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Abstract

Let G = (V,E) be a simple connected graph with the vertex set V = {1, 2, . . . , n} and sequence
of vertex degrees (d1, d2, · · · , dn) where di denotes the degree of a vertex i 2 V . With i ⇠ j, we
denote the adjacency of the vertices i and j in the graph G. The inverse sum indeg (ISI) index of
the graph G is defined as ISI(G) =

P
i⇠j

didj
di+dj

. Some new upper bounds for the ISI index are
obtained in this paper.
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1. Introduction

Let G be a simple connected graph with the vertex set V = {1, 2, . . . , n}, edge set E =
{e1, e2, . . . , em} and sequence of vertex degrees (d1, d2, · · · , dn) satisfying d1 � d2 � · · · � dn >

0 where di is the degree of a vertex i 2 V . If e 2 E is an edge connecting the vertices i and j,
then degree of the edge e is defined as d(e) = di + dj � 2. Denote by (d(e1), d(e2), · · · , d(em))
the sequence of edge degrees satisfying d(e1) � d(e2) � · · · � d(em). As usual, we assume that
� = d1 � d2 � · · · � dn = � > 0 and �e = d(e1) + 2 � d(e2) + 2 � · · · � d(em) + 2 = �e. If
the vertices i and j are adjacent, we write i ⇠ j.
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In graph theory, an invariant is a numerical quantity of graphs that depends only on their ab-
stract structure, not on the labeling of vertices or edges, or on the drawing of the graphs. In chem-
ical graph theory, such quantities are also referred to as topological indices. Topological indices
gained considerable popularity because of their applications in chemistry as molecular structure
descriptors [10, 32, 33].

A large number of topological indices have been derived depending on vertex degrees. Among
the oldest are the first and the second Zagreb index, M1 and M2, defined as [17, 18]

M1 = M1(G) =
nX

i=1

d
2
i and M2 = M2(G) =

X

i⇠j

didj.

As shown in [26], the first Zagreb index can be written as

M1 =
X

i⇠j

(di + dj).

Bearing in mind that for the edge e connecting the vertices i and j, holds

d(e) = di + dj � 2,

the index M1 can also be considered as an edge–degree–based topological index [23, 24]

M1 =
mX

i=1

(d(ei) + 2).

The following multiplicative variants of the first and the second Zagreb indices, ⇧1 and ⇧2,
were introduced in [19] (see also [34])

⇧1 = ⇧1(G) =
nY

i=1

d
2
i and ⇧2 = ⇧2(G) =

Y

i⇠j

didj.

Soon after the appearance of ⇧1 and ⇧2, the multiplicative sum Zagreb index, ⇧⇤
1, was introduced

[11]
⇧⇤

1 = ⇧⇤
1(G) =

Y

i⇠j

(di + dj).

The sum–connectivity index, SCI , is defined as [36]

SCI = SCI(G) =
X

i⇠j

1p
di + dj

.

Probably the most popular and most thoroughly investigated molecular–structure descriptor is
the classical Randić (or connectivity) index

R = R(G) =
X

i⇠j

1p
didj

,
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defined in [29]. The general Randić index, R↵, is defined [6] as

R↵ = R↵(G) =
X

i⇠j

(didj)
↵
,

where ↵ is a non-zero real number. Here we are interested in the case ↵ = �1, that is for R�1.
This was defined in [26] under the name modified second Zagreb index.

The harmonic index, H , is defined as [12]

H = H(G) =
X

i⇠j

2

di + dj
.

Details about the mathematical properties of all the above mentioned topological indices can be
found in the surveys [2, 3, 7, 14, 20, 21] and related references listed therein. Here, it needs to be
mentioned that the Harary index [9] is also denoted by H – but in the remaining part of this paper,
by the notation H , we mean the harmonic index.

A family of 148 discrete Adriatic indices was introduced and analyzed in [35]. An especially
interesting subclass of these 148 topological indices consists of 20 indices, which are useful for
predicting the certain physicochemical properties of chemical compounds. The so called inverse
sum indeg (ISI) index is one of these 20 indices. It is defined as

ISI = ISI(G) =
X

i⇠j

didj

di + dj
.

The ISI index is a significant predictor of total surface area for octane isomers [35]. The problem
of finding bounds on the ISI index has gained a considerable attention from researchers in recent
years, for example, see [4, 5, 8, 13, 15, 16, 22, 27, 31]. In this paper, we derive several new upper
bounds on the ISI index in terms of some graph parameters and above mentioned vertex–degree–
based topological indices.

