,

0σ1σ̄0σ0σ̄1σ0,
σ̄0σ1σ̄0σ0σ̄1σ0σ̄,

1σ̄0σ1σ̄0σ0σ̄1σ0σ̄1,
······························ ,
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where we use again ‘0’ instead of ‘o’ for the entries immediately preceding and following the
shown central copy of σ. The lateral periods of Pr and Pφ determine each one horizontal edge at
v in Mk/π up to returning to b0 or c0, so no entry e0 = 0 of (d0 · · · d2k) other than b0 or c0 hap-
pens such that (d0 · · · d2k) has a third representative ēk · · · ē10e1 · · · ek (besides b̄k · · · b̄10b1 · · · bk
and c̄k · · · c̄10c1 · · · ck). Thus, those two horizontal edges are produced solely from the feasible
substrings di+1 · · · dj−1 characterized above.

To illustrate Theorem 5.1, let 1 < h < n in Z be such that gcd(h, n) = 1 and let λh : Lk/π →
Lk/π be given by λh((a0a1 · · · an)) → (a0aha2h · · · an−2han−h). For each such h ≤ k, there is
at least one h-feasible substring σ and a resulting associated vertex v ∈ Lk/π as in the proof of
Theorem 5.1. For example, starting at v = (0k+11k) ∈ Lk/π and applying λh repeatedly produces
a number of such vertices v ∈ Lk/π. If we assume h = 2h′ with h′ ∈ Z, then an h-feasible
substring σ has the form σ = ā1 · · · āh′ah′ · · · a1, so there are at least 2h

′
= 2

h
2 such h-feasible

substrings.

6. Dihedral quotient pseudograph Rk of Mk

An involution of a graph G is a graph map ℵ : G → G such that ℵ2 is the identity. If G has
an involution, an ℵ-folding of G is a graph H , possibly with loops, whose vertices v′ and edges
or loops e′ are respectively of the form v′ = {v,ℵ(v)} and e′ = {e,ℵ(e)}, where v ∈ V (G) and
e ∈ E(G); e has endvertices v and ℵ(v) if and only if {e,ℵ(e)} is a loop of G.

Note that both maps ℵ : Mk → Mk and ℵπ : Mk/π → Mk/π in Section 5 are involutions. Let
〈BA〉 denote each horizontal pair {(BA),ℵπ((BA))} (as in Theorem 5.1) of Mk/π, where |A| = k.
An ℵ-folding Rk of Mk/π is obtained whose vertices are the pairs 〈BA〉 and having:

(1) an edge 〈BA〉〈BA′〉 per skew-edge pair {(BA)ℵπ((BA′)), (BA′)ℵπ((BA))};
(2) a loop at 〈BA〉 per horizontal edge (BA)ℵπ((BA)); because of Theorem 5.1, there may

be up to two loops at each vertex of Rk.

Theorem 6.1. Rk is a quotient pseudograph of Mk under an action Υ : D2n ×Mk →Mk.

Figure 1. Reflection symmetry of M2/π about a line φ/π and resulting graph map γ2.

Proof. D2n is the semidirect product Zn o% Z2 via the group homomorphism % : Z2 → Aut(Zn),
where %(0) is the identity and %(1) is the automorphism i → (n − i), ∀i ∈ Zn. If ∗ : D2n ×
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D2n → D2n indicates group multiplication and i1, i2 ∈ Zn, then (i1, 0) ∗ (i2, j) = (i1 + i2, j)
and (i1, 1) ∗ (i2, j) = (i1 − i2, j̄), for j ∈ Z2. Set Υ((i, j), v) = Υ′(i,ℵj(v)), ∀i ∈ Zn, ∀j ∈
Z2, where Υ′ is as in display (3). Then, Υ is a well-defined D2n-action on Mk. By writing
(i, j) · v = Υ((i, j), v) and v = a0 · · · a2k, we have (i, 0) · v = an−i+1 · · · a2ka0 · · · an−i = v′ and
(0, 1) · v′ = āi−1 · · · ā0ā2k · · · āi = (n− i, 1) · v = ((0, 1) ∗ (i, 0)) · v, leading to the compatibility
condition ((i, j) ∗ (i′, j′)) · v = (i, j) · ((i′, j′) · v).

Theorem 6.1 yields a graph projection γk : Mk/π → Rk for the action Υ, given for k = 2 in
Figure 1. In fact, γ2 is associated with reflection of M2/π about the dashed vertical symmetry axis
φ/π so that R2 (containing two vertices and one edge between them, with each vertex incident to
two loops) is given as its image. Both the representations of M2/π and R2 in the figure have their
edges indicated with colors 0,1,2, as arising inSection 7.

7. Lexical procedure

Let Pk+1 be the subgraph of the unit-distance graph of R (the real line) induced by the set
[k + 1] = {0, . . . , k}. We draw the grid Γ = Pk+1�Pk+1 in the plane R2 with a diagonal ∂ traced
from the lower-left vertex (0, 0) to the upper-right vertex (k, k). For each v ∈ Lk/π, there are
k + 1 n-tuples of the form b0b1 · · · bn−1 = 0b1 · · · bn−1 that represent v with b0 = 0. For each such
n-tuple, we construct a 2k-path D in Γ from (0, 0) to (k, k) in 2k steps indexed from i = 0 to
i = 2k − 1. This leads to a lexical edge-coloring implicit in [7]; see the following statement and
Figure 2 (Section 8), containing examples of such a 2k-path D in thick trace.

Theorem 7.1. [7] Each v ∈ Lk/π has its k+1 incident edges assigned colors 0, 1, . . . , k by means
of the following Lexical Procedure’, where 0 ≤ i ∈ Z, w ∈ V (Γ) and D is a path in Γ. Initially,
let i = 0, w = (0, 0) and D contain solely the vertex w. Repeat 2k times the following sequence of
steps (1)-(3), and then perform once the final steps (4)-(5):
(1) If bi = 0, then set w′ := w + (1, 0); otherwise, set w′ := w + (0, 1).
(2) Reset V (D) := v(D) ∪ {w′}, E(D) := E(D) ∪ {ww′}, i := i+ 1 and w := w′.
(3) If w 6= (k, k), or equivalently, if i < 2k, then go back to step (1).
(4) Set v̌ ∈ Lk+1/π to be the vertex of Mk/π adjacent to v and obtained from its representative

n-tuple b0b1 · · · bn−1 = 0b1 · · · bn−1 by replacing the entry b0 by b̄0 = 1 in v̌, keeping the
entries bi of v unchanged in v̌ for i > 0.

(5) Set the color of the edge vv̌ to be the number c of horizontal (alternatively, vertical) arcs
of D above ∂.

Proof. If addition and subtraction in [n] are taken modulo n and we write [y, x) = {y, y + 1, y +
2, . . . , x − 1}, for x, y ∈ [n], and Sc = [n] \ S, for S = {i ∈ [n] : bi = 1} ⊆ [n], then the
cardinalities of the sets {y ∈ Sc \ x : |[y, x) ∩ S| < |[y, x) ∩ Sc|} yield all the edge colors, where
x ∈ Sc varies.

The Lexical Procedure of Theorem 7.1 yields a 1-factorization not only for Mk/π but also for
Rk and Mk. This is clarified by the end of Section 8.
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Figure 2. Representing lexical-color assignment for k = 2.

8. Lexical 1-factorization

A notation δ(v) is assigned to each pair {v,ℵπ(v)} ∈ Rk, where v ∈ Lk/π, so that there is
a unique k-germ α = α(v) with 〈F (α)〉 = δ(v), where the notation 〈·〉 appeared for example
as in 〈BA〉 in Section 6. We exemplify δ(v) for k = 2 in Figure 2, with the Lexical Procedure
(indicated by arrows “⇒”) departing from v = (00011) (top) and v = (00101) (bottom), passing
to sketches of Γ (separated by symbols “+”), one sketch (in which to trace the edges of D ⊂ Γ as
in Theorem 7.1) per representative b0b1 · · · bn−1 = 0b1 · · · bn−1 of v shown under the sketch (where
b0 = 0 is underscored) and pointing via an arrow “→” to the corresponding color c ∈ [k + 1].
Recall this c is the number of horizontal arcs of D below ∂.

In each of the two cases in Figure 2 (top, bottom), an arrow “⇒” to the right of the sketches
points to a modification v̂ of b0b1 · · · bn−1 = 0b1 · · · bn−1 obtained by setting as a subindex of each
0 (resp. 1) its associated color c (resp. an asterisk “∗” ). Further to the right, a third arrow “⇒”
points to the n-tuple δ(v) formed by the string of subindexes of entries of v̂ in the order they appear
from left to right.

Theorem 8.1. Let α(v0) = ak−1 · · · a1 = 00 · · · 0. Each δ(v) corresponds to a sole k-germ α =
α(v) with 〈F (α)〉 = δ(v) by means of the following Uncastling Procedure: Given v ∈ Lk/π, let
W i = 01 · · · i be the maximal initial numeric (i.e., colored) substring of δ(v), so that the length of
W i is i+ 1 (0 ≤ i ≤ k). If i = k, let α(v) = α(v0); else, set m = 0 and:

1. set δ(vm) = 〈W i|X|Y |Zi〉, where Zi is the terminal jm-substring of δ(vm), with jm =
i+ 1, and let X, Y (in that order) start at contiguous numbers Ω and Ω− 1 ≥ i;

2. set δ(vm+1) = 〈W i|Y |X|Zi〉;
3. obtain α(vm+1) from α(vm) by increasing its entry ajm by 1;
4. if δ(vm+1) = [01 · · · k ∗ · · · ∗], then stop; else, increase m by 1 and go to step 1.

Proof. This is a procedure inverse to that of castling (Section 3), so 1-4 follow.