2. Preliminaries

In this section, we recall some discrete inequalities for real number sequences that will be used
in the subsequent considerations.

Let p = (pk) and a = (ak), k = 1, 2, . . . ,m, be two positive real number sequences with the
properties p1 + p2 + · · · + pm = 1 and 0 < r  ak  R < +1. In [30], the following inequality
was proven

mX

k=1

pkak + rR

mX

k=1

pk

ak
 r +R. (1)

Equality in (1) holds if and only if either R = a1 = · · · = am = r or R = a1 = · · · = as � as+1 =
· · · = am = r for some s, 1  s  m� 1.
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Let a = (ak) and b = (bk), k = 1, 2, . . . ,m, be positive real number sequences. In [28], it was
proven that for any r � 0, it holds

mX

k=1

a
r+1
k

b
r
k

�

 
mX

k=1

ak

!r+1

 
mX

k=1

bk

!r , (2)

with equality if and only if a1
b1

= a2
b2

= · · · = am
bm

.

3. Main results

In the following theorem, we established an upper bound for the inverse sum indeg index, in
terms of graph parameters n, �e and �e and topological indices M1 and M2.

Theorem 3.1. If G is a simple connected graph with n � 2 vertices then

ISI  n(�e + �e)M2 �M
2
1

n�e�e
. (3)

Equality sign in (3) holds if and only if G is regular or semiregular bipartite graph.

Proof. For pk := didjP
i⇠j didj

, ak := di + dj , r = �e, R = �e, where summation is performed over
all edges in graph G, the inequality (1) becomes

X

i⇠j

didj(di + dj)

X

i⇠j

didj

+

�e�e

X

i⇠j

didj

di + dj

X

i⇠j

didj

 �e + �e,

that is X

i⇠j

didj(di + dj) +�e�eISI  (�e + �e)M2. (4)

For r = 1, ak := di + dj , bk := 1
di
+ 1

dj
, where summation is performed over all edges in G, the

inequality (2) becomes

X

i⇠j

(di + dj)
2

1

di
+

1

dj

�

 
X

i⇠j

(di + dj)

!2

X

i⇠j

✓
1

di
+

1

dj

◆ ,

i.e. X

i⇠j

didj(di + dj) �
M

2
1

n
. (5)
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According to (4) and (5) follows

M
2
1

n
+�e�eISI  (�e + �e)M2, (6)

wherefrom we obtain (3).
Equality in (1) holds if and only if either a1 = a2 = · · · = am, or a1 = a2 = · · · = as �

as+1 = · · · = am for some s, 1  s  m � 1. This means that equality in (4) is attained if and
only if either �e = d(e1) + 2 = · · · = d(em) + 2 = �e, or �e = d(e1) + 2 = · · · = d(es) + 2 �
d(es+1) + 2 = · · · = d(em) + 2 = �e for some s, 1  s  m � 1. Equality in (2) holds if and
only if a1

b1
= a2

b2
= · · · = am

bm
, therefore equality in (5) holds if and only if didj = c, c = constant,

for every edge of G. Let j and v be two vertices adjacent to i, that is i ⇠ j and i ⇠ v. Then, it
holds didj = didv, i.e. dj = dv. This implies that equality in (5) holds if and only if G is regular
or semiregular bipartite graph. Finally, we conclude that equality in (3) holds if and only if G is
regular or semiregular bipartite graph.

Corollary 3.1. If G is a simple connected graph with n � 2 vertices then

ISI  n(�e + �e)2M2
2

4�e�eM
2
1

 n(�+ �)2M2
2

4��M
2
1

. (7)

The equality sign in the first inequality holds if and only if G is regular or semiregular bipartite
graph. Equality in the second inequality holds if and only if �e = 2� and �e = 2�.

Proof. Using the arithmetic-geometric mean inequality for real numbers (see e.g. [25]), according
to (6) we get

2

r
�e�eM

2
1 ISI

n
 M

2
1

n
+�e�eISI  (�e + �e)M2,

wherefrom we obtain the first inequality in (7).
The second inequality in (7) follows from the first inequality and from the following inequality

2�  �e  �e  2�.

In the next theorem, we derive an upper bound for the ISI index in terms of the graph param-
eters m, �e, �e and topological indices R, H and M2.