Theorem 8.1 allows to produce a finite sequence δ(v0), δ(v1), . . . , δ(vm), . . . , δ(vs) of n-strings
with j0 ≥ j1 ≥ · · · ≥ jm · · · ≥ js−1 as in steps 1-4, and k-germs α(v0), α(v1), . . . , α(vm), . . . ,
α(vs), taking from α(v0) through the k-germs α(vm), (m = 1, . . . , s− 1), up to α(v) = α(vs) via
unit incrementation of ajm , for 0 ≤ m < s, where each incrementation yields the corresponding
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α(vm+1). Recall F is a bijection from the set V (Tk) of k-germs onto V (Rk), both sets being
of cardinality Ck. Thus, to deal with V (Rk) it is enough to deal with V (Tk), a fact useful in
interpreting Theorem 8.2 below. For example δ(v0) = 〈04 ∗ 3 ∗ 2 ∗ 1 ∗〉 = 〈0|4 ∗ |3 ∗ 2 ∗ 1|∗〉 =
〈W 0|X|Y |Z0〉 with m = 0 and α(v0) = 123, continued in Table III with δ(v1) = 〈W 0|Y |X|Z0〉,
finally arriving to α(vs) = α(v6) = 000.

TABLE III

j0=0
j1=0

δ(v1)

δ(v2)
=
=

〈0|3∗2∗1|4∗|∗〉
〈0|2∗14∗|3∗|∗〉

=
=

〈03∗2∗14∗∗〉
〈02∗14∗3∗∗〉

=
=

〈0|3∗|2∗14∗|∗〉
〈0|2∗|14∗3∗|∗〉

α(v1)=122

α(v2)=121

〈F (122)〉=δ(v1)

〈F (121)〉=δ(v2)
j2=0
j3=1

δ(v3)

δ(v4)
=
=

〈0|14∗3∗|2∗|∗〉
〈01|3∗2|4∗|∗∗〉

=
=

〈014∗3∗2∗∗〉
〈013∗24∗∗∗〉

=
=

〈01|4∗|3∗2|∗∗〉
〈01|3∗|24∗|∗∗〉

α(v3)=120

α(v4)=110

〈F (120)〉=δ(v3)

〈F (110)〉=δ(v4)
j4=1
j5=2

δ(v5)

δ(v6)
=
=

〈01|24∗|3∗|∗∗〉
〈012|3|4∗|∗∗∗〉

=
=

〈0124∗3∗∗∗〉
〈01234∗∗∗∗〉

= 〈012 | 4 ∗|3|∗∗〉 α(v5)=100

α(v6)=000

〈F (100)〉=δ(v5)

〈F (000)〉=δ(v6)

A pair of skew edges (BA)ℵπ((BA′)) and (BA′)ℵ((BA)) inMk/π, to be called a skew reflection
edge pair (SREP), provides a color notation for any v ∈ Lk+1/π such that in each particular edge
class mod π:

(I) all edges receive a common color in [k + 1] regardless of the endpoint on which the
Lexical Procedure (or its modification immediately below) for v ∈ Lk+1/π is applied;

(II) the two edges in each SREP in Mk/π are assigned a common color in [k + 1].
The modification in step (I) consists in replacing in Figure 2 each v by ℵπ(v) so that on the left we
have instead now (00111) (top) and (01011) (bottom) with respective sketch subtitles

00111→0,
01011→0,

10011→1,
10101→2,

11001→2,
01101→1,

resulting in similar sketches when the steps (1)-(5) of the Lexical Procedure are taken with right-to-
left reading and processing of the entries on the left side of the subtitles (before the arrows “→”),
where the values of each bi must be taken complemented, (i.e., as b̄i).

Since an SREP in Mk determines a unique edge ε of Rk (and vice versa), the color received by
the SREP can be attributed to ε, too. Clearly, each vertex of either Mk or Mk/π or Rk defines a
bijection from its incident edges onto the color set [k + 1]. The edges obtained via ℵ or ℵπ from
these edges have the same corresponding colors.

Theorem 8.2. A 1-factorization of Mk/π by the colors 0, 1, . . . , k is obtained via the Lexical
Procedure and can be lifted to a covering 1-factorization of Mk and subsequently collapsed onto
a folding 1-factorization of Rk. This validates the notation δ(v), for each v ∈ V (Rk), so that there
is a unique k-germ α = α(v) with 〈F (α)〉 = δ(v).

Proof. As pointed out in (II) above, each SREP in Mk/π has its edges with a common color in
[k+1]. Thus, the [k+1]-coloring ofMk/π induces a well-defined [k+1]-coloring ofRk. This yields
the claimed collapsing to a folding 1-factorization of Rk. The lifting to a covering 1-factorization
in Mk is immediate. The arguments above determine that the collapsing 1-factorization in Rk

induces the claimed k-germs α(v).
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Figure 3. Restriction of T to its first five levels.

9. All-germs binary tree

The graph R1 has just one vertex 001 with δ(001) = 01∗ (δ as in Section 8) and two loops.
Note that the correspondence F in Section 3 has 01∗ as the image of the empty set: F (∅) = 01∗.
While Theorem 3.2 allows to sort all k-germs for a fixed k, the following theorem allows to sort
all k-germs.

Theorem 9.1. A binary tree T exists with node set ∪∞k=1V (Rk) and such that: (A) its root is 01∗;
(B) the left child of a node δ(v) = 0|X in T with ||X|| = 2k (||X|| = length of X) exists and is
0|X + 1|1∗, where X + 1 = (x1 + 1) · · · (x2k + 1) if X = x1 · · ·x2k with color number addition
and ∗ + 1 = ∗; (C) unless δ(v) = 01 · · · (k − 1)k ∗ · · · ∗, it is δ(v) = 0|X|Y |∗, where X and Y
are strings starting at some j > 1 and j − 1, respectively, in which case there is a right child of
δ(v), namely 0|Y |X|∗, via uncastling. In terms of k-germs, T has each node ak−1ak−2 · · · a2a1 as
a parent of a left child bkbk−1 · · · b1 = ak−1ak−2 · · · a2a1(a1 + 1), and as a parent of a right child ρ
only if a1 > 0, in which case ρ = ck−1 · · · c2c1 = ak−1 · · · a2(a1 − 1).

Proof. Figure 3 shows the first five levels of T with edges in red and nodes, expressed in terms of
red k-germs via F , in otherwise black equalities. To stress the claimed unifying pattern mentioned
in Section 1, the figure also assigns to each node a red-colored ordered pair of positive integers
(i, j), where j ≤ Ci. The root, given by F (∅) = 01∗, is assigned red (i, j) = (1, 1). The left child
of a node assigned red (i, j) is assigned red (k, j′) = (i+1, j′), where j′ is the order of appearance
of the k-germ α corresponding to (k, j′) in its presentation via castling as in Table I; α becomes
the k-germ corresponding to j′ in the sequence S (A239903), once the extra zeros to the left of its
leftmost nonzero entry are removed. Note j′ = j′(j) arises from the series associated to A076050,
deducible from items 1-4 in Subsection 2.1. The right child of a red (i, j) is defined only if j > 1
(strictly to the left of the vertical dotted line); in that case, it is assigned red (i, j − 1).
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10. Comparing k-germs and k-RGS’s

We show now that the k-germs of Section 2, that were used in all of the above, are equivalent
to the sequences of item (u) page 224 [14]. These sequences, that we call k-RGS’s in the present
context to distinguish them from our k-germs, are indicated in the form a0a1 · · · ak−1 satisfying
a0 = 0 and 0 ≤ ai+1 ≤ ai + 1. Item (r) page 224 [14] can be used to show that these k-RGS’s
represent bijectively the k-edge ordered trees, also presented in item (e) page 221 [14]. In fact, let
bi = ai− ai+1 + 1 and replace ai with one “1” followed by bi “−1”s, for 1 ≤ i ≤ k− 1, where we
assume ak = 0, to get a sequence as in item (r), i.e. sequences of k− 1 “1”s and k− 1 “−1”s such
that every partial sum is nonnegative, with “−1” denoted simply as “−”.

TABLE IV

01100210111112 012101110102000310021102120112111221123

1| 1| 1|
001 101 1111112

10112211101100 100101211212123312221122111101110011000

1| 1| 1|
120 110 1011010

For a bijection of the k-edge ordered trees with the sequence in item (r), a depth-first (preorder)
search through each k-edge ordered tree is performed: When going “down” an edge (away from
the root) records a “1”, and when going “up” an edge records a “−1”. Thus, the k-germs are
in 1-1 correspondence with the RGS’s, as claimed. However, each k-germ and its correspondent
k-RGS have different expressions, as can be seen by comparing, in the pair of graph subtables in
TABLE IV, the tree Tk presented with its nodes expressed first as k-germs (top table) and then as
k-RGS’s (bottom table), for k = 3, 4, where the root is doubly underlined and the leaves are simply
underlined, and where k-RGS’s are written a1 · · · ak−1 instead of a0a1 · · · ak−1 = 0a1 · · · ak−1:

TABLE V

i edge label
subseq of `i

first
node in `i

2nd
node in `i etc. etc. etc. etc. etc.

1 k1 01...k3k2k1 01...k3k
2
2 − − − − −

2 k2
2 01...k3k

2
2 01...k2

3k2 01...k4k
3
3 − − − −

3 k3
3 01...k4k

3
3 01...k2

4k
2
3 01...k3

4k3 01...k4
4 − − −

... ... ... ... ... ... − − −
j kjj 01...kj+1k

j
j 01...k2

j+1k
j1 01...k3

j+1k
j2
j ... 01...kjj − −

... ... ... ... ... ... ... − −
k3 3 0123k3 01223k4 01233k5 ... 012k2 − −
k2 2 012k2 0122k3 0132k4 ... 01k22 01k1 −
k1 1 01k1 021k−2 031k3 ... 0k212 0k11 0k

In these representations of Tk each edge is given as a short segment with a label i = i(α) as
in Theorem 3.1. Thus, each path from the root to a leaf in Tk can be presented by the associated
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subsequence of edge labels. From the tables above, we see that the collection of such subsequences
for k = 3 is {211, 1}, and for k = 4 is {322111, 3211, 31, 211}.