Theorem 3.2. If G is a simple connected graph with m � 1 edges then

ISI  (�e + �e)R2
HM2 � 2m4

�e�eR
2H

. (8)

Equality holds if and only if G is regular or semiregular bipartite graph.
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Proof. For r = 1, ak :=
p

didj , bk := 1
di+dj

, where summation is performed over all edges in G,
the inequality (2) becomes

X

i⇠j

didj(di + dj) =
X

i⇠j

�p
didj

�2

1

di + dj

�

 
X

i⇠j

p
didj

!2

X

i⇠j

1

di + dj

,

that is

X

i⇠j

didj(di + dj) �

2

 
X

i⇠j

p
didj

!2

H
. (9)

Using the arithmetic-harmonic mean inequality for real numbers (see [25]), we have that
 
X

i⇠j

p
didj

! 
X

i⇠j

1p
didj

!
� m

2
,

i.e.  
X

i⇠j

p
didj

!2

� m
4

R2
. (10)

From (9) and (10), it follows that
X

i⇠j

didj(di + dj) �
2m4

HR2
. (11)

Finally, from (11) and (4), the desired inequality follows.
Equality in (9) holds if and only if didj(di+ dj) = c, c = const., for every edge of G. Equality

in (10) holds if and only if didj = c1, c1 = constant, for every edge of G. Let j and v be two
vertices adjacent to vertex i, that is i ⇠ j and i ⇠ v. Then, equalities in (9) and (10) hold if and
only if dj = dv. Since the graph G is connected, equalities in (9) and (10) hold if and only if G is
regular or semiregular bipartite graph. Therefore, equality in (11) holds if and only if G is regular
or semiregular bipartite graph. Equalities in both (4) and (11) hold if and only if G is regular or
semiregular bipartite graph. Finally, equality in (8) holds if and only if G is regular or semiregular
bipartite graph.

By the similar arguments as in case of Corollary 3.1, the following corollary of Theorem 3.2
can be proved.

Corollary 3.2. Let G be a simple connected graph with m � 1 edges. Then

ISI  (�e + �e)2HR
2
M

2
2

8�e�em
4

 (�+ �)2HR
2
M

2
2

8��m4
.

Equality in the first inequality holds if and only if G is regular or semiregular bipartite graph.
Equality in the second inequality holds if and only if �e = 2� and �e = 2�.
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In the following theorem, we establish an upper bound for the ISI index in terms of parameters
m, �e, �e and topological indices M2, R�1 and SCI .

Theorem 3.3. If G is a simple connected graph with m � 1 edges then

ISI  (�e + �e)(SCI)2R�1M2 �m
4

�e�e(SCI)2R�1
. (12)

Equality holds if and only if G is regular or semiregular bipartite graph.

Proof. For r = 1, ak :=
p
di + dj , bk := 1

didj
, where summation is performed over all edges in G,

the inequality (2) transforms into

X

i⇠j

didj(di + dj) =
X

i⇠j

�p
di + dj

�2

1

didj

�

 
X

i⇠j

p
di + dj

!2

X

i⇠j

1

didj

,

i.e.

X

i⇠j

didj(di + dj) �

 
X

i⇠j

p
di + dj

!2

R�1
. (13)

By the arithmetic-harmonic mean inequality for real numbers (see e.g. [25]), we have
 
X

i⇠j

p
di + dj

! 
X

i⇠j

1p
di + dj

!
� m

2
,

i.e.  
X

i⇠j

p
di + dj

!2

� m
4

(SCI)2
. (14)

Now, from (13) and (14), it follows that

X

i⇠j

didj(di + dj) �
m

4

(SCI)2R�1
. (15)

Eventually, the inequality (12) is obtained from (4) and (15).
Equality in (13) holds if and only if didj(di + dj) = c, c = constant, for every edge in the

graph G. Equality in (14) holds if and only if di + dj = c1, c1 = constant, for every edge of
G. Therefore, equality in (14) holds if and only if G is regular or semiregular bipartite graph.
Consequently, it can be easily observed that equality in (12) holds if and only if G is regular or
semiregular bipartite graph.
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Corollary 3.3. Let G be a simple connected graph with m � 1 edges. Then

ISI  (�e + �e)2(SCI)2R�1M
2
2

4�e�em
4

.

Equality holds if and only if G is regular or semiregular bipartite graph.

Next, we derive an upper bound on the ISI index in terms of graph parameters m, �e, �e and
topological indices M2, ⇧2, ⇧⇤

1.

Theorem 3.4. If G is a simple connected graph with m � 1 edges then

ISI  (�e + �e)M2 �m (⇧⇤
1)

1
m (⇧2)

1
m

�e�e
, (16)

with equality if and only if G is regular or semiregular bipartite graph.