Let χ be the assignment that to each k-germ α assigns its associated k-RGS. Expressing k-
RGS’s as a0a1 · · · ak−1 = 0a1 · · · ak−1, for example k = 3 yields

χ(00) = 012, χ(01) = 010, χ(10) = 011, χ(11) = 001, χ(12) = 000.

The lower table above can be taken to represent the trees χ(T3) and χ(T4).
The following properties are seen to hold for 1 < k ∈ Z

1. The root of χ(Tk) and its farthest leaf in χ(Ti) are χ(0k−1) = 012 · · · (k−1) and χ(12 · · · (k−
1)) = 0k. Furthermore, the leaves of χ(Tk) are those RGS’s a0a1 · · · ak−1 with ak−1 = 0.

2. Each maximum path `i of χ(Tk) whose edges have a constant label i ∈ [1, n] has initial and
terminal nodes of the form A1 = 0a1a2 · · · an and Ah = 0(a2 − 1) · · · (an − 1)(i− 1).

3. By writing kj = k−j, for j = 1, . . . , k−1, the longest path ` in χ(Tk) departing from its root
has associated edge-label sequence k1k

2
2k

3
3 · · · k

j
j · · · 2k21k1 and is the result of concatenating

successively its subpaths `i as in item 2, described in Table V.
4. Each node A of χ(Tk+1) that is a (k + 1)-RGS’s having a maximal substring of the form

012...j of length j + 1, where j is the sole maximum entry in A, yields a node of χ(Tk) by
just removing j from A. All such nodes A of χ(Tk+1) yield, by these indicated removals, all
of χ(Tk). To be used below, let χ′′k+1 be the set of all the nodes A above in this item and let
χ′k+1 = χ(Tk+1) \ χ′′k+1.

5. Let (A1, A2, . . . , Ah) be a path as in item two in χ′k\`. To obtainAi−1 fromAi = 0a1 · · · ak−1,
for i = h, h − 1, . . . , 2, let Ai = A′i|A′′i be obtained by the concatenation of the strings
A′i = a0a1 · · · aj and A′′i = aj+1 · · · ak−1, where A′i = a0 = 0, if a1 = 0, and A′i is the
maximal initial nondecreasing substring of Ai, otherwise, and where A′′i = Ai \ A′i. Then
Ai−1 = 0|(A′′i \ aj+1)|(A′i + 1) = 0aj+2 · · · ak−1(a0 + 1)(a1 + 1) · · · (aj + 1).

TABLE VI

0000

1|
0010 0001

1| 1|
0110 0101 0011

1| 1| 1|
1230 1220 1120 1110 1101 1011 0111

1| 1| 1| 1| 1| 1| 1|
1211211232123231234412333122331222211222111221111

1| 1| 1| 2| 2| 2|
0121 1201 1210 1231 1221 121221121101121100110100

1| 1| 1| 1| 1|
0012 0120 0123 0122 1012

1| 1| 1| 1|
1000 1200 1100 1010

151



www.ejgta.org

A numeral system for the middle-levels graphs | Italo J. Dejter

TABLE VII

1̄0000

1|
0012̄0 00012̄

1| 1|
012̄10 012̄01 0012̄1

1| 1| 1|
1234̄0 123̄20 1123̄0 12̄110 12̄101 12̄011 012̄11

1| 1| 1| 1| 1| 1| 1|
123̄11211234̄21234̄2312345̄41234̄3312234̄3123̄2221123̄2211123̄212̄111

1| 1| 1| 2| 2| 2|
0123̄1 123̄01 123̄10 1234̄1 123̄21 123̄1221123̄1101123̄112̄0011012̄00

1| 1| 1| 1| 1|
00123̄ 0123̄0 01234̄ 0123̄2 10123̄

1| 1| 1| 1|
12̄000 123̄00 12̄100 12̄010

Tables VI and VII contain respective representations of χ(T5) and χ′′6, the latter one here with
a bar over the maximal entry of each RGS node , as in item 4, entry whose removal yields a
corresponding node of χ(T4).

As an additional example here, Table VIII contains a representation of χ′6.
By considering the order-number permutations (as in the left column in Table I above) via χ

we obtain permutations as follows:

k = 3 (0, 4)(1, 2, 3)
k = 4 (0, 13)(1, 8, 6, 7, 9, 2, 11, 3, 4, 5, 12)
k = 5 (0, 41)(1, 37, 22, 18, 19, 36, 2, 38, 8, 29, 21, 32, 7, 27, 5, 39, 3, 13, 14, 40)

(4, 28, 35, 6, 30, 26, 15, 33, 23, 16, 34, 17, 12)(9, 10, 31, 20, 24, 25)(11)

TABLE VIII

10122111010

1|
12200 11200 11100 12212211221101122111001101100

1| 1| 1| |
01233 01223 01222 | 11012110110 00100

1| 1| 1| 2| 1| 1|
12345 12331 12231 12221 | 12122211212211121101112110011101001

5\ 2| 2| 2| | 2|
12211211233212332312344412334412333312233312223312222211222211122211112211111

1| 1| 1| 1| | 1| 1| 1| 1| 1| 1| 1| 1|
01221 12201 12210 12330 3| 12220 11220 11120 11110 11101 11011 10111 01111

1| 1| | 1| 1| 1| 1|
00122 01220 12120112323212123212121 01110 01101 01011 00111

1| 3| 1| 1| 1| 1| 1|
11000 11210112232 12012 01212 00110 00101 00011

2| 1| 1| 1| 1|
01120111201111223 10120 10012110100 00010 00001

2| 1|
10010101012110121112112211211101121100112110001101000 00000
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11. Colored germ adjacency

TABLE IX

m α F (α) F 3(α) F 2(α) F 1(α) F 0(α) α3 α2 α1 α0

0 0 012 ∗ ∗ − 012 ∗ ∗ 02 ∗ 1∗ 1 2 ∗∗0 − 0 1 0
1 1 02 ∗ 1∗ − 1 ∗ 02∗ 012 ∗ ∗ 2∗1∗ 0 − 1 0 1

0 00 0123∗∗∗ 0123 ∗∗∗ 013∗2∗∗ 023∗ ∗1∗ 123∗∗∗ 0 00 10 01 00
1 01 023∗∗1∗ 1∗023∗∗ 1∗03∗2∗ 0123 ∗∗∗ 2∗13∗∗ 0 01 12 00 11
2 10 013∗2∗∗ 02∗20∗∗ 0123∗∗∗ 03∗2∗1∗ 13∗2∗∗ 0 11 00 12 10
3 11 02∗13∗∗ 013∗2∗∗ 13∗∗02∗ 02∗13∗∗ 10∗∗2∗ 3 10 11 11 01
4 12 03∗2∗1∗ 2∗1∗03∗ 1∗023∗∗ 013∗2∗∗ 3∗2∗1∗ 0 12 01 10 12

Given a k-germ α, let (α) represent the dihedral class δ(v) = 〈F (α)〉 with v ∈ Lk/π. Recall
W k

01 is the 2-factor given by the union of the 1-factors of colors 0, 1 in Mk (namely those formed
by lifting the edges αα0, αα1 of Rk in the notation below in this section, instead of those of colors
k, k − 1, as in [6]).

We present each c ∈ V (Rk) via the pair δ(v) = {v,ℵπ(v)} ∈ Rk (v ∈ Lk/π) of Section 8
and via the k-germ α for which δ(v) = 〈F (α)〉, and view Rk as the graph whose vertices are the
k-germs α, with adjacency inherited from that of their δ-notation via F−1 (i.e. uncastling). So,
V (Rk) is presented as in the natural (k-germ) listing (see Section 2).

To start with, examples of such presentation are shown in Table IX for k = 2 and 3, where m,
α = α(m) and F (α) are shown in the first three columns, for 0 ≤ m < Ck. The neighbors of F (α)
are presented in the central columns of the table as F k(α), F k−1(α), . . ., F 0(α) respectively for
the edge colors k, k − 1, . . . , 0, with notation given via the effect of function ℵ. The last columns
yield the k-germs αk, αk−1, . . ., α0 associated via F−1 respectively to the listed neighbors F k(α),
F k−1(α) , . . ., F 0(α) of F (α) in Rk.