Proof. Using the arithmetic-geometric mean inequality for real numbers (see e.g. [25]), we have

X

i⇠j

didj(di + dj) � m

 
Y

i⇠j

didj(di + dj)

! 1
m

= m (⇧2)
1
m (⇧⇤

1)
1
m . (17)

From (17) and (4), we obtain (16).
The equality sign holds throughout in (17) if and only if didj(di + dj) = c, c = constant,

for every edge of G. Therefore, equality in (17), and hence in (16), is attained if and only if G is
regular or semiregular bipartite graph.

Corollary 3.4. If G be a simple connected graph with m � 1 edges then

ISI  1

�e�e

✓
(�e + �e)M2 �

m
2

n
(⇧⇤

1)
2
m

◆
. (18)

Equality holds if and only if G is regular or semiregular bipartite graph.

Proof. Since

n =
X

i⇠j

✓
1

di
+

1

dj

◆
=
X

i⇠j

di + dj

didj
� m

 
Y

i⇠j

di + dj

didj

! 1
m

= m
(⇧⇤

1)
1
m

(⇧2)
1
m

,

it follows
(⇧2)

1
m � m

n
(⇧⇤

1)
1
m . (19)

From (16) and (19), the required inequality (18) follows.
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4. The best possible upper bound on the ISI index for binary trees

Sedlar et al. [31] derived the best possible upper bounds on the invariant ISI for several graph
families. In [31], finding best possible upper bound on the aforementioned invariant for molecular
trees (graphs representing alkanes) was left as an open problem. In this section, we will see that
this problem can be easily solved for the case of binary trees [1] (that is, the trees with maximum
degree at most 3). Binary trees actually form a subclass of the class of all molecular trees.

Because there is only one n-vertex tree for n  3, so the problem of finding a bound on any
topological index for trees make sense if n � 4.

Proposition 4.1. For n � 4, if T is an n-vertex binary tree then

ISI(T ) 

8
<

:

9
8n� 9

4 if n is even,

9
8n� 271

120 otherwise,

where the equality sign in the first inequality holds if and only if T contains no vertex of degree 2,
and the equality sign in the second inequality holds if and only if T contains exactly one vertex of
degree 2, which is adjacent to a pendant vertex and a vertex of degree 3.

Proof. Let xi,j be the number of edges in T connecting the vertices of degrees i and j. The invariant
ISI of T can be calculated using the following formula.

ISI(T ) =
2

3
x1,2 +

3

4
x1,3 + x2,2 +

6

5
x2,3 +

3

2
x3,3 . (20)

If ni is the number of vertices of degree i in the tree T then the following system of equations holds

n1 + n2 + n3 = n, (21)

n1 + 2n2 + 3n3 = 2(n� 1), (22)

x1,2 + x1,3 = n1, (23)

x1,2 + 2x2,2 + x2,3 = 2n2, (24)

x1,3 + x2,3 + 2x3,3 = 3n3. (25)

We solve the system of Equations (21)-(25) for the unknowns n1, n2, n3, x1,3, x3,3. The values
of x1,3 and x3,3 are given [1] below:

x1,3 =
1

4
(2n+ 4� 5x1,2 � 2x2,2 � x2,3),

x3,3 =
1

4
(2n� 8 + x1,2 � 2x2,2 � 3x2,3).

After substituting the values of x1,3 and x3,3 in Equation (20), we get:

ISI(T ) =
9

8
n� 9

4
+

5

48
x1,2 �

1

8
x2,2 �

9

80
x2,3. (26)
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Due to the constraint n � 4, it holds that x1,2  x2,2 + x2,3 and hence Equation (26) yields

ISI(T )  9

8
n� 9

4
� 1

120
x2,3 �

1

48
x2,2. (27)

From Eqs. (21) and (22), it follows that

n� n2 = 2(n3 + 1),

which means that both the numbers n, n2 are either even or odd. Now, (27) gives

ISI(T ) 

8
<

:

9
8n� 9

4 if n is even,

9
8n� 271

120 if n is odd,

where the equality sign in the first inequality holds if and only if x2,2 = x2,3 = 0 (and hence
x1,2 = 0), and the equality sign in the second inequality holds if and only if x2,2 = 0, x2,3 = 1 (and
hence x1,2 = 1).
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[31] J. Sedlar, D. Stevanović and A. Vasilyev, On the inverse sum indeg index, Discrete Appl.
Math. 184 (2015), 202–212.

[32] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Wein-
heim, 2000.

[33] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley–VCH,
Weinheim, 2009.

[34] R. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors based
on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010), 359–
372.
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