TABLE X
m
−

α
−−

α4

−−
α3

−−
α2

−−
α1

−−
α0

−−
m
−

α
−−

α4

−−
α3

−−
α2

−−
α1

−−
α0

−−
0
1

000
001

000
001

100
101

010
012

001
000

000
011

7
8

110
111

100
111

111
110

110
122

012
011

010
111

2
3

010
011

011
010

121
120

000
011

112
111

110
001

9
10

112
120

101
122

122
011

112
100

010
123

112
120

4
5

012
100

012
110

123
000

001
120

110
101

122
100

11
12

121
122

121
120

010
112

121
111

122
121

101
012

6 101 112 001 123 100 121 13 123 123 012 101 120 123

− −− −−
3∗∗

−−
∗∗∗

−−
3∗∗

−−
∗2∗

−−
∗∗1

− −− −−
3∗∗

−−
∗∗∗

−−
3∗∗

−−
∗2∗

−−
∗∗1

For k = 4 and 5, Tables X and XI have a similar respective natural enumeration adjacency
disposition. We can generalize these tables directly to Colored Adjacency Tables denoted CAT(k),
for k > 1. This way, Theorem 11.1(A) below is obtained as indicated in the aggregated last row
upending Tables X and XI citing the only non-asterisk entry, for each of i = k, k − 2, . . . , 0, as a
number j = (k − 1), . . . , 1 that leads to entry equality in both columns α = ak−1 · · · aj · · · a1 and
αi = aik−1 · · · aij · · · ai1, that is aj = aij . Other important properties are contained in the remaining
items of Theorem 11.1, including (B), that the columns α0 in all CAT(k), (k > 1), yield an (infinte)
integer sequence.
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Theorem 11.1. Let: k > 1, j(αk) = k − 1 and j(αi−1) = i, (i = k − 1, . . . , 1). Then: (A)
each column αi−1 in CAT(k), for i ∈ [k] ∪ {k + 1}, preserves the respective j(αi−1)-th entry
of α; (B) the columns αk of all CAT(k)’s for k > 1 coincide into an RGS sequence and thus
into an integer sequence S0, the first Ck terms of which form an idempotent permutation for each
k; (C) the integer sequence S1 given by concatenating the m-indexed intervals [0, 2), [2, 5), . . . ,
[Ck−1, Ck), etc. in column αk−1 of the corresponding tables CAT(2), CAT(3), . . ., CAT(k), etc.
allows to encode all columns αk−1’s; (D) for each k > 1, there is an idempotent permutation given
in the m-indexed interval [0, Ck) of the column αk−1 of CAT(k); such permutation equals the one
given in the interval [0, Ck) of the column αk−2 of CAT(k + 1).

Proof. (A) holds as a continuation of the observation made above with respect to the last aggre-
gated row in Tables X and XI. Let α be a k-germ. Then α shares with αk (e.g. the leftmost column
αi in Tables VIII to X, for 0 ≤ i ≤ k) all the entries to the left of the leftmost entry 1, which yields
(B). Note that if k = 3 then m = 2, 3, 4 yield for αk−1 the idempotent permutation (2, 0)(4, 1),
illustrating (C). (D) can be proved similarly.

TABLE XI

m
−

α
−−

α5

−−
α4

−−
α3

−−
α2

−−
α1

−−
α0

−−
m
−

α
−−

α5

−−
α4

−−
α3

−−
α2

−−
α1

−−
α0

−−
0
1

0000
0001

0000
0001

1000
1001

0100
0101

0010
0012

0001
0000

0000
0011

21
22

1110
1111

1111
1110

1100
1111

1221
1220

0110
0122

1112
1111

1110
0111

2
3

0010
0011

0011
0010

1011
1010

0121
0120

0000
0011

0112
0111

0110
0001

23
24

1112
1120

1122
1011

1101
1222

1233
1121

0112
0100

1110
1123

1222
1120

4
5

0012
0100

0012
0110

1012
1210

0123
0000

0001
1120

0110
1101

0122
1100

25
26

1121
1122

1010
1112

1221
1220

1120
1223

0121
0111

1122
1121

0101
1122

6
7

0101
0110

0112
0100

1212
1200

0001
0111

1123
1110

1100
0012

1121
0010

27
28

1123
1200

1012
1220

1233
0110

1123
1000

0101
1230

1120
1201

1223
1200

8
9

0111
0112

0111
0101

1211
1201

0110
0122

1122
1112

0011
0010

1111
0112

29
30

1201
1210

1223
1210

0112
0100

1001
1211

1234
1220

1200
1012

1231
1011

10
11

0120
0121

0122
0121

1232
1231

0011
0010

1100
1121

1223
1222

1220
1101

31
32

1211
1212

1222
1212

0111
0101

1210
1232

1233
1223

1011
1010

1221
1212

12
13

0122
0123

0120
0123

1230
1234

0112
0012

1111
1101

1221
1220

0012
1233

33
34

1220
1221

1200
1221

1122
1121

1111
1110

1210
1232

0123
0122

0120
1211

14
15

1000
1001

1100
1101

0000
0001

1200
1201

1010
1012

1001
1000

1000
1011

35
36

1222
1223

1211
1201

1120
1223

1222
1122

1222
1212

0121
0120

1112
1123

16
17

1010
1011

1121
1120

0011
0010

1231
1230

1000
1011

1212
1211

1210
1001

37
38

1230
1231

1233
1232

0122
0121

1011
1010

1200
1231

1234
1233

1230
1201

18
19

1012
1100

1123
1000

0012
1110

1234
1100

1001
0120

1210
0101

1232
0100

39
40

1232
1233

1231
1230

0120
1123

1212
1112

1221
1211

1232
1231

1012
0123

20 1101 1001 1112 1101 0123 0100 0121 41 1234 1234 0123 1012 1201 1230 1234

− −− −−
4∗∗∗

−−
∗∗∗∗

−−
4∗∗∗

−−
∗3∗∗

−−
∗∗2∗

−−
∗∗∗1

− −− −−
4∗∗∗

−−
∗∗∗∗

−−
4∗∗∗

−−
∗3∗∗

−−
∗∗2∗

−−
∗∗∗1

The sequences in Theorem 11.1 (B)-(C) start as follows, with intervals ended in “;”:

{0}∪Z+= 0, 1; 2, 3, 4; 5, 6, 7, 8, 9, 10, 11, 12, 13; 14 15, 16,...

(B)=
(C)=

0,
1,

1;
0;

3,
0,

2,
3,

4;
1;

7,
0,

9,
1,

5,
8,

8,
7,

6,
12,

12,
3,

11,
2,

10,
9,

13;
4;

19,
0,

20,
1,

25,...
3,...

Given a k-germ α = ak−1 · · · a1, we want to express αk, αk−1, . . . , α0 as functions of α. Given
a substring α′ = ak−j · · · ak−i of α (0 < j ≤ i < k), let: (a) the reverse string off α′ be ψ(α′) =
ak−i · · · ak−j; (b) the ascent of α′ be (i) its maximal initial ascending substring, if ak−j = 0, and (ii)
its maximal initial non-descending substring with at most two equal nonzero terms, if ak−j > 0.
Then, the following remarks allow to express the k-germs αp = β = bk−1 · · · b1 via the colors
p = k, k − 1, . . . , 0, independently of F−1 and F .
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Remark 11.1. Assume p = k. If ak−1 = 1, take 0|α instead of α = ak−1 · · · a1, with k − 1 instead
of k, removing afterwards from the resulting β the added leftmost 0. Now, let α1 = ak−1 · · · ak−i1
be the ascent of α. Let B1 = i1 − 1, where i1 = ||α1|| is the length of α1. It can be seen that β has
ascent β1 = bk−1 · · · bk−i1 with α1 + ψ(β1) = B1 · · ·B1. If α 6= α1, let α2 be the ascent of α \ α1.
Then there is a ||α2||-germ β2 with α2+ψ(β2) = B2 · · ·B2 andB2 = ||α1||+||α2||−2. Inductively
when feasible for j > 2, let αj be the ascent of α \ (α1|α2| · · · |αj−1). Then there is a ||αj||-germ
βj with αj + ψ(βj) = Bj · · ·Bj and Bj = ||αj−1||+ ||αj|| − 2. This way, β = β1|β2| · · · |βj| · · · .
Remark 11.2. Assume k > p > 0. By Theorem 11.1 (A), if p < k − 1, then bp+1 = ap+1; in
this case, let α′ = α \ {ak−1 · · · aq} with q = p + 1. If p = k − 1, let q = k and let α′ = α. In
both cases (either p < k − 1 or p = k − 1) let α′1 = aq−1 · · · ak−i1 be the ascent of α′. It can be
seen that β′ = β \ {bk−1 · · · bq} has ascent β′1 = bk−1 · · · bk−i1 where α′1 + ψ(β′1) = B′1 · · ·B′1 with
B′1 = i1 + aq. If α′ 6= α′1 then let α′2 be the ascent of α′ \ α′1. Then there is a ||α′2||-germ β′2 where
α′2 +ψ(β′2) = B′2 · · ·B′2 withB′2 = ||α′1||+||α′2||−2. Inductively when feasible for j > 2, let αj be
the ascent of α′ \ (α′1|α′2| · · · |α′j−1). Then there is a ||α′j||-germ β′j where α′j + ψ(β′j) = B′j · · ·B′j
with B′j = ||α′j−1||+ ||α′j|| − 2. This way, β′ = β′1|β′2| · · · |β′j| · · · .

We process the left-hand side from position q. If p > 1, we set aaq+2 · · · aq + ψ(bbq+2 · · · bq) to
equal a constant string B · · ·B, where aaq+2 · · · aq is an ascent and aaq+2 = bbq+2. Expressing all
those numbers ai, bi as a0

i , b
0
i , respectively, in order to keep an inductive approach, let a1

q = aaq+2.
While feasible, let a1

q+1 = aaq+1, a1
q+2 = aaq and so on. In this case, let b1

q = bbq+2, b1
q+1 = bbq+1,

b1
q+2 = bbq and so on. Now, a1

a1q+2 · · · a1
q+ψ(b1

b1q+2 · · · b1
q) equals a constant string, where a1

a1q+2 · · · a1
q

is an ascent and a1
a1q+2 = b1

b1q+2. The continuation of this procedure produces a subsequent string a2
q

and so on, until what remains to reach the leftmost entry of α is smaller than the needed space for
the procedure itself to continue, in which case, a remaining initial ascent is shared by both α and
β. This allows to form the left-hand side of αp = β by concatenation.

Remark 11.3. Incidental problem: To find a Hamilton path in each Rk between 2-looped RGSs 0
and 12 . . . (k − 1), which lifts to a Hamilton cycle in Mk/π. A lifting of such cycle to a Hamilton
cycle in Mk would be D2n-invariant under the action Υ of Theorem 6.1.
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